If $f(p, q)$ is the number of different elements of an array, whether symmetrical or with all its elements different, the number of determinants of the m th order is $f\left({ }_{p} \mathrm{C}_{m},{ }_{g} \mathrm{C}_{m}\right)$ and the number of independent conditions in the vanishing of all these determinants is $f(p-m+1, q-m+1)$. If the elements are all different, $f(p, q)=p q$; if the array is symmetrical $f(p, q)=p q-\frac{1}{2} q(q-1)$.
7. Examples: Given the quadric locus in space of n dimensions

$$
\left(\left.\begin{array}{lll}
a_{11} & , \ldots, a_{1, n+1} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \\
a_{1, n+1}, \ldots, & a_{n+1, n+1}
\end{array} \right\rvert\, x_{1}, x_{2}, \ldots x_{n}, 1\right)^{2}=0,
$$

the conditions that it breaks up into two ($n-1$)-dimensional homaloids are
i.e., $\frac{1}{2} n(n-1)$ conditions.

$$
\left\|a_{n+1, n+1}\right\|_{s}=0
$$

If the homaloids are parallel, the conditions are

$$
\left|\left\lvert\, \begin{array}{l}
a_{11}, \ldots \ldots, a_{1, n+1} \\
\ldots \ldots \ldots \ldots \ldots \ldots . . \\
a_{1 n}, \ldots ., a_{n, n+1}
\end{array}\right. \|_{2}=0,\right.
$$

i.e., $\frac{1}{2}(n-1)(n+2)$ conditions.

If they are coincident, the conditions are

$$
\left\|a_{n+1, n+1}\right\|_{2}=0
$$

i.e., $\frac{1}{2} n(n+1)$ conditions.

The conditions that the locus is a cylinder, whose base is a quadric locus of $n-2$ dimensions, are
i.e., 2 conditions, etc.

Certain Series of Basic Bessel Coefflcients.

By F. H. Jackson, M.A.
\qquad
A Trigonometric Dial: a Teaching Appliance.
By J. A. M•Bride, B.A., B.Sc.

