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Abstract

In 2002 the Mathematics in Industry Study Group (MISG) investigated the question of
optimally scheduling cyclic production in a battery charging and finishing facility. The
facility produces various types of battery and the scheduling objective is to maximize battery
throughout subject to achieving a pre-specified product-mix. In this paper we investigate the
robustness of such schedules using simulation experiments that span multiple production
cycles. We simulate random variations (delays) in battery charging time and find that an
optimal off-line schedule yields higher throughput in comparison to a common on-line
dispatching rule. This result has been found to hold for a range of expected charging-
time delays and has significant practical implications for scheduling battery charging and
finishing facilities.

2000 Mathematics subject classification: primary 90B35; secondary 90B30.
Keywords and phrases: scheduling, simulation, robustness.

1. Introduction

Exide Technologies operates a manufacturing facility in South Australia that in 2002
produced about two million lead-acid batteries per annum. The facility was one of
the topics investigated at MISG 2002. In this paper we study an abstracted model
of the battery charging and finishing operations of this facility, where finishing refers
to activities such as battery cleaning and labelling. The model and a mixed-integer
mathematical programming formulation for the associated scheduling problem is
described in Dunstall and Mills [2].

The facility produces a range of batteries and these batteries can be formed into 21
battery-types (which we will refer to as products), each of which has a minimum charge

'CSIRO Mathematical and Information Sciences, Private Bag 33, Clayton South 3169, Australia;
e-mail: Simon.DunstaIl@csiro.au.
2CSIRO Mathematical and Information Sciences, Private Bag 2, Glen Osmond 5064, Australia; e-mail:
Graham.Mills@bigpond.com.
© Australian Mathematical Society 2007, Serial-fee code 1446-1811/07

475

https://doi.org/10.1017/S1446181100003163 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100003163


476 Simon Dunstall and Graham Mills [2]

duration and a known weekly demand. The minimum charge duration is constant for
each product and is between 18 hours and 63 hours. In practice the charge duration is
subject to variations (disruptions) that are caused by ambient temperature fluctuations
and other environmental effects that can inhibit heat transfer from batteries that are
being charged. These largely unpredictable effects lead to charge durations that are
greater than the minimum charge durations.

From the demand information we can compute a target product mix, which we define
as the desired proportion of batteries of each product relative to the total number of
batteries produced in a week. Weekly production can be characterized in terms of the
production ratio for each product. For a given product the production ratio is defined
as the ratio between the number of batteries of this product that are produced and
the demand for this product. When scheduling the facility we seek to maximize the
throughput of the facility subject to maximizing the minimum production ratio.

The charging and finishing operations are carried out on batteries that are arranged
on stills (or racks) which hold a certain number of individual batteries, all of which
must be of the same product. The number of batteries in a still is fixed for each product
and we can express the product mix, production ratios, and the charging and finishing
schedules in terms of stills. The number of stills is the system is constant and can
often be a binding constraint when scheduling.

The charging area is comprised of a fixed number of bays and operates continuously.
Each bay can hold one still of any product and must charge batteries non-preemptively.
The charging process is automated and the supervisory demands on human operators
can be neglected. However, loading and unloading of stills does require human
intervention and of particular concern is the loading-rate which is dependent on
the time-of-week and can limit battery throughput. The activities undertaken in the
finishing area are predominantly manual in nature. The finishing area does not operate
continuously and can be approximated by a classical parallel machine model (see, for
example, Lawler et al. [5]) with unit-length operations, constant processing rates
and machine unavailability periods. Overall, the limiting factors when scheduling
the facility are the number of stills, the number of charging bays, the charging-area
loading rate and the throughput capacity of the finishing area.

The purpose of this paper is to compare and contrast three straightforward schedul-
ing strategies under varying degrees of charge-duration disruption. Each of these
scheduling strategies is cyclic in nature: that is, a weekly schedule is formed and the
facility cycles through this schedule over a period of many weeks. In all cases the
weekly schedule is determined using the minimum charge durations (that is, we adopt
a naive assumption that disruptions are entirely unpredictable). In the first strategy
("MIP") we find the optimal schedule through application of the MIP formulation. In
the second strategy ("SPT") we sequence stills according to non-decreasing charge
time: this is equivalent to the well-known shortest processing time (SPT) rule. In the
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third strategy ("RND") we generate a random sequence of stills. The third strategy is a
useful point of comparison between the other two strategies, although it is interesting
to evaluate the robustness of RND strategy under charge-time variation.

It is highly relevant to observe that, in the context of this scheduling problem, off-
line (or "proactive") SPT sequencing is indistinguishable from on-line (or "reactive")
SPT dispatching of stills. This is because, in comparison to off-line SPT sequencing,
no additional information will be used for on-line SPT dispatching. However, in a
more sophisticated on-line strategy one could make use of dynamic state information
such as the current expected finishing time of charging operations or the number of
stills queueing in front of the finishing area. Because SPT sequencing represents a
very simple on-line scheduling strategy, by comparing the performance of the MIP and
SPT schedules, we gain insight into the performance difference between simple on-
line and optimal off-line schedules and into the possible scope for improving dynamic
schedule performance using sophisticated on-line scheduling strategies.

The papers by Turnquist [9] and Dunstall and Mills [2] address the issue of pro-
duction scheduling in multi-product battery charging and finishing facilities. In both
papers the various battery models can be grouped into generic battery types, and a
generic type becomes a particular battery model (or product) only at the last stage
(finishing stage) of the production process. In this paper we refer to a generic type as
a product and do not account for particular battery models other than by scheduling
the finishing operations for each product.

Turnquist describes the application of a network flow algorithm to schedule multi-
product battery plants on a month-by-month basis over a yearly horizon. Each plant
produces a subset of a particular firm's several hundred battery models and the alloca-
tion of models to plants is a higher-level decision that precedes production scheduling.
The overall goal in the Turnquist model is to find a minimum-cost solution where cost
is dependent on inventory levels and on planned production overtime. The capacity
limitations of the facility act to constrain the schedule on a monthly basis.

Dunstall and Mills consider battery production at a finer level of detail. They
schedule the use of stills, charging bays and battery finishing lines for each of 42
periods in a (cyclic) working week, and use a mixed-integer programming formulation
to solve the scheduling problem. In this paper we make use of this formulation
after making some minor revisions (see Section 2.1). Our scheduling problem and
modelling approach is somewhat similar in spirit to that of Panton and Beaumont [8].
Pan ton and Beaumont considered the scheduling of autoclaves (as batch processors)
into which components made of composite materials were placed for curing. For this
process the components were laid-up on tools which were mounted on trolleys, both
the tools and trolleys being limited resources.

We are interested in evaluating the performance of the MIP, SPT and RND schedul-
ing strategies under varying degrees of charge-duration perturbation. The schedules
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that are produced by the strategies in question are not affected by the degree of per-
turbation. Thus the scheduling strategies will be evaluated according to their ability
to produce schedules that are robust relative to unpredictable events, in a scenario
where schedules cannot be changed as a result of these events. This scenario can be
compared to those in which rescheduling occurs (see, for example, Vieira et al. [10])
and robustness in that case can be assessed through measures of rescheduling stability
and scheduling nervousness (see, for example, Gan [3]).

Our scheduling strategy performance evaluation is based on using a discrete event
simulation model of the battery assembly, charging and finishing areas. The simulation
has been carried out using the ARENA software package [1 ]. We adopt average weekly
production as our main scheduling performance measure. In the simulation we use
one long (that is, many-cycle) replication and determine the variance by batch means.

Mignon, Honkomp and Reklaitis [7] use a similar methodology to investigate sched-
ule robustness under uncertainty. In their experiments they adopted a performance
measure that was common to the scheduling and simulation parts of the study. For a
performance measure p they use a Robustness R and Performance P defined by

'\~~P~J
where p is the value of p in the deterministic model, p is the average value and a (p)
is the standard deviation of p over the replications. They model stochastic processing
times as a normal distribution with a mean of one and a standard deviation of one
tenth. They average their performance measure over 500 replications. They compare
the optimization schedule with a schedule that advances jobs if there is slack and
a schedule that plans for lateness by advancing the due dates. They find that the
third strategy has the best performance. In a second paper Honkomp, Mockus and
Reklaitis [4] consider variation in processing times and equipment disruptions. They
compare the optimized schedule from a deterministic mixed-integer programming
model with the simulation of rescheduling methods when stochastic events occur.
These experiments, as well as those of Liu [6], deal with due-date constrained jobs
and so the results (for example, Liu finds that operations-based strategies are better
than job-based strategies in flow shops) are of interest but not directly applicable to
the studies in this paper.

2. Solution methods

We developed a trace-driven discrete event simulation model in which the base
schedule is used to sequence jobs through a charging and finishing area. The loading
and finishing resources for processing the jobs are made available on a shift basis by
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restricting the resources to a five day per week operation. The charging area operates
24 hours per day throughout the week.

A schedule is used as input to the simulation run and it specifies the (cyclic)
sequence of products to be released into the system on stills. The simulation follows
this sequence without deviation. The batteries for the first still in the sequence cannot
be released until the last still of the previous cycle has been loaded, and a still cannot
be loaded prior to the beginning of the week that corresponds to this repetition of the
cycle. For this reason the simulation will produce batteries in the correct product mix
because the schedules are constrained to have the correct product mix.

The differences in minimum charge times and the unplanned variations in process
times will affect the order in which batteries complete charging according to the
simulation. However, once batteries are charged, all stills require the same amount of
work input to complete. Thus, at least in the simulation, loaded stills will complete
a circuit of the system in approximately the same order as they begin it. We stop
releasing new still-loads of batteries whenever there is a queue of such loads for stills.

The stills queue for a space in the charge area that is restricted to 53 spaces. On
completion of their charge duration they leave the charge area and enter the buffer
ahead of the finishing line. This line operates for two shifts with capacity to finish 30
and 20 stills per shift, respectively, on weekdays. Stills are released for reuse once
finishing is completed.

We tested three strategies (MIP, SPT and RND) for proactive scheduling and in all
the scenarios we replaced the average deterministic charge times w by Norm (u>(l +
kfj,), a^/kw), where (j, is the mean and a is the standard deviation of an individual
disruption and k is the disruption frequency. We reason that jobs with longer charge
time are more likely to have more disruptions. We used values of 0.5 and 0.1 for fj,
and a, respectively. For each schedule the jobs have their processing time modified
by the normal distribution when they enter the charging area.

The simulation models were run for one replication representing a duration of 1018
weeks. The first two weeks were used as a warmup period to fill the production
line with stills from an initially empty system. Variability in the charge times was
introduced from the second week. Thus the simulation starts to gather statistics at the
beginning of the third week (the number of jobs released, the number of stills finished
and so on) and we continue to gather statistics for the remaining 1015 weeks.

2.1. Offline schedules To generate optimal off-line schedules we adopt the mixed-
integer programming formulation first introduced in [2]. This MIP has variables which
keep track of the number of stills that are assembled, queueing for the charger, in the
charging area, queueing for finishing, and finished. We set the initial and ending
boundary conditions to give a wrap-around (cyclic) steady-state production schedule
with a one-week cycle duration.
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We introduce some notation and parameters:

p products;
Dp sales demand;

T number of time periods (42 unless otherwise stated);
t periods 1 ,2 ,3 , . . . , 7*;

R number of charging-area spaces (53 unless otherwise stated);
/ available number of stills (65 unless otherwise stated);

L, maximum number of stills able to be loaded in period t;
Sp, period t' is a member of Sp, if stills of product p loaded in period t' remain on

charge in period t;
wp charge time for product p (spring, in periods);
F, an indicator of the number of finishing lines working in period t;

FCAP maximum finishing capacity (per shift) of a finishing line;
€ a small factor to break degeneracy in the solutions.

We introduce some variables:

a, number of stills assembled in period t;
q, the inventory of assembled stills (of any product) at the end of period t;

xp, number of stills of product p that start charging in period t\
yp, number of stills of product p that finish charging in period t\

zt number of stills processed on the finishing line in period t;
c, number of stills in the charging area in period t;
b, number of stills in the buffer at the end of period t;
f fraction of the finishing capacity utilized;
r minimum value of the production to demand ratio for any product.

The aim is to maximize production while maintaining the specified product mix.
Hence in the formulation we maximize the minimum production ratio r over all
products: we sacrifice over-production of one product in favour of increasing the
production of an alternative product that may be under-produced (relative to the
demand). Thus the model aims to maintain the product mix rather than produce one
type of battery at the expense of another. We state the problem as follows

Maximize lOOOr + e^a, - q0 ' (2.1)
i

subject to

a, < L, for all t, (2.2)

q, = tf,_, +a,~Y^ xp, for all t, (2.3)
p

P< f o r a 1 1 r- <2-4>
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c, < R for all t, (2.5)

x-p.t = yP,i+wp for all p and t : t + wp < T, (2.6)

Xp.t = yP,t+w,-T for all p and t : t + wp > T, (2.7)

z, = J2 yP> + b<-i - b< for ̂  '• (2g)
p

z,<f.F, for all /, (2.9)
/<FCAP, (2.10)
q, + c, + b, < / for all t, (2.11)

— > r for all p. (2.12)

The objective function (2.1) and constraint (2.12) enable the maximization of the
minimum production ratio amongst the set of products. The second term in the
objective function has a marginal effect designed to break degeneracy in the solution
space, but can result in over-production. The third term ensures that the inventory of
assembled stills is kept at a minimum and thus it also acts to eliminate degenerate
solutions.

Constraints (2.2) reflect the limited loading capacity of the assembly line. We used
a loading capacity of 30 stills per shift for the day and afternoon shift and 5 stills for
the night shift.

Constraints (2.3) are conservation constraints relating to flow of stills into and out
of the buffer between the loader and the charging area.

Constraints (2.4) determine the number of stills in the charging area during period t.
This is calculated by summing the number of stills started in each of the periods for
which such stills would remain under charge in period t. Constraints (2.5) limit the
number of stills in the charging area to be no more than the number of spaces available.

Constraints (2.8) are conservation constraints relating to flow of stills into and out
of the buffer between the charging area and the finishing lines. The number of stills
coming off charge during period t plus the number of stills in the buffer at end of the
preceding period (period t — 1) must be equal to the number of stills finished plus the
number of stills in the buffer at the end of period t. We take the value of b0 to be equal
to the value of bT.

Constraints (2.6) and (2.7) ensure that stills which start charging in period t are set
to finish charging in period t + wp (or period t + wp — T if t + wp > T).

Constraints (2.9) limit the finishing of stills to the capacity of the finishing lines
during working shifts. Finally, constraint (2.10) limits the throughput of the finishing
lines to be no more than their maximum capacity.

Constraints (2.11) limit the total number of stills in use in the system.
To generate SPT and RND off-line schedules we simply sort the 239 stills (the
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FIGURE 1. Process diagram for assembling, charging and finishing batteries.

weekly production) in non-decreasing and random minimum-charge-time order, re-
spectively. For our simulation it is the order of still-assembly that is important and so
a sequence of stills is sufficient. The shortest processing time model uses hours as the
units of measurement.

3. Computational experiments

Our model of the battery production facility is based on a real-world case study.
Each battery is assembled, charged and finished in the facility. Figure 1 is a schematic
of the production process.

The assembly area either produces dry batteries that can be stored in pallets prior
to charging, or acid filled batteries that are held in stills for transfer to the charging
spaces when a free space becomes available. Each (identical) still holds between 60
and 96 batteries, depending on the product. A loaded still is always fully loaded
with a single product. We decided to use the number of stills of each product as the
production unit rather than the number of batteries. Likewise we have simplified th<
problem by selecting half-shifts (four hours) as the time period.

Table 1 lists the product groups, the total charge time for the spring season in hours
and periods, and the number of weekly stills required for average daily demand for
each product for a product mix of 22500 batteries per week. According to these
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TABLE 1. Data on product type, spring season average charge times in hours and periods, and weekly
demand in stills.

Product Type

Charge Hours

Charge Periods

Weekly Stills

A

63

16

28

B

60

15

2

C

64

16

5

D

55

14

11

E

49

13

2

F

47

12

1

G

55

14

5

H

60

15

8

I

56

14

8

J

56

15

8

K

54

14

2

L

62

16

6

M

19

5

20

N

26

7

23

0

22

6

7

P

28

7

3

Q
20

5

35

R

26

7

1

S

20

5

25

T

23

6

34

U

18

5

5

figures, the number of stills to be produced is 239 weekly, or about 48 daily (Monday
to Friday). The data contained in Table 1, relating to the set of products and their
average charging times in spring, has been used throughout.

Our problem can be viewed as a production system where the finishing area is
equivalent to a single machine operating at a constant rate, and the charging area
is a batch processor with a limited input rate (the loading rate). We are potentially
constrained in our scheduling decisions by both the capacity of these processors as
well as the resource of stills.

We use the following capacity assumptions regarding factory operations.

(1) There are 3 shifts (8 hours each) every day, and they start at 6am (morning shift),
2pm (afternoon shift) and 10pm (night shift).
(2) There are 65 stills in the factory.
(3) Loading can be done at a rate of up to 30 stills during morning and afternoon

shifts, that is, 15 stills per half-shift or period.
(4) Up to 4 stills can be loaded on night or weekend shifts, that is, 2 stills per period.
(5) There are 53 spaces (that is, for 53 stills) in the charging area. The charging area

can operate for 7 days a week.
(6) Finishing can be done at a rate of up to 30 stills during morning shifts and up to

20 stills during afternoon shifts, weekdays, that is, 15 stills in a morning period and
10 stills in an afternoon period.
(7) No finishing is done during the weekends and at nights.

In practice there are a number of controls available to production planners that
can be used to affect the production schedule. For example, they can change the
production sequence for products or use overtime shifts for assembly and finishing
if required. In this paper we manipulate the production sequence and treat all other
factors as fixed. Finally, we note that a schedule that minimizes the total duration of
idle time for finishing area will be optimal with respect to facility throughput.

Results were for each of the three scheduling strategies under variation in the
disruption ratio k. The following performance statistics have been gathered during
our simulation runs:

• MxW is the maximum number of stills busy during the week,
• AvW is the average number of stills busy during the week,
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• MxQ is the maximum number of stills in the queue ahead of the charger at the
end of a period,

• AvQ is the average number of stills in the queue ahead of the charger at the end
of a period,

• MnC is the minimum number of stills charging during the week,
• AvC is the average number of still charging during the week,
• MxB is the maximum number of stills in the buffer at the end of a period,
• AvB is the average number of stills in the buffer at the end of a period,
• AvP is the average weekly production over the simulation
• HfP is the half-width of the 95% confidence interval of the weekly production.

MxW and AvW relate to the work in progress as they measure the number of
stills assembled, in the queue, in the charging and in the buffer areas. The facility
throughput objective, that is, primary performance measure, is AvP.

In the simulation the start of the first period corresponds to the start of the morning
shift on Monday. The base instance of the model has a loading capacity of 344 stills,
spaces for charging 53 stills, availability of 65 stills, finishing capacity for 250 stills
in normal work hours and a weekly production demand for 239 stills.

Table 2 gives performance statistics for the optimal off-line schedule execution
without disruptions to charge-durations (that is, with minimum charge-durations).
These statistics are computed using the values assigned to the MIP decision-variables.
The schedule permits the charging of 241 stills per week in 58 batches, where a batch
is a contiguous sub-sequence of stills of the same product. The demand for each
product is met and there is an overproduction of two units relative to the total demand
of 239 stills.

TABLE 2. Performance measures for the planning model with 53 spaces, 65 stills and finishing capacity
of 5.

k

0.00
MxW

65
AvW

58.19
MxQ

8
AvQ

0.83
MnC

41
AvC

51.57
MxB

24
AvB

5.78
AvP

241.00
HfP

0.00

Figure 2 shows (for the optimal schedule) the number of stills assembled, in the
queue, in the charging area, in the buffer and the total number of stills in use for
each period during the week. The nonzero values for the queue illustrate that stills
are assembled in advance of entering the charging area. The figure shows that the
charging area is full for much of the week except on Monday morning and Friday
afternoon. The minimum number of stills undergoing charging is 41 on Monday and
Friday. The maximum size of the buffer in front of the finishing area is 24 stills on
Monday morning and is reduced to zero several times during the week. During some
periods the resource limits are reached for the total number of the stills, the charging
capacity and the finishing capacity.
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2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Period Number

FIGURE 2. Planning model base configuration results showing the number of stills assembled, in the
queue, in the charging area, in the buffer and the total number of stills in use for each period during the
week.

A comparison between the results above and the first row of Table 3 shows that
there is very little discrepancy between the observed statistics for the simulation results
and the values we would expect as a result of executing the optimal off-line schedule.
Thus we can be confident that there is a high degree of fidelity between the simulation
model and the mathematical formulation of the problem.

The most interesting results are gained when we simulate charge-duration disrup-
tions. To do this, as each job enters the charging area its processing time is modified
by a normal distribution as described in Section 2. This perturbation process is used
when testing each of the scheduling strategies.

Table 3 gives the performance measures for the optimal off-line schedule as the
percentage of charge-duration variability increases. It can be seen that as the variability
increases the work in progress remains constant. All of the stills are busy all the time
and jobs are released into the model as a still becomes available from the finishing
area. As the variability increases there is a steady decline in the average production
while the other measures show little variation.

Figure 3 shows the weekly production and the spaces used for 20 weeks after the
2 week warm up period when the disruption ratio is k = 0.02. It can be seen that
production oscillates between finishing 241 stills and about 160 stills. We postulate
that the high production corresponds to releasing the stills on schedule while the low
production occurs when the release of stills "gets off schedule". It is important that
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TABLE 3. Results for the planning schedule showing the outputs for variation in the disruption ratio with
53 spaces, 65 stills and 5 stills finishing capacity per line.

k
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

MxW
65
65
65
65
65
65
65
65
65
65

AvW
60.40
60.53
64.99
64.99
65.00
65.00
65.00
65.00
65.00
65.00

MxQ
12
12
12
12
12
12
12
12
12
12

AvQ
1.40
1.61
4.11
3.94
3.90
3.91
3.91
3.95
3.96
3.91

MnC
25
25
0
0
0
0
0
0
0
0

AvC
50.71
50.96
46.68
45.71
45.22
44.77
44.72
44.44
44.14
44.15

MxB
39
38
65
65
65
65
65
65
65
65

AvB
6.79
6.44

12.74
13.94
14.51
14.97
15.04
15.26
15.57
15.66

AvP
241.00
241.00
219.66
214.02
210.67
207.58
206.37
204.04
201.67
200.80

HfP
0.00
insuf
0.64
insuf
0.19
insuf
insuf
insuf
0.51
insuf

240 -

220

200

180

160

1 4 0

120

100

•(TTTTjffinf
Time

FIGURE 3. Weekly production and space usage as a function of time for the MIP planning schedule with
k = 0.02.

charging of stills occurs on the weekend and it can be seen that the charging-bay usage
is close to zero when production is low. Average production is about 220 rather than
the demand of 241 and the weekly deficiency of about 20 units gives a periodicity of
about 12 weeks to the production plot. Figure 4 shows the weekly production for each
of the three scheduling strategies.

For the SPT strategy we rank the products by non-decreasing charge time (that is,
the reverse order to that in Table 1) and release 241 stills with the correct product mix
for each of the 21 products. Table 4 shows that as the disruption percentage increases
the number of stills finished decreases, the work in progress remains almost constant,
the transit time of jobs increases, the charging area becomes more congested and the
buffer decreases. The maximum number of 65 stills are used and the average number
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TABLE 4. Results for the shortest processing time schedule showing the outputs for variation in the
disruption ratio with 53 spaces, 65 stills and 5 stills finishing capacity per line.

k
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

MxW
65
65
65
65
65
65
65
65
65
65

AvW
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00

MxQ
12
12
12
12
12
12
12
12
12
12

AvQ
3.02
3.08
3.14
3.22
3.29
3.27
3.24
3.28
3.33
3.35

MnC
0
0
0
0
0
0
0
0
0
0

AvC
40.56
40.77
40.97
41.17
41.37
41.58
41.77
41.88
41.92
42.03

MxB
64
65
65
65
65
65
65
65
65
65

AvB
20.08
19.87
19.61
19.32
19.04
18.88
18.74
18.59
18.48
18.34

AvP
192.75
192.75
192.75
192.83
192.75
192.79
192.73
192.31
191.55
191.20

HfP
insuf
insuf
insuf
insuf
insuf
insuf
insuf
insuf
0.61
0.62

of stills busy increases as the disruption percentage increases. The minimum number
on charge increases and the average number charging increases. The number in the
buffer does not change significantly as the disruption percentage increases. If anything
the maximum number and the average number in the buffer decline as the production
declines and less jobs are released into the system.

Figure 4 shows the SPT weekly production and the spaces used for 20 weeks after
the 2 week warm up period when the disruption ratio is k = 0.02. It can be seen that
production oscillates between finishing about 220 stills and about 140 stills. Average
production is about 193 rather than the demand of 241 and the weekly deficiency of
about 50 units gives a periodicity of about 5 weeks to the production plot.

Weekly production for k = 0.02

It 12 13

Week

FIGURE 4. Weekly production for the MIP, SPT and RND schedules with * = 0.02 as a function of time
over 20 weeks.
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TABLE 5. Results for the random schedule showing the outputs for variation in the disruption percentage.

k

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

MxW
65
65
65
65
65
65
65
65
65
65

AvW
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00

MxQ
12
12

. 12
12
12
12
12
12
12
12

AvQ

3.96
4.00
4.01
4.04
4.06
4.09
4.11
4.22
4.13
4.18

MnC
1
2
1
2
1
2
2
2
3
2

AvC
41.76
41.75
41.79
41.82
41.95
41.96
41.98
41.99
42.19
42.21

MxB
64
63
64
63
63
63
63
63
61
63

AvB
17.90
17.88
17.85
17.81
17.65
17.62
17.57
17.48
17.36
17.29

AvP
198.48
197.42
196.66
195.83
195.46
194.58
193.71
192.81
192.80
191.98

HfP
0.06
insuf
insuf
0.02
insuf
insuf
0.15
insuf
insuf
0.15

The throughput under the RND strategy is resilient to disruptions but nevertheless is
low overall. Table 5 gives the performance measures as the variability increases. It can
be seen that as the variability increases the queue in front of the charger increases, the
charge area fills, the buffer in front of the finishing area decreases and the production
falls. As the variability increases the system behaves in a similar manner to the
MIP strategy. The main difference is that fewer stills are finished but the reduction in
production is not as fast as in the planning model which starts from a higher throughput
value.

Figure 4 shows the weekly production and the spaces used for 20 weeks after the
2 week warm up period when the disruption ratio is k = 0.02. It can be seen that
production oscillates between finishing about 200 stills and about 190 stills. Average
production is about 196 rather than the demand of 241 and the weekly deficiency of
about 45 units gives a periodicity of about 6 weeks to the production plot. The RND
schedule does better than the SPT schedule because, when job release is delayed, the
schedule maintains a range of processing times.

3.1. Comparison of strategies when constraints are tight We have compared the
relative efficiency of production for the three strategies. Figure 5 shows the average
weekly production for each of the three strategies as the disruption ratio increases.
The figure indicates that the optimized schedule from the MIP model continues to
outperform the other strategies as the variation in the processing times increases.

Also we compared the robustness of production for the three strategies. Figure 6
shows the robustness for each of the three strategies as the disruption ratio increases.
The figure indicates that the optimized schedule from the MIP model is the met
robust strategy for small values of the disruption ratio but the random strategy is more
robust than the other strategies as the variation in the processing times increases. We
reason that the random strategy is insensitive to disruptions because generally there
are jobs of all durations in the charging area.
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FIGURE 5. Comparison of the performance of the three strategies for 53 spaces and 65 stills showing
average weekly production as the disruption ratio k increases.
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FIGURE 6. Comparison of the robustness of the three strategies for 53 spaces and 65 stills showing
robustness as the disruption ratio k increases.

3.2. Comparison of strategies when the constraints are loose We compared the
relative efficiency of production for the 3 schedules when the resources available were
increased to 55 spaces and 73 stills. The previously-optimal off-line schedule was
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FIGURE 7. Comparison of the performance of the three strategies for 55 spaces and 73 stills showing
average weekly production as the disruption ratio k increases.

not re-optimized for the increase in resources. Figure 7 shows the average weekly
production for each of the three schedules as the disruption ratio increases. The
figure indicates that the previously-optimal off-line schedule outperforms the other
schedules for all values of the disruption ratio. The SPT schedule is better than the
RND schedule for all values of the disruption ratio. In the absence of disruptions the
MIP and SPT schedule give the maximum production of 241 units.

Again we compared the robustness of production for the three strategies when
there are 55 spaces and 73 stills available. Figure 8 shows the robustness for each
of the three strategies as the disruption ratio increases. The figure indicates that the
optimized schedule from the MIP model is the most robust strategy for values of
the disruption ratio up to 0.14 but the random strategy is more robust than the other
strategies as the variation in the processing times increases. Again we reason that the
random strategy is insensitive to disruptions because generally there are jobs of all
durations in the charging area.

4. Conclusions

In this paper we have studied a multi-product battery charging and finishing facility
that produces completed and charged batteries. Batteries are produced in a weekly
cycle in our model of such a facility and this is a reasonable approximation to current
practice in a major Australian plant that has been the subject of a previous paper. Over
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FIGURE 8. Comparison of the robustness of the three strategies for 55 spaces and 73 stills showing
robustness as the disruption ratio k increases.

the weekly cycle the facility must achieve a pre-specified ratio of production between
products (that is, a certain product mix), and an instance of the cyclic scheduling
problem is defined by this ratio, the resource constraints of the facility, the operating
intervals of the charging and finishing areas, and the battery charge times for each
product. There are three potentially constraining resources in the scheduling problem:
the total number of stills upon which groups of batteries (of the same product) are
placed, the number of battery charging bays, and the throughput rate of the finishing
area.

In our experiments we have simulated (by way of discrete event simulation) the
performance of the facility under two distinct scheduling strategies: off-line optimiza-
tion, and on-line dispatching by way of a simple priority rule. Our goal has been
to assess the merits of each strategy through reference to the observed performance
of the simulated system under varying conditions. The performance of the system
has been characterized in terms of the average number of stills of batteries produced
during weekly cycles where the product-mix must be maintained. We have varied the
simulation conditions by introducing random perturbing effects that extend battery
charging times.

The simulations have shown, under various degrees of perturbation and in a tightly-
constrained system, that following an optimal off-line cyclic schedule is a significantly
better strategy than adopting on-line shortest-processing-time dispatching. When the
resource constraints provide for more flexibility in the system the off-line and dispatch-

https://doi.org/10.1017/S1446181100003163 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100003163


492 Simon Dunstall and Graham Mills [18]

ing strategies are equally good for minor perturbations, but the relative performance of
dispatching deteriorates as the random effects are amplified. These observations are
highly relevant for the in-practice operation of such facilities because they dispel the
concerns expressed to us by facility managers in relation to the robustness of optimal
off-line schedules under the significant charging delays that can occur due to ambient
air flow, humidity and temperature. Indeed, an optimal off-line schedule is highly
robust in this context, because (a) the executed schedule is invariant to disruptions,
and (b) the throughput of the facility remains acceptable.

From the simulation results we can also propose that, at the expense of scheduling
robustness as assessed relative to schedule invariance, there may exist sophisticated on-
line approaches that can achieve higher facility throughput than either of the strategies
investigated in this paper.
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