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Summary

A general representation of multilocus selection is extended to allow recombination to depend on
genotype. The equations simplify if modifier alleles have small effects on recombination. The
evolution of such modifiers only depends on how they alter recombination between the selected
loci, and does not involve dominance in modifier effects. The net selection on modifiers can be
found explicitly if epistasis is weak relative to recombination. This analysis shows that
recombination can be favoured in two ways: because it impedes the response to epistasis which
fluctuates in sign, or because it facilitates the response to directional selection. The first mechanism
is implausible, because epistasis must change sign over periods of a few generations: faster or
slower fluctuations favour reduced recombination. The second mechanism requires weak negative
epistasis between favourable alleles, which may either be increasing, or held in check by mutation.
The selection (s^ on recombination modifiers depends on the reduction in additive variance of
log (fitness) due to linkage disequilibria (vx < 0), and on non-additive variance in log (fitness)
(^2) V& •• f°r epistasis between 2, 3.. loci). For unlinked loci and pairwise epistasis,
j , = — (v1 + 4V2/3)Sr, where 8r is the average increase in recombination caused by the modifier. The
approximations are checked against exact calculations for three loci, and against Charlesworth's
analyses of mutation/selection balance (1990), and directional selection (1993). The analysis
demonstrates a general relation between selection on recombination and observable components of
fitness variation, which is open to experimental test.

1. Introduction

The prevalence of recombination seems paradoxical,
since on the simplest view, the breakup of favourable
gene combinations should impede adaptation. This is
one of the several puzzles concerning the evolution of
sexual reproduction, but may be more amenable to
explanation than most. Recombination rates can
readily evolve, as is shown both by heritability
measures in the laboratory (Chinnici, 1971; Charles-
worth & Charlesworth, 1985a,b; Brooks & Marks,
1986), and by differences between species (Burt & Bell,
1987) and between the sexes (Trivers, 1988). Thus, the
processes responsible for current levels of recom-
bination can be investigated by short-term obser-
vations. Moreover, because recombination is con-
strained by the structure of classical population
genetics, theory may help us to interpret such
observations in a general way.

Recombination may be favoured for its direct
effects on fitness (for example, through repair of DNA

-Bernstein et al. 1988), or because it breaks up
unfavourable associations between genes. The popu-
lation-genetic mechanisms can be classified by whether
unfavourable linkage disequilibria are produced by
stochastic forces (including both hitch-hiking and
random drift), or by selection (Felsenstein, 1988). This
paper deals solely with the latter class of deterministic
models. Most theoretical work has concentrated on
populations at equilibrium under selection, in which
case the 'reduction principle' applies: with random
mating, modifiers which reduce recombination will
invade if there is any linkage disequilibrium. This
principle has been established when two loci affect
either haploid or diploid viability (Feldman et al.
1980), and for weak viability selection on many loci,
with pairwise epistasis (Zhivotovsky et al. 1994).
More generally, Altenberg & Feldman (1987) proved
that modifiers that completely eliminate recombi-
nation will invade a population at an equilibrium
under arbitrary selection. The mechanism here is
straightforward: modifiers that reduce recombination
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become associated with gene combinations that are
favoured by selection, and thereby gain an advantage
themselves. Recombination can increase if selection
fluctuates, so as to sometimes favour one combination,
and sometimes another (Sturtevant & Mather, 1938).
However, it is hard to see why epistasis should
fluctuate in sign over just the right timescale, making
this implausible as a general explanation (Charles-
worth, 1976; Maynard Smith, 1978, p. 98).

Recombination can be favoured through an in-
teraction between directional selection and epistasis,
by a mechanism quite distinct from the model of
fluctuating epistasis described above. If the increase in
fitness due to two favourable alleles is less than the
product of their individual effects, then negative
linkage disequilibria build up. These reduce the
additive genetic variance, and hence impede the
response of the population to directional selection
(Mather, 1943; Felsenstein, 1965; Eshel & Feldman,
1970; Feldman et al. 1980). This effect gives an
advantage to individual modifiers that increase re-
combination when directional selection is balanced by
deleterious mutations (Feldman et al. 1980; Kond-
rashov, 1988; Charlesworth, 1990), and also when
there is stabilizing selection on a polygenic trait, with
a moving optimum (Maynard Smith, 1980,1988;
Charlesworth, 1993). In both cases, the mechanism is
the same. Modifiers that increase recombination
become associated with genomes that cause greater
additive genetic variance. These respond more rapidly
to directional selection, and so in turn become
associated with favourable alleles, causing the modifier
to hitch-hike to higher frequency.

This paper develops a general representation of the
evolution of recombination in multilocus systems, and
uses it to analyse the interaction between epistasis and
directional selection. The method extends Barton &
Turelli's (1991) techniques to describe modifiers of
recombination. First, I summarize the notation, and
show how it extends to describe recombination that
depends on genotype. The formulae are greatly
simplified when the modifier has very small effects,
and further simplify when epistasis is weak, leading to
general results for arbitrary multilocus systems. The
simplest system of three loci (one modifier plus two
selected genes) is analysed in detail, both to make
clear the general results, to apply them to particular
cases, and to check the approximations against
numerical results (Appendix 1). Constant directional
selection, fluctuating selection and mutation/selection
balance are considered.

2. A general model

(i) Summary of notation

A more detailed exposition of the methods used here
is set out in Barton & Turelli (1991) and Turelli &
Barton (1994); only a brief summary is given here.

The state of a diploid individual is represented by the
vectors X and X*, which give the states of the genes
derived from the mother and father, respectively. The
Zj's may represent the contribution of each gene to
some additive trait, or they may simply act as labels
for alleles. Throughout this paper, two alleles are
assumed at each locus, and the A"s take the values 0
or 1. Natural selection can act on the viability and
fertility of both the haploid and diploid stage;
however, variation in diploid fertility must be multi-
plicative across the two parents. Sexual selection can
act to produce non-random mating between haploid
gametes, but must be based solely on the haploid
genotype. Generations must not overlap. These
assumptions ensure that the population can be
described by the distribution of haploid genotypes
immediately after meiosis, and that selection can be
described by the contributions of each diploid geno-
type to the next haploid generation, relative to the
frequencies expected from random union of haploid
gametes.

The population of haploid gametes generated by
recombination is described by the mean effect of each
locus, m, = EiXJ, and by the various multilocus
linkage disequilibria. The linkage disequilibria are
defined as central moments of effects across loci:
Cu = £(£„), where U is some set of loci, £„ = UieU £„
^ = Xl — ml, and E{) is the expectation across a
population formed by random union of haploid
gametes. Immediately after selection and before
meiosis, the state of the population of diploids after
selection is described by m\ = E'(X{), m{* = E'(Xf),
and C'v v = E'(HieU £4 TlieV £f). These variables are
more complicated, because selection might act dif-
ferently on male and female gametes (m[ 4= m[*,
C'vv =)= C'v u), and because it builds up associations
among genes on different chromosomes, reflecting
deviations from multilocus Hardy-Weinberg propor-
tions (.C'uv 4= C'fj gC'g V, where 0 represents the
empty set). With biallelic loci, the Xi take the values 0
or 1, and allele frequencies are denoted by pi = m^
qi = 1 — m,. Using the moments of binomial variables,
repeated indices reduce according to simple rules; for
example, Cu = pl q{, Ciljk = px qi Cjk - Cijk (/?, - q,) (eqn
A8 of Barton, 1986). Therefore, all that are needed are
the means m, and moments Cuv in which U and V
contain distinct indices.

The relative fitness of diploid individuals is rep-
resented as a polynomial function of genotype, with
selection coefficients au v (eqn 6 of Barton & Turelli,
1991):

W
- c - cy)

Here, av 0 is the selection coefficient acting on the set
U of the loci derived from female gametes. For
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example, a, 0 represents selection on the /'th locus,
and afj 0 represents the epistatic interaction between
loci * and / Similarly, a0v is the selection coefficient
on the set V of loci derived from male gametes, and
auv is the selection favouring associations between 'ST

alleles derived from different gametes. au v denotes
the symmetrized coefficient, (av v + av v)/2. In this
paper, we assume two alleles per locus, so that only
coefficients involving distinct indices are required (for
example, aiin is unnecessary, and can be absorbed
into a, j). Following the convention used in previous
papers, the coefficients aijB and ajli8 are kept separate,
and sums over sets U include both {//} and {ji}. This
simplifies results for additive traits. Cross-gamete
coefficients such as a{i and aiA are also kept separate:
these differ if selection acts differently on male and
female gametes. (Turelli & Barton (1994) describe an
alternative notation, based on multilocus cumulants
and selection gradients. This is more convenient for
selection on additive polygenic traits, but is a more
cumbersome description of recombination. The two
approaches are mathematically equivalent; (Turelli &
Barton, 1994.)

Recombination is described by the proportion rs T

of gametes produced with the set S of loci derived
from one parent, and T from the other. For example,
rijk is the proportion of gametes containing locus {/}
from one genome, and loci {jk} from the other. When
dealing with recombination, we pool permutations
rST and rTS; thus, r, Jk + r]ilk + rkii + rljk B = 1, because
/•j jk includes both the possibility of getting {/} from the
mother, and {jk} from the father, and vice versa. All
sums over the possible partitions caused by recom-
bination are therefore over distinct sets; such sums are
denoted by 2 * T . In contrast, sums over selection
coefficients, Tiuv, are taken over all the |£/|!|K|!
permutations of the sets U, V. (Thus, the sets {ij,k} and
{k,ij} would be counted separately in S , but absorbed
into one term {ij,k} in 2*) . For brevity, the total
frequency of recombination events that disrupt the set
N is written rN (i.e. rN = (1 — rN 0) = 2JS Trs T, where
the sum excludes N,0).

This extends to cover modifiers by letting re-
combination rates as well as fitnesses be polynomial
functions of genotype. Let the rate of recombination
between the sets S and T be a polynomial function of
X,X* with coefficients 8rsnu v:

(2 a)
u,v

In most of the following, recombination rates are
assumed to be influenced by only the additive effects
at one locus (i, say). Hence, we need only consider

Srs T|, 0 and Srs r ( 0 4. Plausible models would give
equal effects to maternal and paternal alleles, so that
both can be written as SrS,T\i •

rST = (2b)

The recombination rates of the three genotypes (X{,
A?) = (0,0), (0,1), (1,1) are thus rST-2Srs niPi,
rs.T-Srs.T[i(Pi-qd> rs,T + 28rsnqi. Since these rates
will usually be fixed, this implies that Fs T is frequency
dependent, being the mean across all genotypes.
However, this is a negligible effect if Sr <£ r, as will be
assumed below. The difference in recombination rates
between the two homozygous genotypes is just 28rs T.
It will be shown that assuming a single additive
modifier is not restrictive if the modifier has a small
effect.

(ii) The effect of genotype-dependent recombination

The effect of recombination on the disequilibria can
be derived in the same way as eqn 2.19 of Turelli &
Barton (1990) and eqn 14 of Barton & Turelli (1991),
but using the genotype-dependent eqn 2a instead of
fixed rates rST:

AT — 2-t rs,r
S+T-N

'S,T\A,B"1" ZJ ZJ °'S
S+T-N A.B

" — c c —C c A-C c c
SA.TB ^ A ^ S.TB *- B ̂  SA ,T ^ ^ A *" B ̂  S,T

'*~-TA,SB ^A^T.SB ^ B ^ T

C'AC'BCTJ/2, (3 a)

where Cs T = (Cs T + CT s)/2, and the sum includes
the non-recombinant S,T = N,0. Eqn 3a allows for
the possibility that selection acts differently on female
and male loci or gametes, so that C'ST 4= C'T s. (Recall
that the C'ST are the cross-gamete associations after
selection.) Equation 3a is not as bad as it looks: the
eight components in the last term arise because both
permutations S,Tand recont r ibu te .

With a single additive modifier:

• N ~ i-t '
S+T-N

'.S,T|iV SAT )-

Ob)

The algorithms which constitute this general model of
multilocus systems have been written in the symbolic
programming language Mathematica (Wolfram,
1991). These include eqn 3 b above, eqns 10, 12 of
Barton & Turelli (1991), and an algorithm based on
eqn 1 which derives the selection coefficients from a
definition of relative fitness in terms of X, X*.

The equations simplify considerably if the modifier
is assumed to have small effects (8r <| r, 1), and to
have no direct effects on fitness (au v = 0 if ie U or
ie V). The dynamics of the selected loci are then, to a
first approximation, unaffected by the presence of the
modifier. This is because the fate of the modifier is
determined by the weak associations (CiN « 8r) which
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build up between it and the selected loci; the effect of
the modifier on the selected loci is also x Sr, and so
causes a negligible perturbation to the modifier. Thus:

(4)

where the sum is over all sets TV of selected loci. The
association between the modifier and a set N of loci
immediately after recombination is found by replacing
JV by iN, and S by iS in eqn 3 b. The second sum on the
right then involves terms like C'iiST; since associations
between the modifier and the selected loci are O(Sr),
this is approximately C'nC'ST. With two alleles per
locus, Clt = pi qi; since the frequency of the modifier
allele only changes slowly, C'u = piqi + O(Sr). Hence:

v * F
u 'i

i 2ll '
S+T-N

(5 a)

Here, the sums are over all distinct partitions (iS,T) of
(iN), and hence include (S, T) = (0, TV) and (N, 0).
Because riST + rSiT = rs T, and 8ris

s _T,
8rsni, and because riS T|i and Srls T|j have the same
coefficient as rSiTil and #rslT|1, eqn 5a simplifies to:

c — y*
*— iN i-l

' iN ^-J ' S,T
S+T-N

S+T-N
(5 b)

This shows that the evolution of a modifier of small
effect only depends on how it alters recombination
among the selected loci (8rs r|1), and not on how it
alters its own linkage to those loci (SriS Tfi, etc.). Third
and higher-order associations (Cljk etc.) between the
modifier and particular gene combinations are gener-
ated directly, from terms such as <frjk 0|, C'ikg. Pairwise
associations between the modifier and particular genes
such as C,j are not generated directly, since the second
sum in eqn 5 b is then zero to O(8r). However, they are
produced indirectly from the first sum in eqn 5 b. We
will see later that they have an important role in
mediating the interaction between directional selection
and epistasis.

The assumption that modifiers have small effects is
the key simplification. Since we retain only the first-
order terms in 8r, the equations for the associations
between modifiers and selected loci form a linear set.
Though only a single modifier is dealt with explicitly,
modifiers with small effects will evolve independently
of each other, through the linear effects of the various
Sr's. Moreover, dominance coefficients such as 8rs T|i_,
can be neglected. This is because such coefficients
introduce terms of the form C'SiTl into eqn 3 a. These
could only contribute to leading order if both S1 and T
contained the index /, which is impossible if the N
contains only distinct indices. With two or more
modifier loci (/,/"), cross-locus interactions such as

such as C,,.. However, these do not significantly
influence the change in modifier frequency (A/?,, Apv).
Of course, dominance itself can be important; for
example, if heterozygotes at the modifier locus cause
lower recombination than either homozygote, a
polymorphism can be maintained (Feldman & Krak-
auer, 1976; Feldman & Liberman, 1986). However, in
the present notation this is because the average effect
of a modifier allele when paired with random
homologues, Srs T|i, depends on its frequency, /?,.
There is no influence of coefficients such as 8rs Tlii.

The sum which generates the association between
the modifier and the selected loci can be rewritten
using the constraint that 2*+7,_A,TSiT = 1, and hence
^s+T-N^rs,T\i = 0. where the sum is taken over all
partitions S+T= N, including N+ {0} and {0} + N. If
the latter are separated out, we can write:

= V* ^

(5c)

The effect of the modifier depends on the difference
between the cross-gamete associations C's T and the
within-gamete associations. The linkage disequilibria
after selection, C's T, can be substituted into eqn 5 c
(from eqn 12 of Barton & Turelli, 1991), leading to a
complicated recursion for the associations CiN. As an
example, the full expressions for three loci are given in
Appendix 1 (eqns A1.2): the dedicated reader should
work through these, so as to better understand the
general results.

(iii) Weak selection

Insight can be gained by approximating eqn 5 in the
case where selection is weak. Suppose that linkage is
loose, and all the selection coefficients are small (av 0,
aB,v>av,v ^ r> !)• To begin with, assume that epistasis
and directional selection are of the same order (alg «
aiiB etc.). Assume also that the selection coefficients
change slowly, and can be taken to be approximately
constant over the timescale of recombination. (This
assumption is relaxed below, in the section on
Fluctuating selection.) Then, the population rapidly
approaches 'quasi-linkage equilibrium' (QLE), in
which the linkage disequilibria are approximated by
eqn 25 of Barton & Turelli (1991, Appendix B):

{|Af|!fljV,0(l-rv) +

+ O(a2), (6)

wherepN = HiENpt, qN = Ili6JV9,. Combining this with
eqn 12 of Barton & Turelli (1991) gives approxim-
ations for the linkage disequilibria after selection,
C'v v, which can be substituted into eqn 5 c. Applying

^s.ni.i- generate associations between the modifiers the QLE approximation shows that the association
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between the modifier and the selected loci rapidly
approaches:

case). Linkage disequilibria between the selected loci
are still given by eqn 6, except for the pairwise
associations:

x S* (\A\\\B\\aABrAB-\S\\\T\\aSTr

where rN is the total rate of all recombination events
that break up the set TV. If selection acts only on
diploid viability, so that fitness does not depend on
whether genes are in couping or repulsion, then
necessarily |5|! |r |!5S i T = \N\\aNg. Eqn la then simpli-
fies to:

ai0 qk + O(s3).

(9 a)

The extra term di0dk 0 arises from the change in allele
frequencies, Ap} Apk, which is now of the same order
as epistasis; the analogous term is negligible for third
and higher-order disequilibria. With selection on
diploid viability, 2ajk 0 = aiM, and so:

c (9 b)

The association between the modifier and any set of
selected loci TV now only depends on the effect of the
modifier on the net rate of all recombination events
that break up the set TV, drN{i = ^s+T.NSrSTli. The
modifier frequency changes at:

(8)
r,,r.

The extra factor of |TV|! appears because the first sum
(over dN0) uses the convention appropriate for
selection, that we sum over all permutations of TV,
whereas the second sum (over 8rNii) uses the con-
vention appropriate for recombination, when only
distinct sets are counted. A modifier which never
decreases the rate of recombination (SrN^ ^ 0 for all
TV) cannot increase (Apt ^ 0). Zhivotovsky et al.
(1994, eqns 27-28) proved this result for populations
at equilibrium under strictly pairwise epistasis and
weak selection. Equation 8 is a generalization to
arbitrary epistasis, and to changing allele frequencies;
however, it is more restrictive in that it requires in
quasi-linkage equilibrium, and hence loose linkage.

(iv) Weak epistasis

Thus far, we have assumed that all the selection
coefficients are weak, and of the same order. This
leads to the conclusion that unless epistasis fluctuates
rapidly (see below), recombination must decrease (at
least, on average). This conclusion does not hold if
directional selection is much stronger than epistasis.
Suppose now that aa „ and a0 v are O(s2) for \U\ > 1,
avv is O(s2) for \U\ and \V\ > 0, U* V, au, ai0, aeJ

are O(s), and recombination is 0(1). (\U\ is the
number of elements in U.) The approximation can be
developed for tight linkage (r = O(s)), but is somewhat
more complicated (see Appendix 1 for the three-locus

where Cjk is now proportional to the deviation from
multiplicative fitnesses, ejk = 2aikg — aj0ak0.

Because the associations Cijk between the modifier
and pairs of selected loci are driven by the pairwise
linkage disequilibria Cjk, these must also include the
term due to Ap^ Apk when epistasis is weak. Applying
eqn 5 c to find the QLE approximation for Cijk in
terms of Cjk, using the fact that 2ajk 0 = aiM for
selection on diploid viability, and then substituting for
Cjk from eqn. 9b:

' i j k

-O(s3). (9 c)

1A, for |TV| > 2) are stillHigher-order associations (Ci

given by eqn 7b.
The change in the modifier frequency (eqn 4) can be

separated into two parts:

Api = ai0 C(j + (10)

These two sums describe the interaction between
directional selection and epistasis (via di0 Cn), and the
effect of epistasis alone (via dN 0 CiN). The second sum
is still given by eqn 8, and is O(J 4 ) . However, the first
sum is now of the same order, because although Cfj <|
Cuv, aig >̂ aNB. If epistasis is of the same order as
directional selection, the first sum is negligible, and
eqn 10 reduces to eqn 8. Retaining the leading terms
from eqn 5 c, applying the QLE approximation, and
substituting for Cljk from eqn 9c gives:

ak,0Cljk

V i j

ikgkEjk

' j k ' ijk

( i i )
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Substituting from eqn 1 b and 11 into eqn 10 gives the
net change in the modifier frequency:

L*P\ ZJ °'jk|i

K0\
\ r i j ' ik

S* (12)

The sums have been reorganised so as to bring
together pairwise terms. Note that both sums are
taken only over distinct sets; for example, only one of
the permutations {jk}, {kj} is counted in the first sum.

Pairwise epistasis (represented by the first sum) will
tend to increase recombination if there are negative
interactions between favourable alleles (ejk < 0), and
if the product of the directional selection on pairs
of loci is stronger than the epistasis between them
(<5j.0«k.0(1/'"ij + 1 / ' ' ik-1) > - e j k in eqn 12). (Recall
that eu is the deviation from multiplicative fitnesses.)
Linkage between the modifier and the selected loci (r{j,
rlk < 1 /2) encourages the evolution of recombination.
If recombination is to be favoured through the in-
teraction between directional selection and epistasis,
then epistasis must be weak. Unlinked modifiers (r^,
rik = 1 /2) increase most rapidly when pairwise epi-
stasis equals ( — 3/2) times the product of the coef-
ficients of directional selection (ejk 0 = — 3di 0 ak 0 / 2 ;
see first sum in eqn 12), and there is no higher-order
epistasis.

In applying the QLE approximation, the selection
coefficients have been assumed to stay constant, at
least for the timescale over which recombination
dissipates linkage disequilibria. The approximation
can still be applied with rapidly varying coefficients, in
which case the linkage disequilibria are given by a sum
of the epistasis in preceding generations, discounted
by a factor (1 — r) for each generation (Appendix 4). If
epistasis fluctuates rapidly, so that gene combinations
which were favoured in one generation become
unfavourable in the following generations, then
recombination can increase. This mechanism is anal-
ysed in detail in Appendix 4, for three loci.

(v) Interpretation in terms of the variance in fitness

Equation 12 gives a general approximation for the
selection on a modifier of recombination, which is
valid when epistasis is weak, and selection acts on
diploids. An intuitive interpretation can be found by
considering fitness itself as a quantitative trait. The
aim is to find a way of estimating the direction and
strength of selection on recombination from ob-
servable properties of whole organisms, without the
need to know the detailed genetic basis of fitness
variation. To do this, we must first define measures of

fitness and of the variance in fitness which are valid
with epistasis and linkage disequilibrium. This is
not straightforward (Weir & Cockerham, 1977;
Cockerham, 1984; Ewens, 1989; Barton & Turelli,
1991).

To be definite, take fitness to be the absolute
number of zygotes produced by a newly formed
zygote after one generation. The mean fitness changes
because allele frequencies change, because linkage
disequilibria change, and because the fitness of each
genotype changes as the external environment chan-
ges. (Here, the 'environment' includes changes in
physical conditions, in the influence of other species,
in the density of the same species, and in the
frequencies of genotypes within the same species.) The
effect of changing genotype frequencies can be isolated
by holding the fitnesses of genotypes constant at their
values in the initial environment. From Fisher's (1930)
'Fundamental Theorem of Natural Selection', the
increase in mean fitness due to selection is precisely
equal to the total genetic variance in relative fitness,
var(W/W). Segregation and recombination then
dissipate part of the increase, so that the net change in
mean fitness caused by changing genotype frequencies
equals the additive genetic variance in relative fitness.

Several different measures of fitness can be defined
for each genotype, along with their corresponding
variances. The expected fitness of a diploid genotype
(W) is given by eqn 1; the corresponding variance
includes components due to dominance (a^), and due
to the interaction between dominance and epistasis
(a?jk). One can also consider the expected fitness of
zygotes formed by taking one intact haploid genome
from the genotype in question, and pairing it with
another, taken at random from the population. By
analogy with the breeding value, define (W* — W) as
twice the deviation of such zygotes from the popu-
lation mean. W* is given by eqn 1, but without the
third sum, which represents the contribution of
dominance (auv): W*/iV=l+T,uau^u + &;
— 2Q,). This definition is not the same as the breeding
value of fitness, if that is defined as twice the devi-
ation of the offspring's fitness (e.g. Falconer, 1985).
The parental genome has gone through one round
of recombination, and the breeding value there-
fore depends in a complex way on recombination
rates. One can define a simpler quantity, W**/W =
1 +'Ljai0(C,j + t£)-2Tiuau0Cu. This can be thought
of as the deviation of offspring after many generations
of random mating, by which time only additive effects
will remain. (More precisely, (W** — W) is the limit of
2" times the deviation of offspring in the n'th
generation, for large «.) Note that the mean of
W**/Wis reduced by 2Sf/<5(;0CU, which represents
the loss of fitness due to the breakup of advantageous
linkage disequilibria. On Ewens' (1989, p. 170)
interpretation, W** is close to Fisher's (1930) concept
of' fitness' as the sum of average effects. However, the
average effect is defined by a least-squares procedure,
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which differs from the at 0 in eqn 1 if there are linkage
disequilibria (see Nagylaki, 1993, p. 639).

Assuming weak epistasis (ai ka « s2,ai 0 x s), the
variance in W* is:

v a r w*
~w J + 2

i # k

03a)

where ffjV| = lL*<k(\N\\aik0fpNqN. The first two
terms, V1 + v1 give the variance due to the additive
effects of the individual genes, var (W**/W); Vx is the
contribution from heterozygosities at individual loci,
and i>! is due to pairwise linkage disequilibria. The
remaining terms give the non-additive variance in
fitness due to two-, three- and higher-order epistasis
(K2, V3,...). There are also terms involving the product
of linkage disequilibrium and epistasis (v2,v3 etc.),
which are negligible for weak epistasis. The dis-
crepancy between V1 + v1 and the additive genetic
variance (defined conventionally as the variance in
breeding values) is also negligible for weak epistasis
(« t>2 « 0(s5)); V1 + vx is referred to below as the
' additive variance', despite the difference in definition.

This analysis of the variance of fitness into its
components (eqn 13 a) involves coefficients such as
<3jk 0, which express deviations from additive inherit-
ance. Linkage disequilibria, and the consequent
selection on recombination, more naturally involve
deviations from multiplicative inheritance, ejk. It is
then appropriate to analyse the variance in log
(fitness), since non-additive variance in this quantity
expresses multiplicative epistasis. This analysis is non-
linear, and hence leads only to approximate relations
with the selection coefficients av 0, and with the
'Fundamental Theorem'. However, it gives a more
natural expression for the selection on modifiers. By
taking the logarithm of eqn 1, expanding in a Taylor's
Series, and dropping terms 0(^5):

Equation 12 can now be used to express the
selection on a modifier in terms of the variance in log
(fitness):

(14)

We see that if linkage disequilibria reduce the additive
variance (vx < 0), thereby reducing the rate of increase
of mean fitness, then these disequilibria favour
increased recombination. This is counterbalanced by
the non-additive components of fitness variation, V[N[,
which always select for reduced recombination.
Equation 14 can be compared with Altenberg &
Feldman's (1987) Result 4, which showed that the
initial increase of a modifier invading an equilibrium
population is approximately the variance in marginal
fitnesses. However, Altenberg & Feldman (1987)
assumed tight linkage, whereas eqn 14 assumes loose
linkage.

Selection on recombination can also be related to
another quantity: the difference in log fitness between
the current population (\og(W)), and one with the
same allele frequencies and genotypic fitnesses, but no
linkage disequilibria (log(W*)):

* log (WO = (\og(W/W*)) = 2 2*ejk,0Cj
j . k

(15 a)

# log (WO tends to be positive, because selection builds
up linkage disequilibria that increase mean fitness.
However, it can be negative if epistasis fluctuates
rapidly, since then ejk 0 and Cjk can have different
signs (see section on 'Fluctuating selection'). If
epistasis changes slowly, the Cu can be substituted
from eqns 6,9 b giving:

Slog(W) =

var (log (W)) = awak0Cjkawak
i # k

(Ub)
|AT|>2

where a j 0 = {ai0-a]0/2). Note that because the
additive coefficients (a\0, ai0) differ in the expansions
of W and log (WO, the variance components {Vx, V2)
also differ. However, the perturbation to the additive
variance (i>,) due to linkage disequilibria, and the
higher-order components (ViNi = V'[Ni for \N\ > 2) are
not affected to leading order.

= V2£p-
L j k

S* VmE\±

(assuming that epistasis is uncorrelated with recom-
bination).

In principle, S\og(W) could be measured by
relaxing selection, under constant conditions, and
observing the change in log (fitness). It is more feasible
to compare the effect on fitness of intact genomes,
with genomes that have gone through one round of
recombination. The difference in log(W) is then given
by the non-additive component of var (log (W)),
V'2 + YA.:;,>2 KV|. (cf. Charlesworth & Charlesworth
(1975) and Mukai (1977); see Discussion).

Equations 13a and \5b can now be used to express
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the selection on the modifier in terms of the
contribution of linkage disequilibria to the additive
genetic variance in fitness (i^), and to the mean log
fitness (Slog(lV)). Denote the contributions of the
various orders {\N\) of epistasis to the mean fitness by
S\og{W\Ny Then, from eqn 12:

(16 a)

For unlinked modifiers, r^ = rlk = 1/2, and riN =
(1 + rN)/2. Bringing together the terms due to pairwise
epistasis:

s, =
A/7,

Here, Sr}NU is the average increase in recombination
between sets of \N\ loci caused by the modifier, the
average being weighted appropriately. If linkage
disequilibria tend to decrease the additive genetic
variance (vx < 0), then this causes selection in favour
of recombination st = ~{Z/2)v1 E\8rm/{\ + rjk)] for
unlinked modifiers; selection will be stronger if the
modifier is linked. This effect arises because re-
combination increases the additive genetic variance in
fitness, and hence accelerates the increase in mean
fitness. It is offset by the immediate loss of fitness due
to the breakup of linkage disequilibria {8\og{W)).
Equation 16ft shows that for unlinked modifiers, with
negligible higher-order epistasis, recombination is
favoured if linkage disequilibria reduce the additive
genetic variance by more than the immediate loss of
mean fitness (vx < 8\og(lV)), regardless of the genetic
map.

The following argument suggests that higher-order
epistasis indeed has a negligible effect on recom-
bination. The expectation of \/rN depends on the
genetic map, and should decrease towards 1 as the set
gets larger. With no linkage, it is 2, 4/3, 8/7.. for 2, 3,
4.. loci. If the set TV contains many widely scattered
loci, then we may expect rv0 = (1 — rA,) to be very
small, and hence hard to modify substantially; hence,
^rA'.0|i should be small for large sets N. Moreover, the
variance in fitness associated with higher-order epis-
tasis may also decline as the size of the set \N\
increases. Both factors give reason to expect the main
force on recombination rates to be due to pairwise
epistasis. However, it is not obvious that higher order
epistasis can be neglected, since the number of such
interactions is very large with many loci. It is hard to
go further without a biological model of epistasis -
for example, randomly assigning fitnesses to geno-
types.

3. Applications

(i) Directional selection

What is the net effect on recombination rates of
substitutions at two interacting loci? Suppose that
genotypic fitnesses are constant (Table 1) and the two
loci are equivalent. An explicit solution for the net
effect of substitutions at both loci is then possible (see
Appendix 1 for details, and Barton & Turelli, 1991,
pp. 241-244, for a simple two-locus example of the
multilocus method). Suppose that ai o = s + qAk, dkB

= s + 7/Ai, aik = 2aike = rj, and that eJk = (y-s2) < 0
(7/<^s<^l;W«l;Aj= pi — q). Then, the frequencies
of the selected alleles grow logistically {{pjq^) =
(pjQk) — exp(st)). The net change in frequency of the
modifier can be found by integrating eqn A 1.5/over
the whole timecourse of the substitutions:

(rii,rik>s). (17)

Because epistasis is assumed weak (17 x s2), the two
terms in eqn 17 are of the same order (i.e. sx
(TJ-S2)/S). In contrast, if the modifier is tightly linked
to the selected loci (ru, rik « s), directional selection
dominates, and recombination is strongly favoured.
This is because the modifier becomes tightly associated
with the favourable alleles, and hitch-hikes towards
fixation with them.

Figure 1 compares the approximation for loose
linkage (eqns A1.5, 12) with the exact solution (eqns
A1.2), for three unlinked loci. Genotypic fitnesses are
fixed, as in Table 1. Two alleles, each with advantage
5 = 01, substitute in parallel. There is negative
epistasis between them (TJ = —002, e = —003), which
generates negative linkage disequilibrium (Fig. 1 a).
This disequilibrium in turn generates a positive three-
way association (CIjk; Fig. 1 c), which then leads to
positive pairwise associations (Cjj, Clk; Fig. lft). The
loose linkage approximation to the linkage dis-
equilibria is in good agreement with the exact results

Table 1. Fitnesses of the nine genotypes, which are
fixed. The corresponding selection coefficients are

W ake = aek = (sk
a>.

x*

0
0
1
1

k - «kj - r,

x

0
1 or
0
1

i/M

0
0

1
1

1

y> «jk . e

-si-s,

-st + st

= «kj.,

,+n

3

0
1

1
1

1

= a

or

—j

+ s

a.jk

1
0

k

k

= ao.kj =

1
1

1+5,-5,
1+5.

1 ~T" S ~\~ S

TI/2W

,+v

eik = (2aJk..-aJ..ak.e) = [(>/-V
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Fig. 1. Favourable alleles substitute at two loci (y, ̂ ). thereby changing the frequency of a modifier allele at a third locus
(/). Genotypic fitnesses are constant, as specified by Table 1. The favourable alleles have selective advantage si = sk =
01 , and interact with negative epistasis r/ = —002. The favourable alleles both start at the same frequency, and increase
in parallel. All three loci are unlinked, (a) shows the frequency of the favourable alleles (pj = pk; heavy sigmoid curve),
together with the scaled linkage disequilibrium between them (Hik = Cik/piqipkqk; light sigmoid curve). This is close to
the approximation of eqn A1.5a, (y—s^/r^ = —006 (dotted line), (b) shows the pairwise associations Hti — Hlk (solid
curve), together with the approximations of eqn A\.5b, c (dotted line), (c) shows the three-way association Hnk (solid
curve), together with the approximation of eqn A\.5d (dotted line). Finally, (d) shows the change in frequency, A/?,, of a
modifier which increases recombination by Sri k|l. Values of Hn, Hik, Htjk and A/?, are scaled relative to Sr^prf,. The
evolution of the system was calculated by exact iteration of eqns A1.2, using the selection coefficients in Table 1. The
loose linkage approximation of eqns 19 was applied with the additional approximation that because selection is weak, so

(compare solid with dotted lines in Figs. 1 a-c). The
effect of three-way associations is to decrease re-
combination, whilst that of the pairwise associations
is to increase recombination. For these parameters,
the two effects cancel, giving almost no net change in
the modifier, as predicted by the loose linkage
approximation (Fig. 1 d).

Figure 2 shows the same comparison, but with
linkage. Recombination is now strongly favoured:
over the whole substitution, the modifier increases by

0-254SriMipjqi. The loose linkage approximation now
performs less well, though the predictions for the
linkage disequilibria (dotted lines in Figs. 2 a-c) and
for the net change (0-242SriMpi qj are still reasonably
accurate. Figure 3 shows the net change in modifier
frequency as a function of epistasis. As expected from
the above analysis, there is an intermediate range of
epistasis which favours recombination. (Bergman et
al. come to the same conclusion by considering the
signs of the linkage disequilibria that develop as a
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(d)
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Fig. 2. As in Fig. 1, but with the three loci linked in the order i—j—k. r(J = rjk = 0-1. There is no interference, and so
018 019

population evolves away from initial linkage equi-
librium.)

With no linkage (Fig. 3 a), the approximation of
eqns A1.5 (solid curve), 17 works well over the whole
range of epistasis, and is accurate even when e x s.
With tight linkage, this approximation is still accurate
for weak epistasis, but fails for stronger epistasis (Fig.
3 b). The approximation based on the variance in log
(fitness) (eqn 14) performs similarly: it is accurate
with no linkage (dotted curve in Fig. 3 a), but breaks
down with tight linkage and strong epistasis (Fig. 3b).

Some insight into the opposing forces on recom-
bination can be gained by considering the mean fitness
of the population. Suppose that substitutions are in
progress at two loci, and that there is negative
epistasis between the favourable alleles. If linkage
disequilibrium is suddenly set to zero, the negative
associations built up by epistasis will be destroyed,
and mean fitness will decrease (the 'recombination
load'). This is shown by the lower curve in Fig. 4b.

However, the abolition of linkage disequilibrium will,
in the long run, speed up the response to selection
(Fig. 4a). The mean fitness of a population which
evolves with no linkage disequilibrium is thus greater
throughout (upper curve in Fig. 4 b), because the
faster increase of favourable alleles outweighs the
immediate loss of fitness due to the breakup of
favourable gene combinations. In this example, the
net increase in mean fitness due to the faster response
to selection is much greater than the total immediate
load due to linkage disequilibrium (0656 vs. —0-283,
comparing the areas under the upper and lower
curves). Nevertheless, unlinked modifiers that increase
recombination are eliminated (Ap{ = —000827driMipia,
with rlj; rik = 05). Recombination can increase if
modifiers are linked to the selected loci: for example,
with the parameters of Fig. 3 b (r(j = 0-1, rik = 018),
the modifier will increase by Apt = 0-299Srik{ipiqi. The
evolution of modifiers that decrease overall mean
fitness, and the dependence on linkage between
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0002 r (a)

-0002 •

002

-0-2 -0 1
Epistasis

Fig. 3. The net change in modifier frequency over the
course of the substitution (scaled relative to Sri ^p^q^, as
a function of the strength of epistasis, TJ. (Note that r/ = 0
corresponds to additive fitnesses, and tj = s2 corresponds
to multiplicative fitnesses). The model is as in Figs. 1, 2,
but with TJ varying. The solid curve shows the loose
linkage approximation (eqn 17), while the open circles
show results from exact iteration of eqns A 1.1. The
dotted curve shows the approximation based on the
variance in log (fitness) (eqn 14). (a) No linkage, as in
Fig. 1. (b) Linkage as in Fig. 2; /•„ = rjft = 0 1 , rik = 0.18.

modifier and selected loci illustrates the failure of
group-level arguments based on mean fitness (see
Brooks, 1988, pp. 96-98).

Table 2 shows how selection on the modifier is
related to the components of log (fitness). The para-
meters are as in Figs. 1, 2 (?/=-0-02, s = 01).
Whether or not the selected loci are linked (Table 2 a
vs. 2b), the variance in log fitness is mostly additive.
Epistasis produces only slight non-additive variance
(V'2 <? K,), linkage disequilibria only slightly perturb
the additive variance (vx <£ Vt), and the interaction
between epistasis and linkage disequilibrium is negli-
gible (v2 <̂  vv, V'2). The rate of increase in \og(W*) is
close to the additive variance V\ + vu as expected. The
difference in fitness 8log(W) between intact and fully
recombined genomes is close to VJrik, again as
expected. With unlinked loci, the effects of i\ and V2

almost exactly cancel, giving almost no selection on
the modifier at any time (Fig. Id, Table Id). The

0

0015

001

83
S 0005

-0005

-001
50

Time
100 150

Fig. 4. (a) The frequency of favourable alleles in
populations with and without linkage disequilibrium
(lower and upper curves, respectively), parameters are as
in Fig. 2, but with stronger epistasis (s = 0 1 , y = —008,
rjk = O'l)- (*) The lower curve shows the loss in mean
fitness caused if linkage disequilibrium is suddenly set to
zero. The upper curve shows the gain in mean fitness if a
population evolves with no linkage disequilibrium (i.e. the
difference in mean fitness between the two populations
whose allele frequencies are shown in {a)).

approximation based on variance in log (fitness) (eqn
14) is accurate over the whole range of epistasis
(dotted curve in Fig. 3d). With linked loci, linkage
disequilibria are so strong that eqn 14 breaks down
(Table 2 b); however, it is still accurate for weaker
epistasis (Fig. 3 b).

(ii) Mutation/selection balance

If mutation balances directional selection, and if there
is negative epistasis between favourable alleles, then
recombination can increase even when the population
is at equilibrium with constant fitnesses. This was first
proved for two loci by Feldman (Feldman et al. 1980),
was given an intuitive explanation by Kondrashov
(1984, 1988), and was analysed in detail for the
polygenic case by Charlesworth (1990). A similar
process occurs when meiotic drive balances selection
(Thomson & Feldman, 1974; Feldman & Otto, 1989).
Negative (or ' synergistic') epistasis generates linkage
disequilibria which reduce the variance in number of
deleterious mutations. Recombination restores the
variance; the immediate effect is to reduce mean
fitness, but in the long term, increased genetic variance
allows selection to eliminate deleterious alleles more

https://doi.org/10.1017/S0016672300033140 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300033140


N. H. Barton 134

Table 2. The change in log (fitness) during the course of a substitution. Parameters are as in Figs. 1, 2; s = 0-1,
7] = —002. log(W) gives the mean log(W*) through time; values are given every 10 generations. Alog(W)
gives the rate of change in mean log(W), which is close to its additive genetic variance, V[+vl. V'2 is the non-
additive variance in log(W*). dlog(W) is the contribution of linkage disequilibria to mean log (W), and is
close to V'2/rjk, where r}k is the recombination between selected loci. The last two columns give the (scaled)
selection on the modifier, as predicted by eqn 14, and as given exactly by eqns A 1.2. The last row gives totals
over the whole substitution. Results for unlinked loci. The prediction from eqn 14 is ts.pj(piqi8rjk^)
= — vl — AV'2/3; these opposing forces almost exactly cancel. Results for linked loci, in which case
recombination is favoured. Because linkage disequilibria are strong, eqn 14 substantially overestimates selection
on the modifier

t

a No
20
30
40
50
60
70
80
90
100
110
Total

P

linkage
00170
00652
0-2045
0-4440
0-6740
0-8259
0-9108
0-9551
0-9776
0-9889

b Linked loci: /-,, =
40
50
60
70
80
90
100
110
120
130
Total

00149
00572
01817
0-4022
0-6278
0-7912
0-8898
0-9436
0-9716
0-9858

log (1*0

-0-23878
-0-21193
-013881
002828
006160
011321
013958
015269
015917
016237

rjk = 0-l,rlk
-0-23998"1

-0-21624
-014998
-0-04532
004554
0-10226
013330
014936
0-15747
016152

A log (WO

0001431
0004810
0010236
0010687
0006740
0003529
0001762
0000872
0000431
0000213

= 019
0001257
0004287
0009459
0010458
0-007160
0004062
0002134
0001084
0000543
0000271

0001340
0004581
0010162
0011098
0007109
0003710
0001841
0000907
0000448
0000221

0001178
0004100
0009575
0-011458
0008084
0004491
0002296
0001156
0000568
0000282

vi

-0000002
-0000020
-0000115
-0000177
-0000091
-0000029
-0-000008
-0000002
0
0

-0004428

-0000005
-0000064
-0000439
-0000899
-0000582
-0-000200
-0000054
-0000014
-0000003
-0000001
-002271

K

0000001
0-000010
0000064
0000120
0000079
0000030
0000009
0000002
0000001
0

0003149

0000001
0000008
0000054
0000118
0000092
0000040
0000013
0000004
0000001
0

000331

S\og(W)

00000015
00000192
00001249
00002394
00001562
00000585
00000173
00000046
00000012
00000003

00062340

0000005
0000062
0000469
0001171
0000951
0000393
0000119
0000032
0000008
0000002

0-03212

(eqn'T4)

0
0000007
0000030
0000017

-0000014
-0000011
-0000004
-0000001
0
0

0000231

0000073
0000963
0006636
0-013417
0008271
0-002627
0000650
0000152
0000036
0000009
0-32834

(exact)

0
0
0000002
0000002

-0000002
-0000002
-0000001
0
0
0

-0000019

0000019
0000272
0002279
0007163
0007940
0-004294
0001565
0000469
0000128
0000033

-0-24202

effectively. This process involves essentially the same
interaction between epistasis and directional selection
as described above. Equation 12 can therefore be used
to relate the selective advantage of a modifier to the net
mutation rate and the strength of epistasis. This
extends Charlesworth's (1990) analysis to arbitrary
patterns of selection. The relation with that analysis is
set out in Appendix 3, where it is shown that the
methods agree for weak selection (see Table 3).

Suppose that mutation occurs at meiosis; with
biallelic loci, define the rate of mutation as /*, from
X{ = 1 to 0, and i>t from 0 to 1. Then, allele frequencies
change by Apt — (vi qi—faPi), and the central moments
CN are multiplied by a factor IlieAr(l — /ii — IA), where
TV is a set of distinct loci. (This is because if a mutation
occurs at any of the \N\ loci, the association is reduced
to zero.) Since mutation rates are typically much
smaller than recombination, this reduction in linkage
disequilibria will be neglected. Then, the equations for
linkage disequilibria (e.g. eqns 5, 9,11) are unaffected,
and eqn 12 still applies.

Suppose now that there is no back mutation (vi =
0); deleterious mutations occur a rate fix from Xi = 1
to 0. If we neglect for the moment the perturbation to
allele frequencies caused by linkage disequilibria, we
have aieqi x /iy Assuming that mutant alleles are rare
(pi x, 1), the selective advantage of the modifier is:

Sr^elfJ

A'I

1 + 1 - 1

-|A'|

(18a)

The first term is due to the interaction between
directional selection and epistasis. U = 2ljii/ii is the
total mutation rate per diploid genome, and Sr2ii e is
the average of Srm ejk, weighted by the mutation rates
/ii /ik; the modifier tends to increase if this average is
negative. The second term is due to epistasis alone, and
always tends to reduce recombination. (The second
term is as in eqn 13, but with V2 = 2S*<k
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Table 3. Comparison with Charlesworth's (1990) analysis of
mutation/selection balance. The fitness of an individual carrying n
deleterious mutations is exp( — an—fln2/2), where a = 0002, /? =
0.0008. There is free recombination, (a), The first set of three columns
give exact values for the mean fitness ( W), the average number of
deleterious mutations {it), and the variance in that number (V)
(Charlesworth, 1990, table 3). The next three columns give the
approximations derived above (eqns A3.1, A3.3, A3.5). (V—n) is the
reduction in variance due to linkage disequilibria. (b), Charlesworth's
(1990, table 4) estimates of the selection gradient on the modifier (d =
Apj/(Srpiqi)), and the difference in mean (Sn/Sr) and variance (SV/Sr)
of n between individuals heterozygous for the modifier, and the rest of the
population. The last three columns give the approximations derived here:
d= /3(U2-pV2/3).(eqn A3.10b); Sn = -USV/V (eqn A3.8); SV =
8n + 2pV28r/3 (eqn A3.9). See Appendix 3 for details

Exact This paper

U W V - n W V - n

a
20
1-5
10
0-5
01

0-329
0-434
0-571
0-752
0-940

50-8
43-6
350
241
9-84

-1 -6
-1 -2
-0-8
-0 -4
- 0 0 7

0-343
0-445
0-578
0-753
0-938

49-79
42-84
34-63
24-03
1005

— 1-98
-1-47
-0-96
-0-46
- 0 0 8

Charlesworth (1990) This paper

U $n/Sr S\/Sr Sn/Sr SW/Sr

b
20
1-5
10
0-5
01

000234 -00443 1170
000126 -00293 0-881
000050 -00163 0-589
000007 -00059 0-289

-000001 -00005 0052

000271 -00490 1170
000143 -00319 0-881
000056 -00174 0-587
000008 -00062 0-290

-000001 -00005 0052

representing the variance due to pairwise deviations
from multiplicative fitness.)

Expectations over the genetic map, such as
£[l/r J kr l j k] , diverge, because the contribution of very
tightly linked loci becomes infinite. In fact, the
approximations used to derive eqns 12, 15a break
down when recombination is comparable with selec-
tion (r « s). Approximations can be derived for this
case and, for rare deleterious alleles, lead to denomi-
nators of the form rather than rjk

(see Appendix 2, and Charlesworth, 1990). However,
the averages only depend logarithmically on the
strength of selection, and are only reduced sub-
stantially below the values for free recombination if
there are few chromosomes, and the genetic map is
short (e.g. fig. 2 of Charlesworth, 1990). With unlinked
loci, r,j = rik = 1/2, rIjk = 3/4, and rN = 1 -2~m.
Then:

K- i v\m\mi)(l_2-i"")-
(186)

(iii) Fluctuating selection

The above analyses considered constant fitnesses, and
identified two opposing forces on recombination.
There is a term proportional to <2J>k 02 which tends to
reduce recombination, and which corresponds to the
immediate loss in mean fitness caused by the breakup
of favourable gene combinations. There is also a term
proportional to aieakeaike which tends to increase
recombination, and which corresponds to the long-
term gain in fitness caused by a faster response to
directional selection. At equilibrium, only the first
term acts, and recombination necessarily decreases.
This section extends the analysis to fluctuating
selection, and shows that if epistasis changes sign over
the right timescale, recombination can increase. This
was the effect identified by Sturtevant & Mather
(1994), and analysed by Maynard Smith (1978, p. 98).
However, it only favours recombination over a narrow
range of parameters.

Assume that selection fluctuates, with coefficients
^j.oM. ^jk.oUl e t c- m generation ;. If selection is weak,
so that allele frequencies change slowly, the expected
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change in modifier frequency per generation is given
by:

= -Sriklipiqipiqipkqk

T ' -0

coco

- s
r=0,T'-0

f - T - T' -
(19)

where

gik(-r) = ai0[t]ak0[t-T-\].

The derivation is given in Appendix 4, for two
selected loci. The effects of pairwise epistasis in a
multilocus system can be obtained by summing eqn 19
over all loci; however, there will be additional terms
due to higher-order epistasis, analogous to the second
sum in eqn 12. Equation 19 separates into three terms,
each consisting of the expected product of selection
coefficients across generations, multiplied by a factor
f(j) which depends on linkage, and which decays
rapidly over time. For example, with unlinked loci
(rJk = 1/2, rijk = 3/4), the factor j[r) decreases as
1, 3/4, 7/16, 15/64....

First, suppose that directional selection is negligible
(<2j 0, dk0 « 0), so that only the first term contri-
butes. In order for recombination to increase,
£Ie[/] e[t — T — 2]] must be negative. This requires
predominantly negative autocorrelations between
epistasis two to five generations apart. In other words,
combinations of alleles that are favoured in one
generation must be unfavourable in the next few
generations. Note that the main term is due to the
covariance between epistasis two generations apart,
E[e[t]e[t — 2]]. This is because the increase in the
modifier in generation t is 2<5jk0[/]C,jk[?]. Cljk[r] is
proportional to (C'ik — C'ik); since both terms are
increased by the same amount by selection in
generation t — \, (C\k — C'Lk) is proportional to
Cik[t — 1], which in turn was generated by epistasis in
generation t — 2. This leads to the counter-intuitive
conclusion that if epistasis alternates in every gen-
eration, recombination will tend to decrease, whereas
if it alternates over a somewhat longer timescale,
recombination may tend to increase. The stringent
conditions required for fluctuating epistasis to favour
recombination were stressed by Charlesworth
(1976) and by Maynard Smith (1978). This analysis
further emphasizes their stringency.

If epistasis is weak relative to directional selection,
the second term dominates. Since the labelling of

alleles is arbitrary, there is no reason to expect the
coefficients of directional selection to have any
particular sign, or to be correlated with each other (i.e.
^Iflj.J. E[akal £[tfj,«A.BL ^e] = 0. Any tendency for
recombination to increase must therefore be due to a
consistent relation between directional selection and
epistasis,suchthat£Iaj 0 [t]ak0 [t — T — 1] e[t — r — r' — 3]]
is negative for times, T, T' separated by a few
generations.

4. Discussion

Assuming that modifiers have small effects on re-
combination leads to substantial simplifications. The
evolution of such modifiers is governed by a set of
linear equations (eqn 5 c), which depend only on the
effect on recombination between the selected loci, and
do not involve dominance in modifier effects even
when modifiers are common. These equations apply
to arbitrary selection and linkage; they simplify further
when selection is weak relative to recombination, and
yield a general relation between the variance in log
fitness, and selection on recombination (eqns 14, 16).
While modifiers of large effect can evolve in quali-
tatively different ways (e.g. Altenberg & Feldman,
1987; Charlesworth et al. 1990), concentrating on
minor modifiers should isolate the key factors that
determine overall levels of recombination.

Recombination can be favoured in two ways:
because it impedes the response to fluctuating epistasis,
or because it facilitates the response to directional
selection. If directional selection, and hence changes in
allele frequency, are negligible, recombination can
only be favoured if unfavourable combinations of
genes tend to be associated with each other (i.e. ejk and
Cjk have opposite signs). Such perverse linkage
disequilibria can only build up if epistasis changes sign
over just the right timescale (eqn 19), making the
mechanism implausible (Charlesworth, 1976; Mayn-
ard Smith 1978). Nee (1989) argues that while this
conclusion may hold when epistasis fluctuates in
response to physical conditions, biological coevolution
(for example, between host and parasite: Hamilton,
1980; Jaenike, 1978) will tend to produce fluctuations
on the right timescale. In Nee's model, allele fre-
quencies stay constant, and so any advantage to
recombination must indeed be due to fluctuating
epistasis. Epistasis tends to act against gene comb-
inations that are in excess because the epistasis
imposed by one species is a direct response to the
linkage disequilibria that have evolved in the other. In
more realistic cases, where allele frequencies are free
to vary, and where many species interact on a variety
of timescales, it seems unlikely that epistasis would
change in the right way. More complex models of
host-parasite coevolution (Hamilton, 1980; Bell &
Maynard Smith, 1986; Hamilton, 1993) generate
selection for recombination; however, this may be due
to changing allele frequencies rather than to changing
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epistasis. The mechanisms could be distinguished by
following the components of fitness variation (V'l,vl,
V'2). Without knowing the underlying mechanism, it is
hard to extrapolate from simulations of a few loci to
many, and hard to know whether the effect is
specifically due to coevolution, or is a general
consequence of fitness variation.

If epistasis changes slowly, eqn 14 gives a simple
relation between the net selection on recombination
and the distribution of log (fitness). If there is negative
epistasis between favourable alleles, then linkage
disequilibria will reduce the additive genetic variance
in log (fitness) (vx < 0), which reduces the response to
directional selection, and hence selects for recom-
bination (s x — vx Sr for unlinked loci). This is counter-
balanced by the immediate gain in log(fitness)
caused by linkage disequilibria between favourable
gene combinations (s « — 2S\og(W)/3 for unlinked
loci). Because the effect of linkage disequilibria on
additive variance is proportional to epistasis, whereas
their effect on mean fitness is proportional to
(epistasis)2, recombination is favoured only when
epistasis is weak and negative.

If recombination is to be favoured because it
increases the response to directional selection, then
epistasis must be both weak and negative. It is
plausible that the selection coefficient on particular
pairs of loci is typically weaker than that on each locus
just because fitness depends on so many loci. For
example, Charlesworth (1990) supposes that fitness
decreases with the number of deleterious mutations,
as W(n) = exp( — an — fin2/2). For a given mean and
variance of fitness, the coefficients a and /? must scale
with l/n, l/n2 respectively. Since a, /? correspond to
the coefficients diB, ejk, this implies that epistasis is
weak enough that recombination can be favoured (see
Appendix 3). The argument could be developed more
generally by finding how the selection coefficients
scale with the number of loci. When applied to
selection on a quantitative trait, this approach leads to
a generalization of the 'infinitesimal limit' (Bulmer,
1980; Turelli & Barton, 1994, Appendix B).

While it is plausible that epistasis is weak
(ejk ~ «j 0 ak0) because selection acts on large numbers
of genes, it is not clear why it should be negative
(ejkaj0<5ke < 0). Why should two favourable alleles
increase fitness by less than the product of their
separate effects? Negative epistasis would result if
fitness is mediated via stabilizing selection on additive
quantitative traits (Maynard Smith, 1988; Charles-
worth, 1993). More generally, one can argue that
negative epistasis is necessary if the 'genetic load' is to
be avoided. An asexual population has mean fitness
reduced by exp (— U), where U is the genomic
mutation rate; however, a sexual population can
eliminate deleterious mutations much more effectively
if" epistasis is negative, and indeed, may not survive if
epistasis is positive (Kondrashov, 1988). Similarly, the
segregation and substitution loads can be much

reduced if there is truncation selection on some
measure of overall genetic quality (Sved et al. 1967;
Maynard Smith, 1976; Wills, 1978). Of course, this
argument does not explain why epistasis should in fact
be compatible with substantial fitness variation. It is
not clear whether epistasis has itself been shaped by
natural selection, or whether (by analogy with
dominance - Kacser & Burns, 1981) there are general
physiological reasons why epistasis should be negative.

Selection on recombination depends primarily on
the contribution of linkage disequilibria to the additive
variance in log (fitness) (vj, and to the mean log
(fitness), S\og(W) (eqn 16). These quantities can, in
principle, be measured by comparing the distribution
of fitness effects of genomes before and after re-
combination. This is essentially what was done by
Charlesworth & Charlesworth (1975), and by Mukai
(1977), who compared the effect on fitness of second
chromosomes extracted from either male or female
Drosophila melanogaster. Both sets of chromosomes
had undergone selection on viability, but only those
from females had undergone recombination. Charles-
worth & Charlesworth (1975) found that chromo-
somes derived from females caused slightly lower
mean viability, and significantly lower mean fecundity
(as 7%). Mukai (1977) found that flies currying two
chromosomes derived from males ('MM') had sub-
stantially lower variance in relative viability (0-0036,
0-0057, 00059 for MM, MF, and FF, respectively).
Surprisingly, Mukai (1977) also found that MF flies
had highest viability (0-995, 1015, 0-997, respectively).

These results suggest that that there might be
substantial selection on recombination modifiers.
(Bear in mind that the second chromosome makes up
only about 40 % of the Drosophila genome, that the
chromosomes had only undergone viability selection
before being isolated, and that only some components
of fitness were measured.) However, before we can
decide whether recombination is prevalent because it
facilitates the response to directional selection, more
extensive measurements of its effects on fitness
variation are needed. Though laborious, such meas-
urements are feasible, and are essential if we are to
understand the evolution of this key feature of the
genetic system.
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would like to thank Alex Kondrashov for pointing out the
simple dynamics of modifiers of small effect, and Sarah Otto
for sharing her unpublished work and checking the three-
locus equations. Brian Charlesworth, Marc Feldman, Joe
Felsenstein, Alex Kondrashov, Sarah Otto, and Michael
Turelli gave helpful comments on the manuscript.

Appendix 1: Detailed analysis of three loci

(i) The model

As an example of the general equations, consider now
the simplest non-trivial model for the evolution of
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recombination. A modifier is labelled /, and has no
direct effect on fitness. Two loci j,k are directly
selected, and interact epistatically with each other.
For simplicity, assume that selection acts sym-
metrically on male and female gametes, so that
C's T = C'TJS, and C's 0 = C0 s can be written as C's.
The full equations were produced automatically
using Mathematica (Wolfram, 1991), and then
simplified by assuming that the modifier has small
effects (8r <$ 1):

C" —C'—r (C — C 1
^ j k <-'jk 'J.kV^-'Jk ^ j . k /

s.c'^+c;,lk - cjki - c;k,f) (Ai .1 a)

Here, I have used the constraint that 1 = rjk 0 + ri k,
and 0 = 8rik0[i + 8rjMi. Similarly:

This is just eqn 3 b, with N = {</}. We see that if, after
selection, there is no association between the modifier
and the selected loci, then recombination modification
does not build it up. Writing out (C[Ui — C'{li) explicitly
using eqn 12 of Barton & Turelli (1991), shows that it
involves only terms like Ctj and Cljk, which are O(8r),
and hence makes a negligible contribution.

The primary effect involves third-order disequi-
librium :

C" = C —
^ijk '-'ijk '

— C
* - • k

' "'"j.l

(C —C \
v^ijk '-'i.jk/

—C \ — T

k '- ' j . lk/ 'k . i j

' ii.jk ' ^ i.ijk *-" iijk ~ ^ ijk.i/

' Ij.lk ' ^ - j.iik —̂ iijk ' - ' i jk.i/

ik,ij + ^k.iij~^iijk~^'ijk.i)- (Al.l C)

Here, I have used the constraint that O = £rijk0|i +
Srt m + 8ri ik]i + drk m. Most of these terms are neg-
ligible if associations between the modifier and the
other loci are weak. The leading terms, which are
O(8r), involve C'im « CfiJk « Q C , , C;,Ilk « Q C ; , ,
etc. This was confirmed by writing out the C'vv

explicitly in terms of the selection coefficients, assu-
ming that C4j, Cik, CmKO(8r), and Cjk * 0(1),
and retaining only leading terms in d. Using the
relation (8ri ik|i + 8rk m) = 8rik]i gives the key driving
term as just — 8ri k|1 Cn(C'ik — C\ k) - a special case of
eqn 5 c, with N = {jk}. This confirms that a modifier of
small effect only evolves because it changes recom-
bination between the selected loci, and not because
it alters its own linkage to the selected loci {8riAi etc).

For simplicity, assume that there is no dominance,
and that there is no distinction between cis and trans
combinations. Then, fitness is a function of (A', + X?),
rather than the individual A"s. The dominance
coefficients (di_, etc.) are defined such that they would
not directly affect the change in allele frequencies.
However, they would cause deviations from Hardy-
Weinberg proportions after selection (C^ etc),
which would alter the rate at which recombinations
reduces linkage disequilibria. (Note that viability

selection on haploids produces small 'dominance'
coefficients, because the fitness of each diploid
genotype is then the product of the haploid fitnesses,
rather than the sum.)

With these assumptions, only three distinct coef-
ficients contribute: ai0 = a0i, ak0 = aBk, and aik =
ak,s = 2fljk,0 = 2aa,jk = 2aki0 = 2aaki. All others are
zero. (Note that as in Barton & Turelli (1991), we use
the convention the coefficients aik 0 and aki o are
counted separately; this simplifies sums over loci.) If
genotypic fitnesses are fixed, as in Table 1, the
selection coefficients are ai 0 = (^ + ijAk)/ W, akg =
(sk + V&i)/W, dik = 2dik0 = y/W, where Ak = pk-qk,
5j, sk are the selection coefficients on loci j and k, and
7] is a measure of (additive) epistasis. However, the
equations below will be written in terms of the
selection coefficients (Sy v), since they apply even
when selection is frequency-dependent. Selection
coefficients enter as the average over the two sexes,
&u.v = (au,v + av,u)/2- There is no dominance, so that
coefficients such as ahi and dikk do not enter.

APi = "i.ePi 1i + ̂ (A1.2a)

ACjk = 2dikBpi q^k qk - Cjk(rjk + (1 - rJk) S)

- 2ajk,e(l - 2rjk) C% - APi Ap

Cljk(l - ru) <rk - C ^

+ 23 J k . e C J k ( l -2 r u ) )

(AI .2 c)

- ru) <rk - C ^ + (1 - ru) dLa A,

- rik) <ri - Cik(rik + (1 - rik) dkg Ak

k.B Cjk(l -2 r i k ) ) + 2dikB Ctipk qk- Api Apk

(A1.2e)

= -8riMipiqiCik{\ -S-45JkiOCjk)

~Cm{riik + {\ -riik)S+2aiKeCik{\ -2rm))

,j((l - /",,) crkPk qk + rik ai Cjk)

(l -rik) aipi qi + rfJ <rk Cjk)

C*k - A/>j C* - Apk CJ - A/?, A/7j Apk

(A1.2/)

where Cfk = Cjk + ACjk, crk = ako-2ajk0Aj, ai =
flj.o - 25jk.a

 Ak> ^ = «j.B
 A J + flk.o Ak - 2ajk,0 Aj Ak. These

equations can be derived from eqns 4 and 5 c. They are
valid for strong selection on loci j and k, and for any
pattern of recombination, with modifiers of small
effect. Bergman et al. (1994, eqns 1-5) give equations
for a similar three-locus model, which apply with
weak selection on haploids, and which are consistent
with eqns Al .2. The full equations derived using their
methods are exactly equivalent to eqns A1.2 (Otto,
pers. comm.).

A modifier which increases recombination (^rj-k|, >
0) tends to become associated with pairs of alleles
which are in negative linkage disequilibrium (Cjk < 0),
because the term —Sri^piqlCSk in eqn A1.2/then
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generates positive Cljk. This three-way association in
turn causes the modifier to decrease if, as is likely, the
negative disequilibrium Cjk between the selected alleles
is caused by negative epistasis (the term 2ajk0Ci jk is
then negative in eqn A1.2g). It is this process which
causes recombination to decrease in a population
which is at equilibrium. However, the modifier may
also increase if it becomes associated with individual
alleles that are favoured (the terms diB Cip dkB Cik in
eqn A1.2g). Such associations build up indirectly, via
the terms Cijk(l — r^ak, Cljk(l — rik)cri in eqns A1.2d,
A1.2e, respectively. If directional selection is strong
relative to epistasis, this indirect effect dominates, and
leads to an increase in recombination.

(ii) Weak linkage disequilibrium

The full recursions given by eqns Al .2 can be simplified
if selection is weak {a <g 1), and if the selected loci are
only weakly associated (Cjk <̂  pi q^ pk qk). Associations
will be weak if linkage is loose, and both selection and
epistasis are weak {di 0,5k 0,5jk 0 « H f j k « l . Associ-
ations can also be weak if linkage is tight, provided
that epistasis is much weaker than directional selection
and recombination (ajk 0 and {di0dkB) « J2 <§ rjk, djB,
aka x s). These assumptions ensure that the effect of
directional selection increasing recombination is of
the same order as the effect of epistasis reducing it,
and so allows their relative importance to be assessed.
Because the equations derived here are valid for tight
linkage (r as s) among the selected loci, and for
fluctuating selection, they are more general than the
formulae for arbitrary multilocus systems which lead
to eqn 12.

The approximate equations are derived by keeping
the leading-order selection terms in eqn A1.2:

APi = Si,oP>ai (A1.3a)

(A1.36)

aJ,BAJ-t-ak,eAk)Cjk (A1.3c)

j + dj0 A,) Cu (Al .3 d)

k + 5k,0Ak)Clk (A1.3e)

«j,e AJ + 5k.o Ak) Qjk

- rik) Cik

(A1.3/)

(Al .3g)

flk,e Cm - (

frj,k|iPi 1i Cjk - (''ijk

K0pk qk{\ - ru) Cfj

A Q j k = - <

0 Cm

where ejk = (2djk0 — djedk0). Note that the last term in
eqn A1.3c should appear in full (rik + (\—rik)(dig

Aj-|-ak0Ak))Cjk. However, when rjk P s, it approxi-
mates to rik Cjk, whereas when rjk as s, it approxi-
mates to (r^ + ta^Aj + a ^ A J ) ^ . The form given
in eqn A1.3c therefore covers both cases. The same
comment applies to the corresponding terms in
eqns A\.3d-f. With weak epistasis, S reduces to

and crk to di0, d
ko.

The factor

equilibrium CJk (eqn A 1.3 c) arises from the first and
last terms in eqn A1.2c. If fitnesses are multiplicative
across loci, it is zero. If genotypes have fixed fitnesses,
the selection coefficients will stay approximately
constant. However, all the coefficients may change
through time, because of changing conditions or
frequency-dependent fitnesses.

Equations A1.3 can be simplified further by scaling
the linkage disequilibria relative to the heterozy-
gosities. Let Hik= CJp
Hik = CJpkqk, Hijk = Ciik/PiqiPkqk. Then, because

•x-digAu

TT „ TT
Hm~rikHil

o^j, we

i

"ik)#ik-

have:

(A1.4c)

(A1.4rf)

(A1.4e)

(A1.4/)

(One could define the associations as Cij/piqipiqi

instead; however, because the modifier frequency pl

changes slowly, pi qi is approximately constant, and so
this rescaling makes no difference.) The scaled linkage
disequilibria Hti = Cij/pjqj, Hik = CJpkqk, have a
simple interpretation. They are the differences in
frequency of the modifier allele between the two
genetic backgrounds defined by loci j and k, re-
spectively, and decrease steadily at rates rti, rik

regardless of how frequencies at the selected loci
change.

Equations Al.4c-/form a set of linear recursions,
with coefficients which vary arbitrarily through time.
An explicit solution can be found, but is complicated:
it involves the exponential of the matrix of coefficients.
However, if linkage is loose relative to the rates of
change of the allele frequencies and the selection
coefficients, the linkage disequilibria rapidly approach
a 'quasi-equilibrium'. For slowly changing coeff-
icients :

tfjk = — (A1.5o)

H» =

#ik =

(A1.56)

(A1.5c)

rijk

(The more general case where selection coefficients
fluctuate rapidly is dealt with in Appendix 4 (eqn
A4.1).) Substituting into eqn A1.3g gives the rate of
change of the modifier:

ejk = (2ajk0 —<5j 0 a k 0 ) which produces linkage dis-

https://doi.org/10.1017/S0016672300033140 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300033140


N. H. Barton 140

In eqn A1.5e, I have assumed that the modifier is
loosely linked to the selected loci (rfj) rik x 1/2). If the
selected loci are tightly linked (rJk x s), Cjk is given by
the solution of eqn A1.4c. If all loci are loosely linked
(rti,rik,rik « 1/2), Cjk is given by eqn A1.5a, and
eqn A1.5e simplifies further to:

This is a special case of eqn 12.

ejk 0 is a measure of the deviation from multiplicative
fitnesses. With random mating and selection on
haploid viability, the contribution of each diploid
genotype is the product of the fitnesses of its haploid
components. Hence, du v = avav, which ensures that
there are no cross-gamete associations after selection
(C'vy = 0).

First, consider linkage disequilibria among the
selected loci. Under the QLE approximation (eqn 6),
these are Cjk « (1 - rjk) eikpi q^k qjrik. Summing over

(A 1.5/) 'oc^' a n ( i substituting for ejk from eqn A2.2c, the

(A2.3)

Appendix 2: Comparison with Charlesworth's (1993)
analysis of direction selection

Charlesworth (1993) modelled directional selection on
a quantitative trait, z, applying Bulmer's (1980)
infinitesimal model to both haploid and diploid
populations. I will only consider the haploid case here,
since Charlesworth (1993) treats this in more detail,
and since it differs instructively from the diploid case
assumed in much of this paper. The trait has mean z,
and genetic and environmental variances Vg, Ve

respectively. There is Gaussian selection of strength
1 /<w2 around an optimum at 6 (W(z) = exp
(— (z — oy/luP); the relative importance of directional
and stabilizing selection depends on the deviation of
the mean from the optimum, (z — 6). If there is a
steady movement of the optimum by A6 per gen-
eration, the deviation settles to a steady lag(z — 6)
= -A6Vs/Vg.

From eqn 4 of Charlesworth (1993), the logarithm
of mean fitness is:

\og(W) = log(w) - | r, (A2.1)Vs) -

where Fs = e

The selection coefficients can be found from the
selection gradients with respect to the mean and
variance of z (see Appendix B of Turelli & Barton,
1994). Suppose that the effect of locus j on the trait is
ar, thus, for the haploid population, z — S^aj^. The
genetic variance consists of components due to genie
heterozygosity (Vg0) and linkage disequilibrium (CL):
K = 2 j al Pili + ̂ i^ «j ak Cjk =Vg0 + CL. I assume
throughout that selection is weak (Vs > Vg). Then:

dz dpj

dlog(W) dV
W dC~k

, ^ ~ , £ W12.)

2V 2VZ

2K
(A2.2c)

where rH is the harmonic mean recombination rate
among selected loci. This agrees with Charlesworth's
(1993) eqn A3 c.

Charlesworth (1993) calculates the rate of spread of
a rare modifier from the difference between the mean
and variance of the trait in the individuals het-
erozygous for the modifier, and the rest of the
population (Sz,SVg). In terms of the linkage dis-
equilibria between the modifier and the selected loci:

&f = £ ? l S i (A2.4o)

J,k

, y.gj (A2 Ab)

(assuming Cu C,k <§ Cm). Substituting Cu from eqn 11
into eqn A2.4a, and substituting for ak 0 from eqn
A2.2a:

-*k,0
Pill

(A2.5)

where pH is the harmonic mean recombination rate
between the modifier and the selected loci. This
corresponds to eqn A2 c for Vg 4, Vs, provided that SCL

>̂ SVg0. Substituting Cu from eqn 11 into eqn A2.46
shows that this condition holds for small a; under the
infinitesimal model, the modifier acts primarily by
changing linkage disequilibria rather than gene fre-
quencies.

To find Cljk, apply eqn 5 c, noting that selection on
haploids cannot generate cross-gamete associations
(C'uv = 0):

L(qk-Cj k). (A2.6a)

At quasi-linkage equilibrium,

cjk = 0 - rik)
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(from eqn 6), and (C'ik - Cjk) = eikpi q^pk qjrik. Hence,
at QLE:

= — ( 0 -'•ijk)(C;jk-
'ijk \ ' j k

(A2.66)

This corresponds to Charlesworth's (1993) eqns A5,
8: his SA/m(m — \) is the change in 8Cik due to
selection (C[ik — Ciik)/plql, and his A/m(m — \) is
the change in Cjk due to selection (C'ik — Cjk) x
eikPi1iPk'}k- The first term is negligible for weak
selection (Vg <̂  fQ, giving an explicit formula for Cijk.

The selection on the modifier can be found from
SVg, £z using Charlesworth's (1993) eqn A10, which
corresponds to the sum over loci of eqn 8, above:

1/1 A6*
(A2.7a)

Substituting for Sz from eqn A2.5, and then for SVg

from eqn A2.6 (neglecting the first term) gives:

2\V2

This corresponds to Charlesworth's (1993) eqn Al 1 a,
for Vg <£ Vs. It can be derived from eqn 12 (discarding
the third and higher-order terms due to the second
sum), even though eqn 12 was derived for selection on
diploids rather than haploids. (The factor of (1/2)
multiplying eqn A2.7b arises because the sum 2 * in
eqn 12 is over only pairs j < k, rather than over all
pairs.)

Appendix 3: Comparison with Charlesworth's (1990)
analysis of mutation/selection balance

Charlesworth (1990) analysed the modification of
recombination under a mutation/selection balance,
treating the number of deleterious mutations in a
diploid individual, n, as a quantitative trait with mean
n and variance V. His crucial assumptions were that
n is normally distributed, and is approximated by the
infinitesimal model. Selection is Gaussian, with W(ri)
= exp( — an—(in2/!). From eqn A2 of Charlesworth
(1990), the log mean fitness is precisely:

The selection coefficients can be found from the
selection gradients with respect to the mean and
variance of n (using eqn A3 of Turelli & Barton, 1994,
and neglecting higher-order coefficients such as ajk ,).
I will assume throughout that fiV 4, 1. This is a good

approximation over the relevant range of parameters,
and greatly simplifies the algebra. Then:

ajk.o =

81og(KQ
dn

d\og(W)

(A3.2 a)

(A3.2 b)

eik.B = .0-aj,D«k,J = ~P (A3.2 c)

Treating n as a quantitative trait, with selection
gradient (a+/?«), gives a balance between mutation
and selection (eqn 2 of Charlesworth, 1990):

U = (a + piT)V, (A3.3)

where t/ = 2S j / i j and V=2Liqy At linkage equi-
librium, the number of deleterious mutations is
Poisson distributed, and approximates to a normal
distribution with variance V = n. Solving the conse-
quent quadratic equation gives n, V. (The same can be
derived at the level of discrete loci, from A/?j = 0 = ai B

Assuming weak epistasis, linkage disequihbria are
given by eqn 9 b:

(A3.4)
' j k

The variance is reduced by these linkage disequilibria
to:

j k

(A3.5)

Substituting into eqn A3.3 gives a cubic for n.
Solutions for this substitution are compared with
exact results from Charlesworth (1990) in Table 3 a,
for unlinked loci (E[\/rik] = 2). There is reasonable
agreement even for high total mutation rates (U = 2).

The expectation of (l/r jk) over a linear genetic map
is infinite, because of the divergent contribution of
very closely linked pairs. The QLE approximation
which leads to eqns 6 and A4 breaks down when
recombination is comparable to selection. Charl-
esworth used an improved approximation, suggested
by analogy with Thomson's (1977) analysis of the
effect of selection at one locus on linked neutral loci.
He replaced l/rjk by 1 /(rjk + 2hs) (his eqn 10 a), where
hs = U/n is the effective selection on each locus. This
approximation is hard to justify in the multilocus
framework used here. The exact equations for the
change in allele frequency due to directional selection
and pairwise epistasis, are (from Barton & Turelli,
1991):

APj= -

2 Ok,0 ~ Cjk
k=f=l#j

akl B Cjkl,

(A3.6a)

where Ai = (pi — q.^. Neglecting skew, Cm, and as-
suming that epistasis is weaker than directional
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selection (ajkg <§ ai 0), this reduces to eqn A3; the
'effective selection' which balances mutation at each
locus is then hsi = ai,0 + Sk+jak0Cjk//?j^j, which
corresponds to Charlesworth's hs. The exact equation
for the change in pairwise linkage disequilibrium is:

) 0 -Ac) (25^,0^^A 9k

'"jk)(1-«j,eAj-«k,B
Ak

+ 2ajk,0AjAk)Cjk-2(l-2rjk)

xCjk(«jk,oCjk+ 2 (aiiaC.si+
k=H*j

2 («i,o-25J1.8AJ-2akli8Ak)C
Jkl

- rjk) (Cjklm - Cjk Clm)

+ 2rikCnCkJ)-Cik. (A3.66)

For two loci, and no mutation, this reduces to eqn
A1.2c. If linkage disequilibrium is weak enough that
2(1 — 2rjk)<3,k0C?k is negligible, and if deleterious
alleles are rare (Aj,Ak«l), then the solution at
equilibrium is approximately Cik = 2dik0piqipk

<7k/(/'jk + 3hB + akg), which corresponds to Charles-
worth's eqn 10 a if hs x ajB. However, if the cumulative
effect of linkage disequilibrium is to be great enough
to substantially perturb allele frequencies, the effective
selection will differ from the direct selection. In order
to allow for the effect of multiple loci, Charles-
worth replaces aj>0by hsp giving his eqn 10a:
cjk~2«jk,8/'j^/'k9k/(''jk + ^ j + ^k)- While this sub-
stitution is plausible, I do not see that it can be derived
from eqn A 1.6b. Taking the limit of weak epistasis
(tfjk.o ~ sVjk.aj,,, « 5,butSk+jak-0CJk//7J9J K,USK, 1),
and assuming normality (Cj k l«0,
CjklmwCJkClm + CJ1Ckm + CJmCkI) shows that the
only sum that contributes to eqn A3.66 is
2 2 , m <5lm 0 Cj, Ckm, which cannot be expressed in terms
of the 'effective selection', hs. It seems that no simple
approximation can be rigorously derived when linkage
is tight and when linkage disequilibria have a
substantial net effect. However, this problem is not
serious, because the expectation of \/(rik + 2hs) only
depends logarithmically on hs, and is close to l/rjk for
all but short genetic maps.

Charlesworth (1990) calculates the rate of spread of
a rare modifier by finding the difference between the
mean and variance of the number of deleterious alleles
in the individuals heterozygous for the modifier, and
the bulk of the population (Sfi, SV). In terms of the
linkage disequilibria between the modifier and the
selected loci:

Sn = (A3.7 a)

The variance in number of deleterious mutations
consists of contributions from the individual loci, and
from linkage disequilibria: V = n + S j kCj k . Hence:

8V = dn+ £ — (assuming CuCik « Cijk). (A3.76)
A^

Substituting Cti from eqn 11 into eqn A3.la, setting
r,j = 1/2 for an unlinked modifier, substituting for
aka from eqn A3.2a, and then using eqn A3.3:

C
(A3.8)

This agrees with Charlesworth's eqn 21 for fiV 4, 1.
To find SV, substitute Cljk from eqn 1b into eqn
A3.1b, set rn = 1/2, rijk = 3/4 for unlinked-loci, and
substitute ejk 0 = — ft from eqn A3.2c:

(A3.9)

This agrees with Charlesworth's eqn 23 for fiV, /in,
hs4 1.

The selection coefficient on the modifier can now be
found by summing eqn 10 over all loci. Noting that

dn

(A3.10*)

Substituting for SV from eqn A3.9, and then using
eqn A3.3:

(A3.

The selection gradient on the modifier (Charlesworth's
d) is just d = sJ8rm. This formula agrees with eqn
186 (setting e = -0, and V2 = /12V2/4). Table 3b
shows numerical values, which agree well with
Charlesworth's (1990, table 4). As expected, agreement
is closest for low net mutation rates.

Appendix 4: Fluctuating selection

Suppose that selection fluctuates (aj0[t], a]k0[t] etc. in
generation ;)• Then, from the approximation of
eqns A1.4:

(A4.1a)

r'-0

T'-0

Hiik[t-T'-l)(\-riky
+1

(A4.16)

(A4.1c)
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i £
T'-0

CO 00

~ °ri k|i Pi Qi 2 J Zje[t — T — T —2\
r'-0 r-0

x(l-rjk)'(l-rijky

" M ' - T - I ]

where e[f] = (2ajk 0 [t]-ai0 [t] ak0 [/]). Equation A4.1 rf
neglects the last two terms in eqn A1.4/(ak-o(l — ru)
Hij,ai 0(l — rik)Hik). These are negligible if linkage
is loose, but may not be if linkage is tight

dia,akB 1).
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