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Polar Homology

Boris Khesin and Alexei Rosly

Abstract. For complex projective manifolds we introduce polar homology groups, which are holomor-

phic analogues of the homology groups in topology. The polar k-chains are subvarieties of complex

dimension k with meromorphic forms on them, while the boundary operator is defined by taking the

polar divisor and the Poincaré residue on it. One can also define the corresponding analogues for the

intersection and linking numbers of complex submanifolds, which have the properties similar to those

of the corresponding topological notions.

1 Introduction

In this paper we introduce certain homology groups defined for complex projective

manifolds that can be regarded as a complex version of singular homology groups
in topology. The idea of such a geometric analogue of topological homology comes
from thinking of the Dolbeault (or ∂̄) complex of (0, k)-forms on a complex manifold
as an obvious analogue of the de Rham complex of k-forms on a smooth manifold.

This poses an immediate question: “What is the analogue of the chain complex rele-
vant to the context of complex manifolds?”, which we address in detail below.

It should be mentioned that the correspondence between de Rham and Dolbeault
complexes, or d↔ ∂̄, has the following natural extension.

d↔ ∂̄

de Rham complex↔ Dolbeault complex

smooth functions or sections↔ smooth functions or sections

flat bundles↔ holomorphic bundles

locally constant functions or sections↔ local holomorphic functions or sections

cohomology of locally constant sheaves↔ cohomology of sheaves of OX-modules

(Here OX denotes the sheaf of holomorphic functions on a complex (algebraic) mani-
fold X.) Very informally, this table could be summarized in one line with

“Topology” versus “Complex Algebraic Geometry”.

Our interest in this line of thinking is related to the ideas of Arnold on complex
analytic analogues of differential geometric concepts (cf., [A]). Some features of the
above correspondence can also be found in the papers [FK, DT, KR]. In particular,

the approach of Donaldson and Thomas [DT] of transferring differential geometric
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constructions into the context of complex analytic (or algebraic) geometry could lead
one to a complexification of geometry in a sense similar to the complexification of

topology pursued here.
There are also several motivations from mathematical physics: in particular, from

considering any topological field theory of type B [ASL, LNS] and of BV type [AKSZ]
or, e.g., a complex analogue of the Chern-Simons gauge theory suggested in Refer-

ence [W]. The latter context leads us immediately to a search for a proper holomor-
phic analogue of the linking number (cf., also [Ger, FT]).

1.1 Holomorphic Orientation

Let X be a compact complex manifold and u be a smooth (0, k)-form on it, 0 6

k 6 n = dim X. We would like to treat such (0, k)-forms in the same manner as
ordinary k-forms on a smooth manifold, but in the framework of complex geome-

try. In particular, we have to be able to integrate them over k-dimensional complex

submanifolds in X. Recall that in the theory of differential forms, a form can be in-
tegrated over a real submanifold provided that the submanifold is endowed with an
orientation. Thus, we need to find a holomorphic analogue of the orientation.

Obviously, if a k-dimensional submanifold W ⊂ X is equipped with a holomor-
phic k-form ω, one can consider the following integral

(1.1)

∫

W

ω ∧ u

of the product of the (k, 0)- and (0, k)-forms. Therefore we are going to regard a
top degree holomorphic form on a complex manifold as an analogue of orientation.
More generally, if the form ω is allowed to have first order poles on a smooth hyper-

surface in W , the above integral is still well-defined.

1.2 The Cauchy-Stokes Formula

The new feature brought by the presence of poles of ω shows up in the following
relation. Consider the integral (1.1) with a meromorphic k-form ω having first order
poles on a smooth hypersurface V ⊂ W . Let the smooth (0, k)-form u on X be
∂̄-exact, that is u = ∂̄v for some (0, k− 1)-form v on X. Then

(1.2)

∫

W

ω ∧ ∂̄v = 2πi

∫

V

res ω ∧ v.

We shall exploit this straightforward generalization of the Cauchy formula as a com-
plexified analogue of the Stokes theorem. Here res ω denotes a (k − 1)-form on V

which is the Poincaré residue of ω (see Section 2.1).

1.3 Boundary Operator

The formula (1.2) prompts us to consider the pair (W, ω) consisting of a k-dimen-
sional submanifold W equipped with a meromorphic form ω (with first order poles
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on V ) as an analogue of a compact oriented submanifold with boundary. In the
present paper we construct a homology theory in which the pairs (W, ω) will play

the role of chains, while the boundary operator will take the form ∂(W, ω) =

2πi(V, res ω). Note that, in the situation under consideration, when the polar set V of
the form ω is a smooth (k− 1)-dimensional submanifold in a smooth k-dimensional
W , the induced “orientation” on V is given by a regular (k − 1)-form res ω. This

means that ∂(V, res ω) = 0, or the boundary of a boundary is zero. The latter will be
the source of the identity ∂2

= 0 in the homology theory discussed below. We shall
call it the polar homology.

1.4 Pairing to Smooth Forms

It is clear that the (would-be) polar homology groups of a complex manifold X

should have a pairing to Dolbeault cohomology groups H
0,k

∂̄
(X). Indeed, for a po-

lar k-chain (W, ω) and any (0, k)-form u such a pairing is given by the integral

〈(W, ω), u〉 =

∫

W

ω ∧ u.

In other words, the polar chain (W, ω) defines a current on X of degree (n, n − k),

where n = dim X. This pairing descends to (co)homology classes by virtue of the
Cauchy-Stokes formula (1.2), see Section 4.

Example 1.5 Now we are already able to find out what could be the polar homology
groups HPk of a complex projective curve X. In this (and in any) case, all the 0-

chains are cycles. Let (P, a) and (Q, b) be two 0-cycles, where P, Q are points on X

and a, b ∈ C. They are polar homologically equivalent iff a = b. Indeed, a = b is
necessary and sufficient for the existence of a meromorphic 1-form α on X, such that
div∞ α = P + Q and resP α = 2πia, resQ α = −2πib. (The sum of all residues of a

meromorphic differential on a projective curve is zero by the Cauchy theorem.) Then
we can write in terms of polar chain complex (to be defined in detail in Section 3)
that (P, a)− (Q, a) = ∂(X, α). Thus, HP0(X) = C.

As to polar 1-cycles, these correspond to all possible holomorphic 1-forms on X.
On the other hand, there are no 1-boundaries, since there are no polar 2-chains in
X. Hence HP1(X) ∼= Cg , where g is the genus of the curve X. (In particular, the

polar Euler characteristic of X equals 1− g and coincides with its holomorphic Euler
characteristic.)

Similar considerations show that for any n-dimensional X we have HPn(X) =

H0(X, Ωn
X) and, if X is connected, also HP0(X) = C.

1.6 Polar Intersections

One can define a complex (polar) analogue of the intersection number in topology.
For instance, let (X, µ) be a complex manifold equipped with a meromorphic volume
form µ without zeros (its “polar orientation”). Consider two polar cycles (A, α) and
(B, β) of complimentary dimensions that intersect transversely in X (here α and β are
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volume forms, or “polar orientations,” on the corresponding submanifolds). Then
the polar intersection number is defined by the formula

〈(A, α) · (B, β)〉 =

∑

P∈A∩B

α(P) ∧ β(P)

µ(P)
.

(For explanations, see Section 5.9.) At every intersection point P, the ratio in the
right-hand-side is the “comparison” of the orientations of the polar cycles at that

point with the orientation of the ambient manifold. This is a straightforward ana-
logue of the use of mutual orientation of cycles in the definition of the topologi-
cal intersection number. Note, that in the polar case the intersection number does
not have to be an integer. (Rather, it is a holomorphic function of the “parameters”

(A, α), (B, β) and (X, µ).)

Similarly, there is a polar analogue of the intersection product of cycles when they
intersect over a manifold of positive dimension (see Section 5).

1.7 Polar Links

By developing this analogy further we come to a polar analogue of the linking num-
ber. For instance, in complex dimension three we start with two smooth polar 1-
cycles (C1, α1) and (C2, α2), i.e. C1 and C2 are smooth complex curves equipped with

holomorphic 1-forms in a three dimensional X. Let us take the 1-cycles which are po-
lar boundaries. This means, in particular, that there exists such a 2-chain (S2, β2) that
(C2, α2) = ∂(S2, β2). Suppose, the curves C1 and C2 have no common points and S2

is a smooth surface which intersects transversely with the curve C1. Then, in analogy

with the topological linking number of two curves in a three-fold, we define the polar
linking number of the 1-cycles above as the polar intersection number of the 2-chain
(S2, β2) with the 1-cycle (C1, α1):

`kpolar

(

(C1, α1), (C2, α2)
)

:=
∑

P∈C1∩S2

α1(P) ∧ β2(P)

µ(P)
.

One can show that the expression above does not depend on the choice of (S2, β2),
and has certain invariance properties mimicking those of the topological linking
number in “polar” language. We are going to discuss the properties of `kpolar in more
detail in a future publication.

Remark 1.8 Most of the above discussion extends to polar chains (A, α) where the

meromorphic p-form α is not necessarily of top degree, that is 0 6 p 6 k, where
k = dimC A. To define the boundary operator we have to restrict ourselves to the
meromorphic forms with logarithmic singularities. The corresponding polar ho-
mology groups enumerated by two indices k and p (0 6 p 6 k). The relations of this

homology groups with the groups of algebraic cycles, as well as the relation of the
polar linking to the Weil pairing and Parshin symbols, will be discussed elsewhere
[iKR] (see, though, some remarks in Section 4(B) below).
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2 Preliminaries

(A) Polar Divisors and Residues

The Poincaré residue is a higher-dimensional generalization of the classical Cauchy

residue, where the residue at a point in a domain of one complex variable is general-
ized to the residue at a hypersurface.

2.1 Let M be an n-dimensional complex manifold and ω be a meromorphic n-form on
M which is allowed to have first order poles on a smooth hypersurface V . Then, the

form ω can be locally expressed as

(2.1) ω =
ρ ∧ dz

z
+ ε,

where z = 0 is a local equation of V and ρ (respectively, ε) is a holomorphic (n− 1)-
form (resp., n-form). Then the restriction ρ|V is an unambiguously defined holo-

morphic (n− 1)-form on V .

Definition 2.2 The Poincaré residue of the n-form ω in (2.1) is the following
(n− 1)-form on V

res ω := ρ|V .

2.3 It is straightforward to extend this to the case of normal crossing divisors. Suppose

that the meromorphic n-form ω has the first order poles on a normal crossing divisor
V =

⋃

i Vi in M. [Normal crossing divisor means that V has only smooth compo-
nents Vi (each entering with multiplicity one) that intersect generically.] Analogously
to the Definition 2.2 one can define a residue at each component V i . The resulting

(n−1)-forms resV j
ω are then meromorphic and have first order poles at the pairwise

intersections Vi j = Vi ∩V j . One can now consider the repeated Poincaré residue at

Vi j . Representing ω as ω = %∧ dzi

zi
∧

dz j

z j
, where zi = 0 and z j = 0 are local equations

of the components Vi and V j respectively one finds that

resi, j ω := resVi j
(resV j

ω) = reszi=0

(

resz j=0 % ∧
dzi

zi
∧

dz j

z j

)

= %|Vi j
.

Note that
resi, j ω = − res j,i ω.

Notation Let us denote by res ω the collection of (k− 1)-forms resV j
ω, the residues

of ω at the components of the normal crossing divisor div∞ ω =
⋃

i Vi .

(B) The Push-Forward Map (See [Gr])

For a finite covering f : X → Y and a function ϕ on X one can define its push-
forward, or the trace, f∗ϕ, as a function on Y whose value at a point is calculated
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by summing over the preimages taken with multiplicities. The operation f∗ can be
generalized to p-forms and to the maps f which are only generically finite.

2.4 Suppose that f : X → Y is a proper, surjective holomorphic mapping where both X

and Y are smooth complex manifolds of the same dimension n. The push-forward

map is a mapping
f∗ : Γ(X, Ω

p
X)→ Γ(Y, Ω

p
Y ).

The push-forward map is also defined for meromorphic forms, f∗ : Γ(X, Mp) →
Γ(Y, Mp).

Its construction is as follows. First note that f is generically finite, i.e., there is an
analytic hypersurface D ⊂ Y such that f is finite unramified covering away from this
hypersurface D. Hence, for sufficiently small open neighborhood U of any point in
Y ∗ := Y \D, the inverse image f −1(U ) = U1 t · · · tUd is a disjoint union of d open

sets U j , such that f |U j
is an isomorphism with the inverse s j : U → U j . Given a form

ω on X, one defines its push-forward

f∗ω := s∗1 ω + · · · + s∗dω

in U , and therefore, in Y ∗. One can check that the form f∗ω extends across the

smooth points of D and, hence, to the whole of the manifold Y , since the remaining
part of D has codimension greater than one. The resulting form f∗ω is holomorphic
(resp. meromorphic) on Y provided the form ω was holomorphic (resp. meromor-
phic) on X.

The operations of push-forward and residue are related in the following way.

Proposition 2.5 Let π : X → Y be a proper, surjective holomorphic map of complex

manifolds of the same dimension n. Let ω be a meromorphic form with only first order

poles on a smooth hypersurface V in X. Suppose Vo := π(V ) is a smooth hypersurface

in Y . Then π∗ω has first order poles on Vo and

res π∗ω = π̄∗ res ω,

where π̄ : V → Vo is the restriction of π.

3 Polar Homology of Projective Varieties

Here we define a homological complex based on the notion of the polar boundary.
The construction is analogous to the definition of homology of a topological space

with replacement of continuous maps by complex analytic ones. The notion of the
boundary (of a simplex or a cell) is replaced by the Poincaré residue of a meromor-
phic differential form. There are however important distinctions. First, we shall only
have an analogue of the non-torsion part of homology. Second, unlike the topo-

logical homology, where in each dimension k one uses all continuous maps of one
standard object (the standard k-simplex or the standard k-cell) to a given topologi-
cal space, in polar homology we deal with complex analytic maps of a large class of
k-dimensional varieties to a given one.
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3.1 Polar Chains

In this section we deal with complex projective varieties, i.e., subvarieties of a com-
plex projective space. (In this setting the complex analytic considerations are equiv-

alent to algebraic ones.) By a smooth projective variety we always understand a
smooth and connected one. For a smooth variety M, we denote by Ω

p
M the sheaf

of regular p-forms on M. The sheaf Ω
dim M
M of forms of the top degree on M will

sometimes be denoted by KM .

The space of polar k-chains for a complex projective variety X, dim X = n, will be
defined as a C-vector space with certain generators and relations.

Definition 3.2 The space of polar k-chains Ck(X) is a vector space over C defined
as the quotient Ck(X) = Ĉk(X)/Rk, where the vector space Ĉk(X) is freely generated
by the triples (A, f , α) described in (i), (ii), (iii) and Rk is defined as relations (R1),

(R2), (R3) imposed on the triples.

(i) A is a smooth complex projective variety, dim A = k;

(ii) f : A→ X is a holomorphic map of projective varieties;
(iii) α is a rational k-form on A with first order poles on V ⊂ A, where V is a normal

crossing divisor in A, i.e., α ∈ Γ
(

A, Ωk
A(V )

)

.

The relations are:

(R1) λ(A, f , α) = (A, f , λα)
(R2)

∑

i(Ai , fi , αi) = 0 provided that
∑

i fi∗αi ≡ 0, where dim fi(Ai) = k for all i

and the push-forwards fi∗αi are considered on the smooth part of
⋃

i fi(Ai);
(R3) (A, f , α) = 0 if dim f (A) < k.

Remarks on the Definition

3.3 By definition, Ck(X) = 0 for k < 0 and k > dim X.

3.4 In what follows we sometimes will make no distinction between a triple (A, f , α)
and the equivalence class defined by it in Ck(X). An arbitrary polar chain can thus be

written as a sum of triples of the form
∑

i(Ai , fi , αi). A chain equivalent to a single
triple will be called prime. For a chain a =

∑

i(Ai , fi , αi), let us call the subvariety
⋃

i fi(Ai) in X the support of a. If the support of a chain is a smooth subvariety in X,
such a chain will be called smooth. One can show that smooth chains are prime, since

we suppose that “smooth” implies “connected” (see 3.1).

3.5 The relation (R2) allows us, in particular, to refer to prime polar chains as pairs re-
placing a triple (A, f , α) by a pair (Â, α̂), where Â = f (A) ⊂ X, α̂ is defined only on
the smooth part of Â and α̂ = f∗α there. Due to the relation (R2), such a pair (Â, α̂)
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carries precisely the same information as (A, f , α).1 (The only point to worry about
is that such pairs cannot be arbitrary. In fact, by the Hironaka theorem on resolution

of singularities, any subvariety Â ⊂ X can be the image of some regular A, but the
form α̂ on the smooth part of Â cannot be arbitrary.)

3.6 The relation (R2) also represents additivity with respect to α, that is

(A, f , α1) + (A, f , α2) = (A, f , α1 + α2).

Formally speaking, the right hand side makes sense only if α1 + α2 is an admissible
form on A, that is if its polar divisor div∞(α1 + α2) has normal crossings. However,
one can always replace A with a variety Ã obtained from A by a blow-up, π : Ã→ A,
in such a way that π∗(α1 + α2) is admissible on Ã, i.e., div∞(α1 + α2) is already a

normal crossing divisor. (This is again the Hironaka theorem.) Then (R2) says that
(A, f , α1) + (A, f , α2) =

(

Ã, f ◦ π, π∗(α1 + α2)
)

.

Definition 3.7 The boundary operator ∂ : Ck(X)→ Ck−1(X) is defined by

∂(A, f , α) = 2πi
∑

i

(Vi , fi , resVi
α)

(and by linearity), where V i are the components of the polar divisor of α, div∞ α =
⋃

i Vi , and the maps fi = f |Vi
are restrictions of the map f to each component of the

divisor.

Theorem 3.8 The boundary operator ∂ is well defined, i.e. it is compatible with the

relations (R1), (R2), (R3).

Proof We have to show that ∂ respects the relations (R1), (R2), (R3), in other words,

∂ maps equivalent sums of triples to equivalent ones. It is trivial with (R1). To check
(R2), let us recall Proposition 2.5. Consider a sum of triples

∑

i(Ai , fi , αi) belonging
to (R2), that is dim Ai = dim fi(Ai) = k, ∀i, and

∑

i fi∗αi = 0 on the smooth part of
⋃

i fi(Ai). Since the irreducible components of
⋃

i fi(Ai) can be treated separately it is

natural to consider only the case when all the triples have the same support, fi(Ai) =

Â ⊂ X, ∀i. Let Vi ⊂ Ai be the divisor of poles of αi and let V̂ :=
⋃

i fi(Vi) ⊂ Â. We
want to prove that

∑

i

f̄i∗ res αi = 0

on the smooth part of V̂ , where f̄i∗ : Vi → V̂ for each i is the restriction of the map fi .

Suppose first that there exists a smooth point of V̂ which is smooth also in Â.
Then the Proposition 2.5 applied in a neighborhood of that point gives us the desired
vanishing

∑

i f̄i∗ res αi = 0, as a consequence of the equality
∑

i fi∗αi = 0. This

1Note that the consideration of triples (A, f , α) instead of pairs (Â, α̂) which we used in Section 1 is
similar to the definition of chains in the singular homology theory; in the latter case, one considers the
mappings of abstract simplices into the manifold, but morally it is only “images of simplices” that matter.
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is however not enough for our proof since some components of V̂ may lie entirely
in the set of singular points of Â. To overcome this problem we apply the Hironaka

theorem replacing Â with a smooth variety Ã, a blow-up of Â, and correspondingly
blowing up all Ai , so that the following diagram is commutative:

Ai
πi←−−−− Ãi

fi





y
f̃i





y

Â
π

←−−−− Ã

Then we apply Proposition 2.5 on the blown up side.
We must recall now that the divisor V i = div∞ αi could have components that

were mapped by fi to subvarieties of dimension less than k − 1; hence, we conclude
that we have just proved the following statement (symbolically): if a ∈ (R2) then

∂a ∈ (R2) + (R3).
Now, it remains to prove the compatibility of ∂ with (R3). Let a = (A, f , α) be

a degenerate triple described in (R3), i.e., dim f (A) < k = dim A. We shall show
that ∂a ∈ (R2) + (R3) in this case. The polar divisor V = div∞ α, dim V = k − 1,

is, by assumptions of Definition 3.2, a normal crossing divisor in A. Let us split
the components of V into two parts: non-degenerate and degenerate ones. That
is V = N ∪ D where dim f (N) = k − 1 and dim f (D) < k − 1. According to
this splitting, ∂a is represented as a sum of two terms corresponding to resN α and

resD α. The second term belongs to (R3) and we have to show only that the first one
belongs to (R2), i.e., that f̄∗ resN α = 0, where f̄ = f |N . Recall that we suppose
that dim f (A) < k. If it happens that dim f (A) < k − 1, we have N = ∅ and
there is nothing to prove. Therefore we may assume that dim f (A) = k − 1 and, by

irreducibility of A, f (A) = f (N).
Then, for a generic smooth point Q ∈ f (A), its preimage in A, C := f −1(Q) ⊂ A,

is a smooth projective curve. This curve intersects with N over the set f̄ −1(Q) and we
may suppose that the latter consists of a finite number of points Pi which are smooth

in N and that the intersections are transverse there.

r

r

r

A

f (A)

Q

N

C

P1

P2

D
?

Let β(Pi) denote the values of resN α at the points Pi ∈ N ∩ C and pick up a

non-vanishing (k− 1)-form βo at Q (recall that Q = f (Pi), ∀i). Let us show that

∑

i

β(Pi)

f ∗βo(Pi)
= 0
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(this would mean that f̄∗ resN α = 0 on the smooth part of f̄ (N) = f (A) —
the required result). To prove this, let us notice that there exists a meromorphic

1-differential ω on C such that

ω(P)⊗ f ∗βo(P) = α(P), P ∈ C.

(ω is obtained by dividing α by the non-vanishing form f ∗βo.) This equality is un-
derstood in the sense of the natural isomorphism

KC ⊗ ( f ∗K f (A)∗)|C = KA|C ,

where f (A)∗ is the smooth part of f (A). It is easy to see now that for β(Pi) =

resN α(Pi) we have
∑

i

β(Pi)

f ∗βo(Pi)
=

∑

i

resPi
ω = 0.

The latter equality follows from the observation that Pi are the only points on C where
ω has poles. Indeed, the poles of ω are located on div∞ α∩C = (N∩C)∪(D∩C). One
part of this gives us the points Pi , {Pi} = N∩C , while the rest, D∩C , corresponding
to the “degenerate” part D of div∞ α can be assumed to be empty, D ∩ C = ∅.

Indeed, we could have assumed from the very beginning that C = f −1(Q) does not
meet D because dim f (D) < k− 1 and we might suppose that Q /∈ f (D).

Theorem 3.9 ∂2
= 0.

Proof We need to prove this for triples (A, f , α) ∈ Ck(X), i.e., for forms α with nor-
mal crossing divisors of poles. The repeated residue at pairwise intersections differs

by a sign according to the order in which the residues are taken, see 2.3. Thus the
contributions to the repeated residue from different components cancel out (or, the
residue of a residue is zero).2

Definition 3.10 For a smooth complex projective variety X, dim X = n, the chain

complex

0→ Cn(X)
∂
→ Cn−1(X)

∂
→ · · ·

∂
→ C0(X)→ 0

is called the polar chain complex of X. Its homology groups, HPk(X), k = 0, . . . , n,
are called the polar homology groups of X.

Example 3.11 For a projective curve of genus g the polar homology groups are as
follows: HP0 = C, HP1 = Cg , and HPk = 0 for k ≥ 2. One can readily see that the
approach with triples coincides with the consideration of Introduction.

2One can note that an example of the polar divisor {xy = 0} for the form dx ∧ dy/xy in C2 should be
viewed as a complexification of a polygon vertex in R2. Indeed, the cancellation of the repeated residues
on different components of the divisor is mimicking the calculation of the boundary of a boundary of a
polygon: every polygon vertex appears twice with different signs as a boundary point of two sides.
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Remark 3.12 The functorial properties of polar homology are straightforward. A
regular morphism of projective varieties h : X → Y defines a homomorphism

h∗ : PHk(X)→ PHk(Y ).

Remark 3.13 The definitions of polar chains can be generalized to the case of
p-forms on k-manifolds, i.e., for the forms of not necessarily top degree, p ≤ k.

Instead of meromorphic k-forms with poles of the first order we have to restrict our-
selves to p-forms with logarithmic singularities. The definition of the boundary op-
erator ∂, the property ∂2

= 0, and the definition of the polar homology groups
can be carried over to this, more general, situation. The polar homology groups are

then enumerated by two indices: HPk,k−p(M). The definition above corresponds to
the p = k case. We will discuss the more general polar homology groups elsewhere
[iKR].

3.14 Relative Polar Homology

Let Z be a projective subvariety in a projective X. Analogously to the topological
relative homology we can define the polar relative homology of the pair Z ⊂ X.

Definition 3.15 The relative polar homology HPk(X, Z) is the homology of the fol-
lowing quotient complex of chains:

Ck(X, Z) = Ck(X)/Ck(Z).

Here we use the natural embedding of the chain groups Ck(Z) ↪→ Ck(X). This leads
to the long exact sequence in polar homology:

· · · → HPk(X)→ HPk(X, Z)
∂
→ HPk−1(Z)→ HPk−1(X)→ · · ·

3.16 Systems of Coefficients

One can introduce the notion of a homological system of coefficients appropriate for
the polar complex. The most geometrical example would be, perhaps, to supply pro-

jective varieties A, f : A → X, with coherent sheaves FA, f obeying certain relations
between FA1, f1

and FA2, f2
when f1(A1) = f2(A2) and related by some homomor-

phisms playing the role of the residue. We do not study this in the present paper, but
let us mention that the homology groups appearing in Sections 3.13 above and 4.8

below can be viewed as an example. On the other hand, the simplest case of a polar
homological system of coefficients corresponds to FA, f = f ∗F ⊗ KA, where F is a
locally free sheaf on X and α in the triple (A, f , α) is understood as a global section
of f ∗F⊗KA(V ). Let us denote the corresponding homology as HPk(X, F). This case

is mentioned in Sections 4.4, 4.5.
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4 Polar Chains and Differential Forms

(A) Dolbeault Cohomology as Polar de Rham Cohomology

As we discussed in the Introduction, the Dolbeault complex of (0, k)-forms should
be related to the polar homology in the same way as the de Rham complex of smooth
forms is related to the topological homology (e.g., singular homology). Now, after

the definitions of Section 3 are given, we are able to make this point more explicit.

4.1 In a smooth projective variety X, consider a polar k-chain, for instance, a prime one,
i.e. (an equivalence class of) a triple a = (A, f , α). Such a triple can be regarded
as a linear functional on the space of smooth (0, k)-forms on X. Let u be a smooth

(0, k)-form on X, then the pairing is given by the following integral:

(4.1) 〈a, u〉 :=

∫

A

α ∧ f ∗u.

The integral is well defined since α has only first order poles on a normal crossing

divisor. It is now straightforward to show that the pairing 〈 , 〉 descends to the space
of equivalence classes of triples Ck(X), i.e., that it is compatible with the relations
(R1), (R2), (R3) of Definition 3.2. Indeed, (R1) is obvious, compatibility with (R3)
follows from noticing that f ∗u = 0 if dim f (A) < k, and the compatibility with (R2)

follows from the relation
∫

A
α ∧ f ∗u =

∫

f (A)
f∗α ∧ u if dim f (A) = k, where the last

integral is taken over the smooth part of f (A).

Remark 4.2 Let us notice that the last considerations can be used3 as an alterna-
tive definition of the polar chain complex on a smooth projective variety X (or any
smooth compact complex manifold). The pairing above can be thought of as a map

ϕ̂ : Ĉk(X) → Dn,n−k(X), where Ĉk(X) is the vector space freely generated by the
triples (A, f , α) (see Definition 3.2) and Dn,n−k(X) is the space of currents of de-
gree (n, n − k) on X which is defined as a space of certain linear functionals on the
smooth (0, k)-forms (see [GH]). Then the relations (R1), (R2), (R3) in the Defini-

tion 3.2 correspond to the kernel of the map ϕ̂. In other words, the space of polar
chains Ck(X) can be defined as a subspace of currents — the image of ϕ̂. We have
thus an embedding

ϕ : Ck(X) ↪→ D
n,n−k(X).

Moreover, the Cauchy-Stokes formula (1.2) shows that Ck(X) is a subcomplex of the
∂̄-complex of currents Dn,n−k(X), i.e. for a ∈ Ck(X) we have ϕ(∂a) = ∂̄ϕ(a). (This
is in fact shown also in the proof of 4.3 below.)

Proposition 4.3 The pairing (4.1) defines the following homomorphism in (co)homo-

logy:

(4.3) ρ : HPk(X)→ Hn,n−k

∂̄
(X),

where n = dim X.
3We thank A. Levin for emphasizing this point.
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Proof By the Serre duality, ρ is the map HPk(X)→
(

H
0,k

∂̄
(X)

) ∗

and it is sufficient to

verify that the pairing (4.1) vanishes if ∂a = 0 and u = ∂̄v, or if ∂̄u = 0 and a = ∂b.
This follows immediately from the Cauchy-Stokes formula (1.2):

∫

A

α ∧ f ∗(∂̄u) = 2πi

∫

div∞ α

(res α) ∧ f ∗(u),

that is 〈a, ∂̄u〉 = 〈∂a, u〉.

A number of examples suggests that, for projective manifolds, the homomor-
phism (4.3) should be in fact an isomorphism.

Conjecture 4.4 (Polar de Rham Theorem) For a smooth projective manifold X the

mapping ρ : HPk(X) → H
n,n−k

∂̄
(X) is an isomorphism of the polar homology and Dol-

beault cohomology groups. Equivalently, in terms of dual cohomology groups,

HPk(X) ∼= H0,k

∂̄
(X).

An analogous conjecture that HPk(X, F) ∼= Hn−k(X, KX ⊗ F) sounds reasonable
also for polar (co)homology with coefficients in locally free sheaves on X (see Sec-
tion 3.16).

Example 4.5 If X is a complex curve of genus g, one has HP0(X) ∼= C ∼= H
1,1

∂̄
(X)

and HP1(X) ∼= Cg ∼= H
1,0

∂̄
(X) (see Example 1.5). Considering also HPk(X, F) in case

of F = TX (the tangent sheaf of X) one can check that HP0(X, TX) ∼= H
0,1

∂̄
(X) and

HP1(X, TX) ∼= H
0,0

∂̄
(X).

Example 4.6 As an other example of a direct computation of polar homology, let
us consider the manifold X = CP1 × CP1. We are going to show that HP0(X) ∼=
C and HP1(X) = HP2(X) = 0 in this case. Note that this result will agree with

Conjecture 4.4. First of all, HP0(X) ∼= C follows from the connectedness of X as
in Example 1.5. HP2(X) = 0 follows from the fact that there are no holomorphic
2-forms on X = CP1 × CP1.

It remains to prove that HP1(X) vanishes. In other words, we have to show that
if (A, f , α) is a polar 1-cocycle then there exists a meromorphic 2-form β on X with
the first order poles on the curve C := f (A) ⊂ X and such that res β = γ where

γ = f∗α is a 1-form on C defined in smooth points of C . Let π : X → CP1 denote
the projection on the first factor in X = CP1×CP1 and suppose C has no components
lying in a fiber of π (the opposite case can be considered separately without further
complications). Let us now consider a fiber F, which is also, of course, a copy of CP1,

and suppose F intersects our curve C transversely (this holds for a generic fiber). We
should construct a meromorphic section β of Ω2(X) along F ⊂ X in such a way that it
would have a first order pole at each point of the intersection P ∈ F∩C with a residue
equal to the value γP of γ at P. This is equivalent to defining a 1-form on F with
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prescribed residues at each P ∈ F∩C . (Indeed, the 2-form β can be considered as a 1-
form on F with coefficients in the conormal bundle to F, the latter being canonically

trivial.) Moreover, the sum of the residues,
∑

γP, over the set of intersection points
F ∩ C is zero. The latter follows from the equality π∗γ ≡ π∗ f∗α = 0. Indeed,
π∗ f∗α would have to be a 1-form globally holomorphic on CP1 and therefore it has
to vanish. Thus, the section β with the desired properties (in particular, res β = γ)

exists and it is unique on a generic F. Hence we have constructed a 2-form β on an
open subset in X.

Now we can show that β extends to the whole of X, or, better, we just repeat
the above construction for an arbitrary fiber with only one modification as follows.

If the intersection at the point P ∈ F ∩ C is not transverse (in particular, if C is
singular at P), we cannot use the residue γP there. Therefore, let us replace γP by
γ̃P =

(

π∗(π ◦ f̃ )∗α
)

(P), where f̃ is the restriction of the map f : A → X to a
neighborhood U 3 f −1(P), such that f (U ) contains no intersection points of F ∩C

other than P. Now, γ̃P defines an element of the conormal bundle to F at P for
any point P ∈ F ∩ C . Such an element coincides with γP when the intersection is
transverse at P. This makes the construction of β obeying res β = γ global over X.
The latter shows that (A, f , α) is a polar 1-boundary, and hence HP1(X) = 0.

Remark 4.7 Consider the polar Euler characteristic,

χpol (X) :=

n
∑

k=0

(−1)k dim HPk(X),

of an n-dimensional variety X. Then, if the conjecture (4.4) is true, for a smooth pro-

jective X one obtains the equality χpol (X) = χhol (X) of the polar and holomorphic
Euler characteristics, where

χhol (X) =

n
∑

k=0

(−1)k dim H
0,k

∂̄
(X).

(B) Forms of Any Degree

4.8 So far we considered polar chains with complex volume forms. More generally, one

could consider polar (k, p)-chains (A, f , α), where α is a meromorphic (k− p)-form
of not necessarily maximal degree, 0 6 p 6 k, on A that can have only logarith-
mic singularities on a normal crossing divisor.4 The requirement of log-singularities

is needed to have a convenient definition of the residue and, hence, the boundary
operator.

The Cauchy-Stokes formula (1.2) extends to this case as well. As a consequence,
the natural pairing between polar (k, p)-chains and smooth (p, k)-forms on X gives

us as before the homomorphism (cf. (4.3))

ρ : HPk,p(X)→ H
n−p,n−k

∂̄
(X).

4An important property of such forms on projective varieties is that they are closed, see [De].
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However, unlike the case p = 0, the map ρ is not, in general, an isomorphism for
other values of p, 0 < p 6 k. For instance, at least in the case of p = k, this is easy to

see for the following reason.

4.9 Polar Chains With p = k

In this case the triples (A, f , α) involve 0-forms (i.e., just functions) α on projective
varieties A. Then the requirement of log-singularities amounts here to saying that

these functions are holomorphic on A. Since A is compact, these functions must be
constant. In particular, we conclude that all polar (k, k)-chains are polar cycles.

Thus, the space of polar (k, k)-cycles in a projective manifold X is the same as the

vector space generated over C by all k-dimensional algebraic cycles in X. (Note that
the replacement of the triples (A, f , α) by the pairs (A, α) with A ⊂ X is especially
convenient when αs are 0-forms.) In this case one can show that the homomorphism
ρ maps HPk,k(X) to the algebraic part of Hr,r(X), where r = n− k, or more precisely,

to

H
r,r
alg (X, C) :=

(

H
r,r

∂̄
(X) ∩H2r(X, Q)

)

⊗ C ⊂ H
r,r

∂̄
(X).

This allows us to conclude that ρ is not surjective, in general. Indeed, there are ex-
amples where H

r,r
alg (X, C) is strictly smaller than H

r,r

∂̄
(X). For instance, for a generic

algebraic K3 surface one has that dim H1,1(X) = 20, while dim H
1,1
alg (X, C) = 1, see

[Tju]. We also note that by the Hodge conjecture, the image of ρ coincides with
Hr,r

alg (X, C).

Remark 4.10 It would be, certainly, very interesting to describe the polar homology
groups HPk,p(X) for all values of p. In particular, it is not clear whether the groups

HPk,p(X) are finite-dimensional.5

5 Intersection in Polar Homology

We define here a polar analogue of the topological intersection product. In particular,
for polar cycles of complimentary dimensions one obtains a complex number, called

the polar intersection number.

Recall that in topology, one considers a smooth oriented closed manifold M and
two oriented closed submanifolds A, B ⊂ M of complementary dimensions, i.e.,

dim A + dim B = dim M. Suppose, A and B intersect transversely at a finite set of
points. Then to each intersection point P one assigns±1 (local intersection index) by
comparing the mutual orientations of the tangent vector spaces TPA, TPB, and TPM.

5.1 Polar Oriented Manifolds

Let now M be a compact complex manifold of dimension n, on which we would like
to define a polar intersection theory. It has to be polar oriented, i.e., equipped with a

5It should be mentioned that there is a map of the complex of polar chains to the complex considered
in [BO]. The corresponding (co)homology groups are, however, quite different, as already the simplest
example of a complex curve shows. We are grateful to S. Bloch for illuminating discussions on this relation.
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complex volume form. As the discussion below shows, the n-form µ defining its polar
orientation has to have no zeros on M, since we are going to consider expressions in

which µ, the orientation of the ambient manifold, enters a denominator. Therefore
we adopt the following terminology.

Definition 5.2

(i) A compact complex manifold M, endowed with a nowhere vanishing holomor-

phic volume form µ, is said to be a polar oriented closed manifold.
(ii)If the volume form µ on a compact complex manifold M is nonvanishing and

meromorphic with only first order poles on a normal crossing divisor N ⊂ M,
then M is called a polar oriented manifold with boundary. The hypersurface N is

then endowed with a polar orientation ν := res µ 6= 0 and (N, ν) is called the
polar boundary of (M, µ).

Remark 5.3 By definition, polar oriented closed manifolds are complex manifolds
whose canonical bundle is trivial (Calabi-Yau, Abelian manifolds or, for example,
any complex tori, if we do not restrict ourselves to algebraic manifolds). We have just
defined the notion of the polar orientation in a more restrictive sense than before,

when we considered the definition of chains. In fact, polar chains with their orienta-
tions are to be compared to oriented piece-wise smooth submanifolds in differential
topology, while the ambient space on which we want to have Poincaré duality has to
be everywhere smooth and oriented. Zeros of a volume form could be regarded as a

complex analogue of singularities of a real manifold.6

(A) Polar Intersection Number

5.4 Let (M, µ) be a polar oriented closed manifold of dimension n. In such a case we
define the following natural pairing between its polar homology groups HP p(M)

and HPn−p(M) of complimentary dimension.
According to Proposition 4.3, the above groups can be mapped to the Dolbeault

cohomology groups H
n,n−p

∂̄
(M) and H

n,p

∂̄
(M), respectively. On a polar oriented

closed manifold we are given a nowhere vanishing section µ of the line bundle Ω
n
M .

Hence, we have the isomorphism H
n,n−p

∂̄
(M)

µ−1

→ H
0,n−p

∂̄
(M). Using this and the

product in Dolbeault cohomology we obtain the following pairing:

H
n,p

∂̄
(M)⊗H

n,n−p

∂̄
(M)

id ⊗µ−1

−→ H
n,p

∂̄
(M)⊗H

0,n−p

∂̄
(M) −→ H

n,n

∂̄
(M)

∼
−→ C.

Together with the homomorphism ρ : HPk(X)→ Hn,n−k

∂̄
(X), this yields the pairing

〈 · 〉 : HP p(M)⊗HPn−p(M)→ C.

6For instance, on a complex curve X of genus g one has HP1(X) = Cg , and a holomorphic
1-differential representing a generic element in HP1(X) has 2g − 2 zeros. From this point of view the
complex genus g curve is like a graph which has g loops joined by g − 1 edges and having 2g − 2 trivalent
(i.e., “non-smooth”) points. The “smooth cases” are CP1, which corresponds to a real segment, and an
elliptic curve, which is a complex counterpart of the circle in this precise sense.
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Here, in fact, we interchanged the order of factors (see the explicit formula (5.5)
below).

5.5 Consider two polar cycles, [a] ∈ HP p(M) and [b] ∈ HPn−p(M). Let ta and tb be

the Dolbeault forms representing ρ([a]) and ρ([b]) respectively. Then, the above
product, which we denoted by 〈a · b〉, can be written as

〈a · b〉 =

∫

M

tb ∧
ta

µ
.

Note that ta is an (n, n − p)-form and thus, ta/µ is a (0, n − p)-form that can be
integrated against an (n, p)-form tb.

Definition 5.6 The pairing 〈a·b〉 of polar cycles is called the polar intersection index.

Remark 5.7 If Conjecture (4.4) is true, this pairing is non-degenerate.

5.8 Let us consider now the case when the cycles a and b are smooth and transverse. That

is a = (A, α) and b = (B, β), where A is a smooth p-dimensional variety and α a
holomorphic p-form on it (and similarly for (B, β) in dimension n − p) and it is
assumed that A and B intersect transversely. Then, we have the following formula for
the polar intersection index.

Theorem 5.9 The polar intersection index of two smooth transverse cycles (A, α) and

(B, β) is given by the following sum over the set of points in A ∩ B:

〈(A, α) · (B, β)〉 =

∑

P∈A∩B

α(P) ∧ β(P)

µ(P)

Here α(P) and β(P) are understood as exterior forms on TPM = TPA× TPB obtained

by the pull-back from the corresponding factors.

The ratio in the right-hand-side can be understood as the comparison of the po-
lar orientations brought to the intersection point P by the two cycles with the polar

orientation µ(P) of the ambient manifold at that point.

Proof As we have already mentioned, the homomorphism ρ of Proposition 4.3 can
be conveniently described in terms of the following natural map of polar chains:

ϕ : Ck(M)→ D
n,n−k(M),

where Dp,q(M) is the space of currents of degree (p, q) (i.e., a space of linear func-
tionals on smooth (n − p, n − q)-forms, see [GH]). As a matter of fact, this map is
described by the integral (4.1). For a p-dimensional submanifold A ⊂ M, let the cur-
rent δA ∈ Dn−p,n−p(M) denote the linear functional on (p, p)-forms corresponding
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to the integration over A. The current δA is supported on A. Therefore, for a p-form
α defined on A, the product δA ∧α makes sense and defines a current in Dn,n−p(M).

Recalling the isomorphism of the cohomology of currents with the cohomology of
smooth forms,

H j
(

D
i,•(M), ∂̄

) ∼
→ H

i, j

∂̄
(M),

we can use δA ∧ α and δB ∧ β in place of ta and tb in the integral (5.5). Thus, for a
transverse intersection of smooth polar cycles we derive that7

〈(A, α) · (B, β)〉 =

∫

M

δB ∧ β ∧
δA ∧ α

µ
=

∫

M

( α ∧ β

µ

)

· δA ∧ δB.

The second equality can be checked in local coordinates. This proves the theorem,
since δA ∧ δB is supported on A ∩ B.

(B) Polar Intersection Product

5.10 Now consider the case when on a polar oriented closed manifold (M, µ) we have two

polar cycles of arbitrary dimensions p and q (not necessarily complimentary ones).
Similarly to the pairing (5.4), we may consider the following chain of homomor-
phisms:

HP p(M)⊗HPq(M)
s12◦(ρ⊗ρ)
−→ H

n,n−q

∂̄
(M)⊗H

n,n−p

∂̄
(M)

id ⊗µ−1

−→ H
n,n−q

∂̄
(M)⊗H

0,n−p

∂̄
(M) −→ H

n,2n−p−q

∂̄
(M),

where s12 is the transposition of tensor factors and the last term is understood as zero
unless p + q > n. Let Λ denote the resulting composition:

Λ : HP p(M)⊗HPq(M)→ H
n,2n−p−q

∂̄
(M).

5.11 If Conjecture (4.4) holds, the above homomorphism and the inverse of ρ in (4.3)
define an intersection product on polar homology,

HP p(M)⊗HPq(M)→ HP p+q−n(M).

However, even without this hypothesis we will show that if a and b are two smooth
transverse cycles, [a] ∈ HP p(M), [b] ∈ HPq(M), their polar intersection product

can be represented in HP p+q−n(M) by a smooth cycle c.

7Although the (exterior) product of currents is not in general defined, the product of the cohomology
classes of ∂̄-closed currents is always well defined. In some cases it is easy to find a representative of the
product of cohomology classes. For instance, for two submanifolds V and W in a generic position the
product of cohomology classes of the corresponding currents δV and δW is represented by δV∩W . In this
sense we can write δV ∧ δW = δV∩W .
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5.12 C-Orientations of Vector Spaces

Let W be an n-dimensional complex vector space, and µ be a non-zero complex vol-
ume form on W (µ ∈

∧n
W ∗). Let VA,VB ⊂W be vector subspaces of dimensions

dim VA = p, dim VB = q, p + q > n that intersect transversely, i.e. VA +VB = W (or,

r := dim VA ∩ VB = p + q − n). Suppose we are also given complex volume forms
on each of VA and VB, that is α ∈

∧p
V ∗

A and β ∈
∧q

V ∗
B . (We may say that all three

spaces W,VA, and VB are C-oriented.) Then, one can define a complex volume form
γ on the intersection VA ∩VB (i.e., one can C-orient it) as follows.

Let λA ∈
∧n−p

W ∗ be a non-zero exterior form conormal to VA (i.e., λA vanishes
on any vector from VA and is non-zero as an element of

∧n−p
(W/VA)∗ ). Similarly,

let λB ∈
∧n−q

W ∗ be a non-zero exterior form conormal to VB. Note that in this case

λA ∧ λB is a form conormal to VA ∩VB.

Definition-Lemma 5.13 Given complex orientations (i.e., complex volume forms) α,

β, and µ of the vector subspaces VA, VB and the space W respectively, the following

complex orientation γ of the intersection VA ∩VB is defined by the following relation:

λA ∧ λB ∧ γ =

( λA ∧ α

µ

)

·
( λB ∧ β

µ

)

· µ.

Here α, β, and γ are understood as arbitrary extensions of these forms to the whole space

W . The r-form γ on VA ∩VB depends neither on these extensions, nor on the choice of

the auxiliary forms λA and λB.

Proof A straightforward verification.

Corollary 5.14 For a transverse intersection of subspaces of complimentary dimen-

sions (p + q = n and W = VA ⊕ VB), the 0-form γ is just the following complex

number:

γ =
α ∧ β

µ
,

where α and β are now understood as exterior forms on W = VA × VB obtained by

pull-backs from the corresponding factors.

5.15 Let a = (A, α) and b = (B, β) be two smooth polar cycles of dimension p and q

respectively in a polar oriented closed manifold (M, µ), p+q > n = dim M. Suppose
they intersect transversely. Then we can define a (p + q− n)-cycle c = (C, γ), where
C = A ∩ B is a smooth subvariety in M and γ is a holomorphic (p + q− n)-form on

it defined by (5.13). Let us denote this as [c] = [a] · [b] and call it the intersection
product. (Of course, the product [a] · [b] equals zero if p + q < n.)

Theorem 5.16 The polar intersection product [a] · [b] of two smooth transverse cycles

a = (A, α) and b = (B, β) defined above agrees with the homomorphism (5.10), i.e.,

Λ([a]⊗ [b]) = ρ([a] · [b]),

where ρ : HPk(X)→ Hn,n−k

∂̄
(X) was defined in (4.1)–(4.3).
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Proof This will be similar to the proof of Theorem 5.9 and will use the same nota-
tions. We first represent the polar cycles a and b by the currents δA ∧ α and δB ∧ β
respectively, then

Λ([a]⊗ [b]) =

[

δB ∧ β ∧
δA ∧ α

µ

]

,

where [ ] on the right is understood as taking the ∂̄-cohomology class. On the other
hand, for c = (C, γ) introduced in (5.15), the current representing c is δC ∧ γ and it

is easy to show that

δC ∧ γ = δB ∧ β ∧
δA ∧ α

µ
,

which implies the statement of the theorem. The last equality is easily checked by

noticing that δA is an (n − p, n − p)-form (in fact, a current) conormal to A and
similarly for δB, while δC = δA ∧ δB. This is to be compared to λA and λB in (5.13).
One has to note only that, e.g., δA is conormal to A over R (that is in the sense of
(n−p, n−p)-forms) while λA is conormal to it over C (that is in the sense of (n−p, 0)-

forms).

Remark 5.17 We have defined the polar intersection on any complex manifold M

that can be equipped with a holomorphic non-vanishing volume form µ. This is anal-
ogous to the topological intersection theory on a compact smooth oriented manifold

without boundary. (Note that the Poincaré duality in this context should correspond
to the Serre duality.) Furthermore, the consideration above easily extends to the case
of a complex manifold possessing a meromorphic non-vanishing form µ (in particu-
lar, to a complex projective space), i.e., to the case of a polar oriented manifold (M, µ)

with boundary (N, res µ) (cf. 5.2). The latter setting is similar to the topological in-
tersection theory on manifolds with boundary. In this case the above formulas can
be used to define the pairing between polar homology HPk(M) and polar homology
relative to the boundary HPn−k(M, N).
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