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Abstract

Background. Anorexia nervosa (AN) is characterized by sizable, widespread gray matter
(GM) reductions in the acutely underweight state. However, evidence for persistent alterations
after weight-restoration has been surprisingly scarce despite high relapse rates, frequent tran-
sitions to other psychiatric disorders, and generally unfavorable outcome. While most studies
investigated brain regions separately (univariate analysis), psychiatric disorders can be concep-
tualized as brain network disorders characterized by multivariate alterations with only subtle
local effects. We tested for persistent multivariate structural brain alterations in weight-
restored individuals with a history of AN, investigated their putative biological substrate
and relation with 1-year treatment outcome.
Methods.We trained machine learning models on regional GMmeasures to classify healthy con-
trols (HC) (N = 289) from individuals at three stages of AN: underweight patients starting inten-
sive treatment (N = 165, used as baseline), patients after partial weight-restoration (N = 115), and
former patients after stable and full weight-restoration (N = 89). Alterations after weight-restor-
ation were related to treatment outcome and characterized both anatomically and functionally.
Results. Patients could be classified from HC when underweight (ROC-AUC = 0.90) but also
after partial weight-restoration (ROC-AUC = 0.64). Alterations after partial weight-restoration
were more pronounced in patients with worse outcome and were not detected in long-term
weight-recovered individuals, i.e. those with favorable outcome. These alterations were
more pronounced in regions with greater functional connectivity, not merely explained by
body mass index, and even increases in cortical thickness were observed (insula, lateral orbi-
tofrontal, temporal pole).
Conclusions. Analyzing persistent multivariate brain structural alterations after weight-restor-
ation might help to develop personalized interventions after discharge from inpatient treatment.

Introduction

Anorexia nervosa (AN) is a severe psychiatric disorder characterized by self-starvation and
extreme weight loss with typical onset in early adolescence (Treasure et al., 2015) and high
mortality rate (Arcelus, Mitchell, Wales, & Nielsen, 2011). Effective interventions are lacking
and long-term treatment resources are inadequate in many countries (Berg et al., 2019;
Erskine, Whiteford, & Pike, 2016; Solmi et al., 2021). A better understanding of the underlying
neurobiology and brain structural alterations in AN might pave the way to better treatments or
identify subgroups at increased risk of chronicity.

Sizable and widespread reductions in gray matter (GM) volumes and cortical thickness
(CT) have been reported in acutely underweight patients with AN (acAN) relative to healthy
controls (HC) (Bahnsen et al., 2022; King, Frank, Thompson, & Ehrlich, 2018; Walton et al.,
2022). Previous (longitudinal) studies, including our own, suggested that these reductions are
related to body mass index (BMI), i.e. the state of undernutrition, and normalize with
weight-restoration (Bahnsen et al., 2022; Bernardoni et al., 2016; Seitz, Herpertz-Dahlmann,
& Konrad, 2016). However, some studies found small residual differences in GM morphology,
like reduced CT in the right pars orbitalis (Brodrick et al., 2021) or reduced left hippocampus
volume (Asami et al., 2022) to persist even after long-term weight-recovery, which might
reflect predisposing (trait) factors for AN or consequences of severe illness. Given that former
patients often relapse and have high risk for other psychiatric illnesses (Steinhausen et al.,
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2021), it is somewhat surprising that sMRI studies have struggled
to detect morphological alterations after weight-restoration.
Importantly, persisting brain alterations might be predictive of
future illness course and long-term outcome (Vall & Wade,
2015). The use of biologically objective measurements, such as
brain structure, to stratify individuals might enable novel possibil-
ities for personalized precision medicine including improved indi-
vidualization of prognosis and treatment (Kambeitz-Ilankovic,
Koutsouleris, & Upthegrove, 2022). A major limitation of previ-
ous sMRI studies in AN is the use of mass univariate analyses,
which test each brain region separately for group differences,
while psychiatric disorders are theorized to constitute brain net-
work disorders (Fornito, Zalesky, & Breakspear, 2015).
Correspondingly, differences in brain network connectivity
might be related to structural differences covarying across mul-
tiple regions. Under this assumption, machine learning (ML)
techniques may be informative as they use multivariate patterns
to differentiate groups by combining information from all brain
regions. To date, only two studies in comparatively smaller sam-
ples have employed ML in AN, showing that underweight (but
not weight-recovered) patients can be classified from HC
(Lavagnino et al., 2015, 2018).

Our primary aim was to search for multivariate brain struc-
tural alterations in participants with AN at two stages of recovery
and clarify whether persisting alterations could be of prognostic
utility. Specifically, we built ML classifiers to separate HC from
(a) underweight patients with AN immediately after admission
to an eating disorder program (acAN-TP1) as a baseline, (b) a
subset of these patients who achieved partial weight-restoration
at the end of intensive treatment (acAN-TP2), and (c) long-term
weight-recovered former patients (recAN). We employed regional
measures of CT and subcortical volumes as features. In case
multivariate alterations were detected in acAN-TP2, we planned
to test whether the ML-based risk score as defined below was pre-
dictive of 1-year post-admission treatment outcome using the
Morgan-Russell outcome assessment scale (Morgan & Hayward,
1988). Predicting outcome after initial weight gain is of particular
clinical utility, as clinicians need to make decisions regarding the
level and modality of care (e.g. low/high frequency outpatient v.
day-time) after discharge from intensive treatment (Brockmeyer,
Friederich, & Schmidt, 2018). We also note that given the strong
dependence of brain alterations in acAN-TP1 on state variables
[primarily BMI reduction (Bahnsen et al., 2022; Bernardoni
et al., 2018, 2016)], it seems a priori unlikely that these alterations
may be reliable biomarkers predictive of outcome above and
beyond BMI. Subsequently, we aimed to render our ML results
interpretable to point out potential underlying neural mechan-
isms that might have implications for translational research
(Roessner et al., 2021). To this end, we characterized multivariate
alterations on which the classifiers relied by (a) identifying the
features which contribute most to the classification (explainable
AI), (b) contextualizing with network (connectomics) properties,
and (c) by exploring whether detected multivariate alterations
were temporary or might be trait markers.

Methods

Participants

Data from a total of 573 female participants in the greater ongoing
Saxonian Anorexia Nervosa Study were analyzed: 302 HC and
271 with AN, see online Supplementary Methods 1.1 for more

information on participant recruitment. 68% of these participants
were also included in our previous study (Bahnsen et al., 2022).
After quality control (see below), the final sample consisted of
658 scans, where participants with AN were included in multiple
time-points if scans were available (online Supplementary
Fig. S1): 165 acAN scanned within 96 h after beginning nutri-
tional rehabilitation (acAN-TP1; 12–29 years), 115 acAN scanned
at the end of an intense treatment program and with a BMI
increase of at least 10% (acAN-TP2; 12–25 years), 89 former
patients scanned after full and long-term, i.e. at least 6 months,
weight-recovery (recAN; 16–30 years), and 289 HC (12–30
years). The inclusion criterion of a 10% increase in BMI between
TP1 and TP2 follows established clinical practice and we believe
it corresponds to a realistic and clinically-relevant change for
inpatients undergoing nutritional rehabilitation. In the actual
acAN-TP2 sample, all participants had a BMI increase of
⩾14%. Of all included acAN-TP2, 74 (64%) completed the struc-
tured Morgan-Russell interview 1 year after admission to inten-
sive treatment (online Supplementary Table S1). HC
participants were recruited according to age in an attempt to
obtain independent age-matched case–control samples for each
patient group (acAN-TP1/2, recAN). Thus, the pooled HC sample
spans the whole age range of participants with AN. Figure 1a
provides an overview of the samples included this study.

AcAN were admitted to eating disorder programs at the
university hospital of the Technische Universität Dresden. AN
was diagnosed according to DSM-V criteria using a modified ver-
sion of the Structured Interview for Anorexia and Bulimia
Nervosa [SIAB-EX, (Fichter & Quadflieg, 2001)] and required a
BMI<17.5 kg/m2 (or below the 10th age percentile, if younger
than 15.5 years). To be considered ‘recovered’, former patients
had to (a) maintain a BMI>18.5 kg/m2 (if older than 18 years)
or > 10th age percentile (if younger than 18 years), (b) menstruate,
and (c) have not binged, purged, or engaged in restrictive eating
patterns for at least 6 months prior to the study. HC were
recruited through advertisement among middle school, high
school and university students and eating disorders were excluded
using the SIAB-EX.

We applied several additional exclusion criteria for all groups
beforehand – most importantly, a history of bulimia nervosa or
‘regular’ binge eating, psychotropic medications other than antide-
pressants (except tricyclic antidepressants and MAO-Inhibitors)
within 4 weeks prior to the study, substance abuse and neurologic
or medical conditions (online Supplementary Methods 1.1).
Participants predominantly identified as ‘European’ (98%; non-
European: two acAN, eight HC). Socio-economic status (SES) was
determined according to the parental (household) educational
level/occupation group (online Supplementary Methods 1.1.1).
SES was determined according to the parental (household) educa-
tional level/occupation group (Patrick et al., 2004), given that
most study participants were adolescent, current students at school,
university, or professional training institutions, and still lived with
their parents or guardians (online Supplementary Methods 1.1.1).

All AN groups included some participants with at least one
comorbid condition (acAN-T1 N = 28, acAN-TP2 N = 14,
recAN N = 37; online Supplementary Methods 1.1.1).

Clinical measures

For acAN patients, treatment outcome 1 year after admission was
assessed using the Morgan-Russell assessment schedule (Morgan
& Hayward, 1988). This and all other clinical measures in Table 1
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were assessed as in previous works [(Bahnsen et al., 2022; Boehm
et al., 2016), online Supplementary Methods 1.1.3].

MRI acquisition and processing

All participants underwent MRI scanning between 8 and 9 a.m.
following an overnight fast. Scanning procedures, Freesurfer pre-
processing, and quality control (41 scan exclusions from a total of
699: 11 acAN-TP1, 14 acAN-TP2, 3 recAN, 13 HC) were identical
to our previous study (Bahnsen et al., 2022) and are described in
detail in online Supplementary Methods 1.2.

Machine learning classification

We trained classifiers to differentiate (a) acAN-TP1, (b)
acAN-TP2, or (c) recAN v. HC, respectively, based on 110
input features consisting of CT measures according to the
Desikan-Killiany atlas (Desikan et al., 2006) and subcortical
volumes. The analysis pipeline consisted of three steps. First, we
used cross-validated confound regression (Snoek, Miletić, &
Scholte, 2019) to subtract the confounding effects of age from
all features and the confounding effects of estimated intracranial

volume (eTIV) solely from volumetric features. Importantly,
effect estimation was performed exclusively on HC training data
to avoid subtracting disease related effects (Dukart, Schroeter,
Mueller, & The Alzheimer’ Disease Neuroimaging Initiative,
2011). Confounding effects were subsequently subtracted in all
participants (both HC and AN, and both in the training and
test sets). While this method, like other de-confounding methods,
might fail to completely remove confounding information, poten-
tially leading to biased model performance, we tested post-hoc
whether the obtained classifiers were relying on information unre-
lated to confounds for the classification (see below). Second, we
applied PCA for dimensionality reduction. Finally, classification
was performed by a linear L2-regularized SVM. However, to
evaluate whether nonlinear patterns in the data could enhance
classification performance, we utilized pipelines that employed a
neural network instead of the linear SVM (online
Supplementary Methods 1.3). Both classifier types generate binary
class predictions by thresholding their continuous output, which
we refer to as ML-based risk score. We jointly optimized the num-
ber of PCA components and the SVM hyperparameters via
repeated stratified 10-fold cross-validated grid search (online
Supplementary Table S2). Specifically, this means that all model

Figure 1. Summary of study design. (a) Included samples in the study. Acute patients with AN were assessed at three time points: within 96 h of treatment initiation
(acAN-TP1), after successful weight-restoration treatment occurring approximately 3 months later (acAN-TP2), and at a 1-year follow-up interview (acAN-TP3).
Incomplete longitudinal assessment of acute patients occurred due to treatment discontinuation or insufficient BMI gain by the end of treatment, as well as
loss of contact for long-term follow-up. Separate cross-sectional samples of long-term weight-recovered former patients (recAN) and healthy control participants
(HC) were recruited. Brain MRI scans were acquired in all groups except acAN-TP3. (b) Analysis overview. Structural brain MRI data were processed and used to train
machine learning classifiers to differentiate each AN group from HC. The presence of a disorder-related multivariate brain structural pattern in AN was determined
through performance estimation using nested cross-validation (NCV), permutation tests, and post-hoc confound assessment. A trained classifier generates a
machine learning-based risk score for each individual that provides a measure of how pronounced this pattern is. Given the unclear clinical trajectory of acAN
after the initial weight-restoration treatment, we were particularly interested in whether the machine learning based risk score at TP2 was a predictor of long-term
clinical outcome at 1-year follow-up (Morgan Russell score at TP3; ‘Long-term outcome prediction’). In an additional line of analyses aimed at interpreting the
machine learning results (‘contextualization’), we used explainable AI and other techniques to elucidate the multivariate brain structure pattern found in
acAN-TP2 and to investigate its possible biological substrate. (c) Scatter plot for long-term outcome prediction. The machine learning-based risk score in
acAN-TP2 was a significant predictor of Morgan Russell outcome at 1-year follow-up, even when adjusting for BMI covariates (see main text for details).
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parameters were optimized only on training data within cross-
validation to avoid information leakage. To consider class imbal-
ances, we used precision (positive predictive value)-recall (sensi-
tivity) area under the curve (PR-AUC) as optimization and
performance metric (Saito & Rehmsmeier, 2015) and weighted
the cost of misclassification for a participant by the inverse of
her group frequency. In addition to PR-AUC, we also report
area under the receiver operator characteristic curve
(ROC-AUC) to allow comparisons between classifiers aimed to
differentiate patients with AN at different time points from HC,
which were trained on data sets with different class ratios. To
obtain unbiased model performance estimates [specifically since
our optimization procedure involved the optimization of hyper-
parameters (online Supplementary Methods 1.4, Table S2)], we
applied (to the whole model pipeline) nested cross-validation
which partitions the dataset into training, validation, and test
sets (online Supplementary Methods 1.5, Fig. S2). Training and
evaluation of ML pipelines was done in Python v. 3.6.12 using
the Scikit-learn library v. 0.23.2 (Pedregosa et al., 2011).

Model analysis

Based on ML results, we tested whether the ML-based risk score
for acAN-TP2 was predictive of long-term outcome. An add-
itional line of analysis served to enable interpretation of ML
results (Fig. 1b).

Confound assessment
To assess the role of confounding variables (e.g. age, eTIV) on
performance estimates despite subtraction of linear effects, we
examined the extent to which the predictive ability of the
ML-based risk score could be attributed to these confounds. To
this end, we computed post-hoc shared and exclusive deviance
explained by confounding variables and ML-based risk score
when predicting group membership (Dinga, 2020). Permutation
resampling was performed to compute significance levels for
deviances and classification performances [(Ojala & Garriga,
2010), online Supplementary Methods 1.6, 1.7].

Long-term outcome prediction
For acAN-TP2 with complete outcome data (N = 74), we tested
whether potential multivariate structural alterations were related
to long-term outcome. To this end, we built GLMs with
Morgan-Russell outcome score as dependent variable and the
ML-based risk score as independent variable. We considered a
GLM with no additional covariate, then three additional GLMs
with (i) current BMI standard deviation score (BMI-SDS; online
Supplementary Methods 1.1.1), or (ii) BMI-SDS increase since
admission to treatment, or (iii) the presence of comorbid psychi-
atric disorders as additional covariates (online Supplementary
Methods 1.8).

Explainable AI
We utilized the concept of feature importance to estimate the rele-
vance each measure of brain structure (feature) had for the clas-
sifier’s prediction, i.e. how much information useful to
differentiate AN from HC each feature provided. We measured
feature importance as a model’s activation pattern (Haufe et al.,
2014). In our case of linear models, this was effectively done by
determining the correlation coefficient of each feature with the
ML-based risk score. The positive/negative sign of feature import-
ance values indicates whether a higher/lower feature value wasTa
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characteristic for AN. For each feature, we further assessed a
measure of reliability as the fraction of subsamples of the dataset
where its feature importance was significant [(Nogueira & Brown,
2016), online Supplementary Methods 1.9]. To further improve
the interpretability of our results, we additionally applied the
method of permutation importance (Breiman, 2001) to identify
the subset of important features which contain the highest
amount of unique information useful for classification which is
not also present in other (correlated) features (online
Supplementary Methods 1.9).

Connectome contextualization
We also tested profiles of feature importance for associations with
normative structural and functional connectome data from a pub-
lic healthy reference sample [Human Connectome Project (HCP),
(Toga, Clark, Thompson, Shattuck, & Van Horn, 2012)] to under-
stand patterns of (sub-) cortical alteration in the context of
macro-scale network organization using the ENIGMA Toolbox
[(Larivière et al., 2021), online Supplementary Methods 1.10].
Specifically, structural and functional connectivity matrices from
the HCP data were used to compute weighted degree centrality,
i.e. the number of ties that a connectivity node has. This served
as a measure of ‘network centrality’, which indicates how highly
a brain region is connected to the rest of the brain (Bullmore &
Sporns, 2009). Subsequently, Pearson’s coefficients between net-
work centrality (assessed in HCP data) and feature importance
profiles (assessed in our sample) were computed. This method
assumes that regions that are identified as network hubs in HC
will also exhibit this characteristic in individuals with psychiatric
conditions (Larivière et al., 2021).

Effect of nutritional status and disease state
To clarify the role of BMI on classifier performance and gain
insight as to whether the multivariate alterations detected were
state or potential trait-markers, we applied the confound assess-
ment method used to control for age and eTIV (see above) to
BMI-SDS as well (Dinga, 2020). Further, similar to recent work
in ADHD (Zhang-James et al., 2021), we explored whether multi-
variate alterations detected for AN groups at different illness
stages express temporal continuity. Specifically, we applied a
model trained on a certain classification task (e.g. acAN-TP2 v.
HC) to another classification task (e.g. acAN-TP1 v. HC).
Importantly, no scans belonging to the same participant (taken
at different time points) were used both in the training and test
sets (transfer classification, online Supplementary Methods 1.11).

Results

Clinical characteristics

Sample demographic and clinical characteristics are summarized
in Table 1 and online Supplementary Table S1.

Machine learning classification

As expected, the highest test performance was achieved for classi-
fication of acAN-TP1 v. HC (PR-AUC = 88.7%, ROC-AUC =
90.2%), followed by acAN-TP2 v. HC (PR-AUC = 45.5%,
ROC-AUC = 63.6%) and recAN v. HC (PR-AUC = 35.9%,
ROC-AUC = 56.3%) (Fig. 2, online Supplementary Results 2.1,
Fig. S3). Permutation tests confirmed that performances were
above chance for both acAN time points, but not for recAN

(online Supplementary Fig. S4), both when looking at PR-AUC
(acAN-TP1: p < 0.001, acAN-TP2: p = 0.001, recAN: p = 0.091)
and at ROC-AUC (acAN-TP1: p < 0.001, acAN-TP2: p = 0.001,
recAN: p = 0.055). Additionally, for both acAN models, but not
for the recAN model, the explained deviance independent of
age and eTIV was significantly positive (Table 2). Replacing the
SVM with a neural network in the model pipeline did not
improve performance or alter key findings (online
Supplementary Methods 2.2, Fig. S5).

Long-term outcome prediction

The acAN-TP2 ML-based risk score significantly predicted ( p =
0.015, R2 = 0.065) Morgan-Russell Outcome score 1 year after
admission to the treatment program [N = 74, average age =
17.19 years (S.D. = 1.89), average BMI = 18.95 kg/m2 (S.D. =
1.69)], suggesting that acAN-TP2 with more pronounced
AN-specific multivariate alterations had a worse long-term out-
come. This main result is also visualized in Fig. 1c. The
acAN-TP2 ML-based risk score was not significantly correlated
with known and clinically relevant outcome predictors like current
BMI-SDS and BMI-SDS change since admission to treatment
(r =−0.14, p = 0.15 and r =−0.06, p = 0.52), nor did it differ
between patients with and without psychiatric comorbidity
(Mann–Whitney U test p = 0.12). The ML-based risk score
remained a significant predictor when adding either of these vari-
ables as a covariate to the regression model (BMI-SDS p = 0.025,
BMI-SDS increase p = 0.016, and binary comorbidity flag
p = 0.015).

Explainable AI

Most features had a high importance in the acAN-TP1 model
(Fig. 3a, online Supplementary Fig. S6), whereas the acAN-TP2
model mainly relied on measures of CT and fluid space volumes
rather than volumes of subcortical GM regions (Fig. 3b).
Nevertheless, we observed a strong correlation between
acAN-TP1 and acAN-TP2 feature importance values (r = 0.70,
p < 0.001). Consistently, only features with high importance also
show high reliability values for the acAN-TP2 model (Fig. 3b)
which indicates stability of the found multivariate pattern.
While most features had only a moderate reliability for the
acAN-TP2 model, several features had a reliability above 0.9
(online Supplementary Fig. S7). Within this more conservative
subset of highly reliable features were several CT-based features
with large negative importance, i.e. participants with lower CT
in these brain regions had a higher probability of being classified
into the AN group (Fig. 3d). The same was observed in the
acAN-TP1 model which, however, based its decision on a consid-
erably larger set of features with negatively signed importance,
including hemispheric CT averages (Fig. 3c, online
Supplementary Fig. S8). Conversely, cerebrospinal fluid (CSF)
spaces had positively signed importance values both in the
acAN-TP1 and in the acAN-TP2 model. Interestingly, left insula,
right lateral orbitofrontal, and bilateral temporal poles CT had
positively signed importance and high reliability in the
acAN-TP2 model (Fig. 3b), but were irrelevant in the
acAN-TP1 model. These findings remained unaltered when
using a neural network instead of an SVM for classification
(online Supplementary Fig. S9). Only a subset of high positive
importance features (Fig. 3b) additionally showed a high permu-
tation importance (bilateral insula, right lateral orbitofrontal CT),
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indicating that they provided unique classification information
(online Supplementary Results 2.3, Fig. S10).

Connectome contextualization

The regional CT feature importance profile derived from our
acAN-TP2 model correlated with functional cortical network cen-
trality based on HCP data (r =−0.65, p = 0.006, online
Supplementary Fig. S11). In other words, cortical regions whose
thickness had high negatively signed importance for classification
can be characterized as hubs, i.e. regions with high network cen-
trality. This was also the case for the feature importance profile
from the acAN-TP1 model for functional and structural cortical
network centrality (r =−0.67, p < 0.001 and r =−0.43, p = 0.001,
online Supplementary Fig. S12).

Effect of nutritional status and disease state

When adding BMI-SDS to age and eTIV for confound analysis of
the acAN-TP2 v. HC classification, the shared and model exclu-
sive deviance were reduced, but still significant (Table 2).
Further, the acAN-TP2 model was successful in classifying
acAN-TP1 v. HC (transfer classification, online Supplementary
Figs S13, S14), but the reverse was not true, in accordance with
the observation that a large set of features can be exploited by
the acAN-TP1 model (Fig. 3a, online Supplementary Fig. S9),
while the acAN-TP2 model relied on a more specific pattern of
a reduced subset of features.

Discussion

We applied ML methods to classify individuals with a history of
AN at two stages of recovery from HC using sMRI measures.
Most importantly, and in contrast to inconclusive evidence in pre-
vious univariate studies, successful classification (ROC AUC =
0.64, estimated with nested cross-validation and significantly
above-chance p = 0.001) of partially weight-restored patients
(acAN-TP2) indicated multivariate structural differences relative
to HC at this early stage of weight-recovery. Underlining the
potential clinical utility of this finding, the ML-based risk score
was a predictor of future outcome. Explainable AI analyses in
the form of feature importance revealed that classification of par-
tially weight-restored patients relied on reductions in CT and GM
volumes, and similarly to underweight patients, these were more
pronounced in hubs, i.e. regions with greater functional connect-
ivity according to normative brain connectome organization in
healthy individuals. However, in contrast to acutely underweight

Figure 2. Visual comparison of the test performances achieved by the support vector machine classifiers. Test performance curves were estimated using (10 times
repeated, 10-fold) nested cross-validation for acAN-TP1 (blue), acAN-TP2 (yellow), and recAN (green) v. HC classifications. The Precision-Recall (a) and correspond-
ing receiver operating characteristic (ROC) (b) curves show test performance averages and S.D. ranges and provide an estimate for the performance of the model
selection procedure (online Supplementary Methods 1.4). The dashed lines represent chance performance. Precision-Recall AUC was optimized during training.
Since Precision is sensitive to group sizes, Precision-Recall curves are not comparable across classification tasks with different AN groups. Therefore, also the cor-
responding ROCs are shown. Permutation tests of the corresponding AUCs showed clear above-chance classification for acAN-TP1 and acAN-TP2 but not for recAN
(online Supplementary Methods 1.6, Fig. S4).

Table 2. Deviance explained by ML-based risk scores and confounds

DD2
p DD2

c DD2
p>c Confounds

acAN-TP1 v. HC 0.44*** 0.08 0.04*** Age, eTIV

acAN-TP2 v. HC 0.07** 0.14 0.00 N.S. Age, eTIV

acAN-TP2 v. HC 0.05* 0.32 0.02* Age, eTIV,
BMI-SDS

recAN v. HC 0.04 N.S. 0.12 0.01 N.S. Age, eTIV

For each classification model and set of confounds (last column) we report the proportion of
deviance explained exclusively by model predictions (DD2

p), exclusively by confounds (DD
2
c ),

or by both model predictions and confounds (DD2
p>c) (Dinga, 2020). Explained deviance of

model predictions beyond confounds was significant at both acAN time points. Significance
of these estimates was assessed using permutation tests. *p < 0.05, **p < 0.01, ***p < 0.001,
N.S. not significant.
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patients, classification of partially weight-restored patients could
not be attributed to nutritional (BMI) status, and it even
relied on increased CT in some regions (insula, lateral orbito-
frontal, and temporal pole). These results replicated when
excluding adults from the analysis, suggesting that they primarily
apply to adolescents (online Supplementary Results 2.4).
Classification of underweight patients (acAN-TP1) from HC
served as a baseline and resulted, as expected, in high
performance (ROC AUC = 0.90). In contrast, classifying long-
term weight-recovered former patients (recAN) from HC was
not possible despite the increased sensitivity of the multivariate
approach used. Together, these latter results mirror those
from previous studies using standard mass-univariate approaches
indicating sizable and widespread reductions of CT and subcor-
tical GM volume in acutely underweight individuals with AN,
but relative normalization following long-term weight-recovery
(Bahnsen et al., 2022). Our study is the first in AN that provides
an estimate of the performance achieved using nested cross-
validation and therefore serves as a valuable benchmark for this
rapidly developing field of research (Bracké et al., 2023; Walter
et al., 2019).

While our results are in line with previous findings in acAN
and recAN (King et al., 2018), the successful classification of
acAN-TP2 from HC stands in contrast to previous univariate
studies that found no differences in CT or GM volumes after
short-term weight-restoration (Bahnsen et al., 2022; Bernardoni
et al., 2016). This might be owed to the greater sensitivity of
the multivariate methods, which relied on a large set of measures
from anatomical regions distributed across the brain. Of note,
rigorous permutation tests confirmed that classification

performance was significantly above chance, and did not rely
on accidental group differences in age or intracranial volume.

Suggesting possible implications for clinical practice, the
acAN-TP2 ML-based risk score was predictive of individual treat-
ment outcome (Morgan Russell score), also when controlling for
BMI-SDS at discharge or BMI-SDS increase during therapy,
which are considered relatively established objective outcome
predictors (Boehm et al., 2016; Vall & Wade, 2015). In other
words, the multivariate structural brain alterations in acAN-TP2
on which the classifier relied were most expressed in individuals
with an unfavorable long-term outcome. Previous works reported
cerebellar GM volume of patients with AN at admission to treat-
ment to be predictive of BMI at discharge (Milos et al., 2021)
and 1-year follow-up (Seitz et al., 2015). In contrast, here we
detected a multivariate pattern of brain structure alterations in
partially weight-restored patients which did not involve cerebellar
measures – see below. Furthermore, we used the Morgan-Russell
interview as an outcome measure, which covers both physiological
(including BMI status at 1-year follow-up) as well as psychological
recovery.

Given that previously studied objective treatment outcome
predictors mostly relied on BMI (Vall & Wade, 2015), we focused
on the biological substrate of the identified multivariate altera-
tions and its relationship to BMI status. To this end, we computed
each model’s feature importance values, which provide for each
anatomical measure an interpretable relevance score for a given
classification (Haufe et al., 2014). Feature importance values for
the acAN-TP1 and acAN-TP2 models correlated and regions
associated with negative importance were functional hubs in
both models, suggesting that the alterations revealed in

Figure 3. Feature importance analyses. The explainable AI results show the importance of each measure of brain structure (feature) for classification. Feature
importance was defined as the Pearson correlation coefficient between each feature and the machine learning-based risk score (Haufe et al., 2014). More posi-
tive/negative values indicate that a larger/smaller value for a feature is characteristic of AN. (a) All feature importance values for the acAN-TP1 model (x-axis) com-
pared to values for the acAN-TP2 model ( y-axis). Feature importances for measures of cortical thickness (CT), volumes of subcortical gray matter (GM) regions, and
cerebrospinal fluid (CSF) spaces are shown in blue, red, and orange, respectively. While most features are highly relevant for the classification acAN-TP1 v. HC,
subcortical GM volumes lose relevance compared with CT and CSF spaces for the acAN-TP2 v. HC classification. (b) Features ranked by importance for the
acAN-TP2 v. HC classification. Only features whose importance was significant after applying a Bonferroni correction for multiple comparisons are listed. The
color code illustrates which were the most reliable features for classification. The reliability value is the percentage of cases in which the feature importance is
significant across models trained on different subsamples of the entire data set (online Supplementary Methods 1.9). Features with a reliability >0.9 were the
CT of superiorparietal, inferiorparietal, paracentral, left cuneus, and left postcentral regions (negatively signed importance), as well as CT of the insula and left
temporal pole, and volumes of 3rd ventricle and total CSF space (positively signed importance). (c), (d) The same feature importance values for the acAN-TP1/
TP2 model plotted on the surface of the standard average brain (Larivière et al., 2021). The color code illustrates the magnitude of negatively (blue) and positively
(red) signed feature importance.
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acAN-TP2 might reflect incomplete normalization. A recent
study in acutely underweight patients with AN also found more
severe CT reductions in network hubs, and argued it might be
related to their higher metabolic demand (Bahnsen et al., 2022).
Hubs are vital nodes in normative brain network functioning
and pathological impairment of those has been hypothesized to
possibly cause more severe maladaptive brain network
re-organization and thus lead to worse prognosis (Fornito et al.,
2015). Thus, the multivariate alterations found in acAN-TP2
could constitute brain structural consequences of recent undernu-
trition, but may nonetheless affect long-term outcome despite
considerable BMI normalization. Confirming the similarity of
the multivariate alterations from another perspective, the
acAN-TP2 model could also be used to classify acAN-TP1 from
HC (ROC-AUC = 0.81). However, while not salient in
acAN-TP1, acAN-TP2 classification was also characterized by
higher CT in left insula, right orbitofrontal cortex, and bilateral
temporal poles. The former two regions and right insula showed
the highest permutation importance, indicating that they might
constitute distinguished and regionally specific alterations in
patients with AN. Research on patients with AN following partial
weight-restoration is scarce and different protocols regarding
recovery status were used (King et al., 2018). Our findings align
with those of three previous studies on patients who received
intensive treatment for about 2 weeks (Frank, Shott, Hagman, &
Mittal, 2013a; Frank, Shott, Hagman, & Yang, 2013b; Lavagnino
et al., 2018). However, a recent meta-analysis (using the common
linear regression approach) did not substantiate significant
regional increases in AN patients following partial
weight-restoration relative to HC (Walton et al., 2022). The insula,
relevant in processing interoceptive information (Simmons et al.,
2013), was repeatedly shown to be involved in AN psychopath-
ology (Jacquemot & Park, 2020). Speculatively, since insula and
orbitofrontal cortex are important for taste perception and
(food) reward valuation (Frank, Shott, & DeGuzman, 2019;
Suzuki, Cross, & O’Doherty, 2017), CT in these regions
might be higher in individuals with AN already premorbidly,
but relatively suppressed in the underweight state. The relevance
of these two regions has been discussed previously based
on evidence suggestive of altered structural connectivity
between them in individuals with AN (Frank, Shott, Riederer, &
Pryor, 2016; Shott, Pryor, Yang, & Frank, 2016). Otherwise,
increased insula CT might develop during weight-restoration,
e.g. through lipid dysregulation occurring during rapid
refeeding (Tam et al., 2021). Further evidence demonstrating
that the multivariate alterations found after partial weight-
restoration do not merely reflect incomplete normalization,
rigorous post-hoc analysis based on permutation tests revealed
that the acAN-TP2 model could classify above and beyond
BMI-SDS alone.

Our study design cannot discriminate whether these altera-
tions did already exist premorbidly or represent sequelae of the ill-
ness/treatment. However, consistent with the finding that they are
more pronounced in patients with a worse outcome, no altera-
tions were detected in our sample of well-recovered former
patients, who had a comparatively favorable outcome, met strict
inclusion criteria, and were weight-recovered for 53.5 (S.D. =
38.8) months on average, neither by transferring the acAN-TP2
classifier to this sample, nor by training a dedicated recAN clas-
sifier. Longitudinal studies following patients for longer periods
of time (>1 years) are needed for further insights regarding this
question.

Limitations

This study comes with some limitations. First, our single-site ana-
lysis based on rather young participants who mostly self-identified
as European may not generalize to adult or chronically ill patients,
or to patients from other treatment centers and different ethnici-
ties. Furthermore, due to our exclusion criteria, AN groups
included fewer participants with comorbidities than would be
expected from epidemiological data. While this group is of special
interest for improved outcome prediction, future studies should
attempt to include participants with more severe psychiatric
load. However, we rigorously tested generalizability of our results
to unseen participants not used for optimizing the classifier using
nested cross-validation, performed permutation tests to determine
whether classifier performances were significantly above chance,
and assessed potential effects of confounding variables. Second,
we relied on derived neuroimaging phenotypes based on the
Desikan-Killiany parcellation to classify participants with AN
from HC. Higher sample sizes of similar quality might enable
e.g. application of deep learning models to raw imaging data to
potentially discover even more refined nonlinear multivariate pat-
terns unconstrained by an a priori choice of parcellation.
Therefore, our inability to classify long-term recovered former
patients with a favorable outcome from HC should not be inter-
preted as complete absence of structural differences, which could
be predisposing factors or scars. Third, while obtaining and test-
ing longitudinal trajectories of structural brain changes in AN
would be desirable, it was not feasible in the scope of the current
study.

Implications for clinical use

In summary, we identified a multivariate pattern of subtle
regional brain structural alterations in short-term weight-restored
patients with AN, which was largely unrelated to current nutri-
tional status and might be predictive of long-term treatment
outcome and thus complement other predictors of prognosis
such as BMI status. If our results are reproduced in independent
samples, our approach might be a foundational step for future
research aimed toward clinical translation. Specifically, sMRI
scans at the end of intensive weight rehabilitation treatment
could be performed from which a classifier (trained on an
expanding set of past patients scans) would deliver a ML-based
risk score for new individual patients. This score, indicating
brain health, might be helpful in combination with other predic-
tors to estimate future outcome and assess whether the patient
may need more comprehensive interventions, e.g. home-
treatment (Herpertz-Dahlmann et al., 2021), after discharge
from intensive treatment. Importantly, however, in light of the
above limitations, our results should not be seen as a ready-to-use
algorithm, but as a starting point for more research to build and
evaluate such an instrument.
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