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Note on the different proofs of Fourier's Series.

By Dr H. S. CARSLAW.

The Use of Green's Functions in the Mathematical Theory
of the Conduction of Heat.

By Dr H. S. CARSLAW.

§1-

The use of Green's Functions in the Theory of Potential is well
known. The function is most conveniently defined, for the closed
surface S, as the potential which vanishes over S and is infinite as

—, when r is zero, at the point P(x0, y0, z0), inside the surface.

If this is represented by G(P), the solution with no infinity inside
S and an arbitrary value V over the surface, ie given by

*—, denoting differentiation along the outward drawn normal.

In the other Partial Differential Equations of Mathematical
Physics similar functions may with advantage be employed, and,
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in particular they have been found of great value in the discussion

of the equation

I t is the object of this paper to illustrate their use in the dis-
cussion of various questions in the Mathematical Theory of the
Conduction of Heat. In this case the Green's Function i* taken as
the temperature at (x, y, z), at the time t, due to an instantaneous
point source generated at the point P(xm ym s0), at the time r, the solid
being initially at zero temperature, and the surface being kept at zero
temperature.

This solution may be written

n = F(x, y, z, xm ym ;„, t - r),

and u satisfies the equation

3 M , ,
- = KV^ (t>r).

However since r enters only in the form t-r, we have also the
equation

du
— + KV3U = 0. (T<t).

Further
Lt. (M) = 0,
t = T

at all points inside S, except at the point (x0, y0, z0), where the
solution takes the form

J
(2

Pockets. Uber die Pa/ttitUe Difftrential-gleichung

Theil IV. § 4. Leipzig 1891.
Schwarzschild.

Die Beugung und Polarization (Us Liehtn durch einen Spoil.

Math. Ann. Bd. 55. 1902.
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Finally, at the surface of S,

Now let v be the temperature at the time t in this solid due to
the surface temperature <j>(x, y, z, t), and the initial temperature
f(x, y, z). Then v satisfies the equations

v=f(x, y, z), initially, inside S,

v = <f>(x, y , z , I), (t > 0), at surface of S;

and, since the instant r of our former equations lies within the
interval for t, these equations may also be taken as

dv . . .
— =--KV\ (T<<)
OT

and v = <f>(x, y, z, r) at the surface.

Therefore we have
3 . . dv du

dry ' 9T 3T

[ - v
and

T f I* \j-(uv). dxdydzUr = K ? ~ T f f Uu^v - W^u) dxdydz~\dr,

the triple integration being taken throughout the solid, and e being
any positive quantity as small as we please.

Interchanging the order of integration on the left-hand side, and
applying Green's Theorem to the right-hand side, we have

J J J Mr=« - Jxdydz - j J J \uv\^dxdydz
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where — denotes differentiation along the inward drawn normal,

and we have used the fact that u vanishes at S.

On the right-hand side we may put «= 0, as there is no singu-
larity in the integrand, and the left-hand side as t approaches zero
takes the value

- |JJ[«]r-. • [v^

the first integral being taken through an element of volume includ-
ing the point P(a;0, y0, s0), where the infinity in u enters, and [vr]t

standing for the value of v at the point P(«o, yo> ~«)> a t the instant t.

The choice of u, so that

( _(x-xaf + {y
1 iM - T)

, —e
[2 X/JTK(<-T)]3

makes the co-etBcient of [fP], unity, and we obtain

K l = J J J [«]T-«/(*» y» «)dxdydz + «\ ̂

as <A« equation giving the temperature at P(xm ym so)>
to «A« initial distribution f(x, y, z), and the surface temperature

<£(«> V, «, «)•

In the case of radiation at the surface, the Green's Function u is
taken as the temperature at (x, y, z), at time t due to an instantaneous
source at (xm ym z0) at time T, the radiation taking place into a medium
at zero temperature.

The temperature at P(a;0, ym z0), at the time t due to an initial
distribution^*, y, a), and radiation at the surface into a medium
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at temperature 4'(x> y> z> 0> w ^ ^hen D e f°und to be given by the

equations,

K l = I I ) UT=OAX> V> s)dxdydz + hK I | J I u<f>(x, y, z, r)dSjdr,

the second of these equations being of the same form as that already

obtained for the former case.

The use of Green's Function in the discussion of the equation of
Conduction seems to have been noticed first by Minnigerode.* It is
also developed in several papers by Betti, and is referred to in the
other places noted below, f

The Green's Functions given in this paper in §§ 2, 5, may be

written down by inspection, and the results obtained by the

Synthetical Method * follow at once from our general theorems.

* Minnigerode.
Ubtr die Wiirmt-Leitung in Krystallen.

Diss. Gottingen. 1862.
t Betti.

(1) Sopra la determinazione delta lemperatura variabile diun cylindro.

Annali delle University Toscane.
Tom. I. 1867.

(2) Sopra la determinazione delle temperatura variabile di Una lastra
terminata.

Annali di Matematica. Tom. I. 1867.

(3) Sopra la determinazione delle temperatura net corpi solidi ed
omogenii.

Mem. della Soc. Italiana delle Sciauze.

Ser. III. Tom. I. 1868.
(4) Sopra la propagazione del calore.

Chelini Collezione 1881.
Sommerfeld.

Zur Analytische Thtorie der Warme-Leitung.

Math. Ann. Bd. 45. 1894.
Weber-Riemann.

Die Partiellen Differential-gleichungen der PhysiL
Bd. II., § 51. 1901.
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In the other cases, §§ 3,4, 7, 8, these functions are obtained by the

aid of Contour Integrals, following the method given by Dougall in

his papers in these Proceedings.^ This method is one of considerable

power, and may be applied to many other problems of Mathematical

Physics.

§2

LINEAR FLOW OF HEAT.

SEMI-INPINITE SOLID BOUNDED BY PLANE a: = 0.

In this case our general result is simplified by the consideration

of the plane source over x = xm instead of the point source at

(a:0, i/0, «„), and the Green's Function is to vanish at the surface, and

become infinite for x = xm at t = T, in the form

4K{/ - r)
~6

2 JlTK(t - T)

When the solid is bounded by x — 0, but is unlimited in the

direction x>0, this function is clearly given by

£•J | „ 4*{t-T) 4K[t-T)
6 — c

and the solution of the problem, when the initial temperature is f{x)

and the boundary is kept at (j>(t), is given by

* HobsoD.

Synthetical Solutions in the Conduction of Heat.

Proc. Lond. Math. Soc. Vol. XIX. 1888.
t Dougall.

(i) The Determination of Green's Function by means of Cylindrical or

Spherical Harmonics.

Proc. Edin. Math. Soc. Vol. XVIII. 1900.

(U) Note on the Application of Complex Integration to the Equation of

the Conduction of Heat.

Proc. Edin. Math. Soc. Vol. XIX. 1901.

https://doi.org/10.1017/S0013091500034507 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034507


46

—M7(*)b ' ^ -e~X+i*:)~\dx
4 V T K S J o •— —I

r(« - T)

( / T .

This result is obtained by the Synthetical Method by the distri-
bution of sources and sinks along the axis of x and of continuous
doublets of strength 2K<J>(() at x = 0.

The corresponding Green's Function for the case of radiation
has been obtained by Bryan,* and also by the author,f by the
method of Contour Integrals to be used later in this paper.

§3.

LINEAR FLOW OF HEAT.

FINITE SOLID BOUNDED BY THE PLANES X = 0 AND a: = a.

To obtain the Green's Function for the solid bounded by the
planes x = 0, x = a, we proceed from the solution

e -e I
J2 sJVKt

which satisfies the conditions at x = x0 and x=0. This may be

written

v = -rr— I e~ coaa(x-x0)da- e ~ Ka' cosa(a: + a0) Ida.
2-rrLJ -m J - » J

* Bryan.
An Applieation of the Method of Images to the Conduction of Heat.

Proo. Lond. Math. Soc. Vol. XXII. 1891.

t A Problem in Conduction of Heat.
Phil. Mag. July 1902.
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We replace these real integrals, by complex integrals in the a - plane,
and obtain

Ka sinaa;0 e~lax da, x>x0

x<xt,v — — \e
ITTJ

the integrals being taken over the path (P) Fig. (1) in the o - plane,

and the phase of o lying between 0 and — to the right, and — and

n to the left, at infinity.

FIGURE 1.

- o O -
O

The path P in a-plane.

If we call this solution V, we must now choose a solution V,,
which will satisfy the conditions at x = a.

In this case we take

sinaa

over the same path (P), and we have now to examine the solution

1 f «•«»/ sinoaJo sina(o - x) ,= — | e —.—i da
vr) sinaa

1 f ,.->, sinaa; sin(a - *0)= — \e~Kat r-5 -da x<x0iirj sinaa

which we shall show satisfies all the conditions of the problem.

Initial Conditions.

We have seen that Lt. (V) has the form required by the Green's

Function; we have thus to show that Lt. (V,) = 0.
<—0
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When we put t = Q in the integrand in V, the expression
vanishes: for

~ sinouBo sinaa;

sinaa
-e

%aada

has no singularity in the a - plane above (P) and the integrand
vanishes at infinity -when the imaginary part of a is positive provided

x + xo-2a<O.

Also the presence of the factor e ~ causes the integral over the
path (P) to converge uniformly towards its value for t = 0, and we
are thus entitled to take

Lt. [V,] = 0.

Boundary Conditions.

These have been already satisfied by our choice of V, and it is
clear that the two expressions

iir J

_L \c - *<& sinax s i n a ( a ~ xo) da
iirj i x<xa

sinaa
- icaH 8^nax s ina(a - x0]

sinaa
vanish at the boundaries x = 0 and x = a.

Hence the temperature at x, at time t, due to a source at xm at
I = 0, is given by these integrals over the path (P), and since the
integrand is an odd function of a we may replace them by the
forms

- Ka?,t &^aaxo sina(a - a;)
sinaa2tir J xo<x<a

_ KaH sinax sina(a - x0)

sinaa

over the path (Q) of figure (2).

FIGURE 2.

-oo:

0<x<x0

The path Q in a-plane.
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Expansion in Series.

From this result we deduce the expression for the temperature due
to a source at x = x^ in the form of an infinite series. Using Cauchy's
Residue Theorem, since the singularities occur along the real axis at

a = —, our expressions become

2 " . nir . nir a2

— z sin—x sin—x0 e
a \ a a

Hence the Green's Function for this case is

2 " nir nir a2

M = — i sin—x sin—XQ e
a i a a ;

and the temperature at x0 at time t when the initial temperature is
f(x) and the boundaries are kept at ^(t) and <£2(£)i is given by

•u = — z sin—a;0 sin—xf(x)e dx
a i a Jo a w

+ 2 sin—x0 [4>i(T) - ( - 1 )"<#>'(T)1e ^T-
a i n J o

In the Synthetical Method this result is obtained by the dis-
tribution of sources and doublets along the axis.

§4.

LINEAR FLOW.

FINITE SOLID: RADIATION AT BOUNDARIES X = 0, and x = a INTO

A MEDIUM AT ZERO.

The Green's Function in this case is obtained in a similar fashion.
Starting with the solution

v =2-JiTKt

= •£-{ e~ cosa(a; - a;0) da.
*irj-»
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we transform it into the integrals over the path (P) in the a - plane

or ±[>"Vi"<*-*)rf«, x<x0.

Associate with this solution, another given by

V, - ; ! f a " Kd\Aeiax + Be~iax] da.
'Sir J

over the path (P) and determine A and B as functions of (a) by the
boundary conditions

+ —- + hv = 0, at x = 0 and x = a.
du

In this way we obtain

. /* . • \ hBina(a - ar0) + acosa(a - x0)
' (/t2 - a2) sinaa + 2«A cosaa

B = - (l+ ia)
' (A3 - a2) sinaa + 2ah cosaa

and
_ i f -

ir J (A — a^siaaa + '2ah cosaa

while, when x<x0, we interchange x and x0 in this expression.

Initial Conditions.

We have chosen V to satisfy the condition at t = 0 of the source
at x = x0: hence we have only to prove that

Lt. (V,) = 0.
(=0

From the form of the expression for V! it will be seen that the
singularities enter only at the roots of the equation

(h- - a2)sinoa + 2ah cosaa = 0.

These are real and simple and there are thus no poles above the
path (P). Also by examining the expression for V, it will be
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seen that this vanishes at infinity in the upper part of the plane,
provided that

x + a;0>0

x + xo-'2a<Q,

conditions which are both satisfied.
Hence when we put t = 0 in VH its value is zero, and the con-

vergency factor e~Kat, and the choice of the path P, cause the integral
to converge uniformly to its value for t = 0.

Hence Lt. (V,) = 0.

Boundary Conditions.

The choice of A and B causes the conditions at x = 0 and x = a

to be satisfied.

Expansion in Series.

Taking the form for x>x0,

i [ - KaH (Asinaa; + a cosaas0)(Asina(a - x) + acosa(a - *))
T j (A2 - a2)sinaa + 2aA cosaa '

over the path (P), we obtain

i f _ KCpt (hsina.x0 + acosaa;0)(Asina(a - &•) + acosa(a - *)) ,
2JT J (A* - a2)sinaa 4- 2aA cosaa '

over the path (Q),

a v - naH (Asinaa;0 + acosaa;0)(Asinaa; + acosaa;)
" * a(A2 + a2) + 2A '

the summation being taken over the positive roots of the equation

(A2 - a2)sinaa + 2aA cosaa = 0.

The symmetry of this result shows that the expression also holds

for 0<x<a ; 0 ) since in that case we had only to interchange x and xo

in our former work.
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Hence the Green's Function for this solid is given by the equation

v (hsinax0 + acosaa;0)(Asinaa; + acosaa;) -Ka?(t-T)
W = J - a(As + o!!) + 2A 6

The solution for an arbitrary initial distribution v =/(x) follows
at once, and we obtain for the case of the medium at zero
temperature,

— 9 f° ft "
v ~ Ka2t i^nax+ "zo&ax^hsmax + acosaa;)"! , ,

as the temperature at x at the time t. This admits of integration
term by term and may be written

: + acosaa;) faJo v - KeCH (^sinaa: + acosaa;) fa .

I t follows that

J-I x n TJ. x- -/ca2* (Asin<w: +«cosaa:) f° „
y(a;) = 2 Lt= i . v

a ( A , + a , ) + M J o ^
when 0<a;<a.

This expansion differs from that obtained by the Fourier Method *

by the presence of the Cpnvergency Factor e ~ Ka , and in the above
proof we are not at liberty to proceed to the value < = 0, the
expansion occurring only as the limit when t = 0. For the discussion
of the convergency of the series when ( = 0, reference may be made
to the two dissertations noted below, f

* Fourier's Heat. Chapter V., Section I.
Kirchhoff. Vorksungen iiber Mathematische Physik, Bd. IV., pp. 30-33.

t Knake. Uber die Warme-bewegung in einem von zwei parallelen Wdnden
begrenzten Korper dessen Begrenzungen mit einem Gone in
Beruhrung stehen.

Diss. Halle. 1871.

Fudzisawa. Uber eine in der Warme-Leitungs-Theorie auftretende, nach
den Wurzeln einer transcendental Oleichung fortschreitende,
untndliche Rcihe.

Digs. Strassburg. 1886.
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§5-

Two DIMENSIONAL PROBLEMS.

In the cases where the equation of conduction reduces to

dv r (Pi) cPtfl

dt L9 x 9y J

we use as Green's Function u the temperature at (x, y) at time t
due to a Line Source generated at the instant T along x = x0, y = y0,
the surface being in the one case kept at zero, and in the other
radiation taking place into a medium at zero.

With these values for the Green's Function, the temperature at
P(xo> 2/o) a t time t, when the initial temperature is J\x, y) and the
boundary is either kept at </>(z, y, t) or radiation takes place into a
medium at that temperature, is given by the equation

| J —<£(a;, y,

integration taking place along the bounding arcs.

By means of this result we are able to write down the solutions
of the two problems in which the solid is bounded by the plane y = 0,
and extends to infinity in the direction y>0: the initial tempera-
ture is J\x, y): and, in the first case, the boundary y = 0 is kept at
temperature J{x, t), while in the second, radiation takes place into a
medium at that temperature.

When the boundary is kept at temperature F(x, t), the Green's
Function is obviously given by

C
(x-xo?+(y-y<tf (x-xaf+[y+yi)Y~m

4K{1-T) 44t-r) IJ,and
(g-g,)a+y.a

Vo *K{t-r)[3«
9n.
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Hence [i>r],

gives the temperature at P(a;0) y0) at the time t.

In the case of radiation the Green's Function is given by Bryan,*

L
)2

u = ^ - 7 ) p .

and may be obtained also by the method followed by the author in
the similar case of Linear Flow.

Hence
(x

h r

and the solution of the general problem, when the initial temperature
is zero, is given by the equation

{

*TfJ 0 J -

This agrees with the solution obtained by Hobson by the Synthetical
Method.

§6.

THE CIRCULAR CYLINDER.

Before discussing the corresponding problems for the cylinder,
it will be necessary to define the solutions of Bessel's Equation
which we employ.

* loo. oit. p. 427.
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The Bessel's Function of the First Kind is, as usual, defined by
the equation

+4

where to make the function uniform we have to restrict the complex
variable to a complete revolution about the origin, and we assume

that the argument of 2 varies from - -̂ - to — .

For the Bessel's Function of the Second Kind, Hankel * uses

2irenijr

and he obtains the following expressions for the limiting values of
these two solutions when z becomes infinite, the real part of z being
positive:—

J»(«) = A/—• c o s { s - (n+£)y

In this paper it is necessary to use as Second Solution a function
which vanishes at the positive imaginary infinity. Hankel shows
that the function

has the limiting value

-a" < Z + T ) .

whether the real part of z be positive or negative, and it is obvious
that this solution vanishes at the positive imaginary infinity.

We shall use this as our Bessel's Function of the Second Kind.

* Hankel. Die Cylinder-Functionen erater und zweiter Art.
Math. Ann. Bd. VI., p. 494 (3) and (4).

t loc. oit. pp. 496-7.
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It will be seen that
ITT - , cosnjr

J ( )

and it is to be noticed that what we here write as Yn is not the
solution given under that symbol in Gray and $fathew's Treatise
on Bessel Functions. These writers follow Neumann's Notation,
and denote HankeFs Y, by Yn. The relation which connects the two
is given (p. 66) by:—

y, being Euler's Constant.

It also follows from the definition of Un that when the real part
of z is positive

«r Jn(z) = TJn(z) - einr UB(*ei ir)-*

§7.

INFINITE CIRCULAR CYLINDER: r = a; BODNDARY AT ZERO

TEMPERATURE.

To obtain the Green's Function for this case we proceed from
the solution

-2TT1 c o g ( e - 0")

corresponding to a Line Source at (r'&) in the infinite solid.

We transform this into

where RJ = r2 + r" - 2rr'cos(« - ff).

* Reference might also be made to the discussion in Graf and Gubler's

Einleitung in die Theorie der Bessel'schen Functional

Enter Heft. Cf. pp. 34, 35, 82-86. Bern, 1898.

t Cf. Gray and Mathew's Treatise, p. 77 (158).
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Since, by Neumann's Formula,

J0(XR) - J0(Xr)J0(Xr') + 2 2 Jra(Xr)Jm(kr')cosm(6 - ff)

our expansion becomes

-M" A.e ~ KXH [J0(Xr) J0(Xr') + 2 2 Jm(kr) JJ\r') cosm(0 - ff)

If we assume that this series is uniformly convergent and can
be integrated term by term,* this expression may be written

1 °°
— 2 am cosmi
T 111=0

(0 - ff) f ke ~ K™ Jm(\r) J
j o

where a,; = — and «„ = 1,

Now
i r

ITT J o

-I
Um( -

ke~K>?tJm(kr')Jm(kr)dk
o

since
i* Jm(Xr) = Vm{kr) - eimir Um( - kr)

in this case.

Therefore

ITT J _

the path of integration being now the path (P) of Fig. (1) in the
plane of the complex variable X: and we must interchange r and r
in this result when r<r'.

* Cf. Sommerfeld. Die Willkurlichen Functionen in der Mathematitchen
Phynk, §§ 7, 12.

Disa. Konigsberg, 1891.
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This follows by Cauchy's Theorem since there are no poles of the
integrand inside the contour formed by the real axis, the dotted
lines, and the path (P) fig. (1). Further the integrand vanishes
over the dotted lines when the part of the path is taken at an
infinite distance : * and the argument of A on the path P at infinity,

must, on the right, lie between 0 and —, and on the left between

-— and 7T, since otherwise the factor e~K would become infinite.

We have thus transformed the expression for the source into an
infinite series each of whose terms is an integral over the path (P)
in the A plane.

We denote this solution, as before by V, and have the equation.

V = J-, 2 am cosm(0 - 6') We ~ "XH JJ\r') Um(Ar)rfA

the integrals being over the path (P) and r, »•' being interchanged,
when r<r'.

To obtain the conditions at the boundary r = a, we associate with
this solution, another, denoted by V,, where

V, - i , ^amcosm(6 - 0')

and choose t he term A <o that the Boundary Conditions are satisfied.
We find, ai once.

A- V"M

and putting

we obtain the solution of our problem in the form

ITT

\X

when r>r,
the integrals being taken over the path (P).

We shall now show that this expression satisfies all the conditions
of the problem and then obtain an infinite series to which it is
equivalent.

* Cf. The approximate value given below for the Bessel's Functions.
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Boundary and Initial Conditions.

The Boundary Conditions are satisfied by our choice of the
supplementary function V,: and we have only to show that

Lt. (V,) = 0,
(=0

since Lt. (V) satisfies the conditions for a source .it (»•', 0').
(-0

Hence we have to show that

K; J A C - ^ - ( ' ^ - J J •- r dx,
over the path (P), vanishes.

The limiting forms, when A is very large and lies in the upper
part of the plane, of the Bessel's Functions occurring in this
expression are given as follows :—

r\r

1-2- <•>- >

1 \ ir
— )

Jm(A«) = — • — = e
2 \jTrXa

. e

Um(A«) =
- — ) — - *v

A = ;; + ir;.

Thus

vanishes at the positive imaginary infinity, when r + r' - 2a < 0.
Also since the zeroes of

Jm(A«) = 0
are real and simple, there are no poles of the integrand, above
(P), and

AJJAr') 3m(Xr) U,,,(Ar) ^fJ
vanishes.

The presence of the factor e ~ **\nd the choice of the path (P)
cause the integral
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XJm(Xr')JM(Xr)Um(X«)
—

to converge uniformly to its value for t = 0, and thus

'-o J J J m (Xa)
vanishes.

The Initial and Boundary Conditions are thus both satisfied by
the expressions we have obtained.

Expansion in Series.

We may replace the term

& J
over the path (P) by half this integrand over the path (Q), the
integrand being a uniform, odd function of X.

The poles of the integrand are the zeroes of Jm(Xa), which lie
symmetrically along the real axis and are not repeated.

Thus from this term in v we obtain [sum of the residues

along the real axis] which reduces to

2 y , -KXH Jw(X^)J

the summation being taken over the positive roots of the equation
Jm(Xa) = 0.

But Vm(x) Jm\x) - Jm(x) Vm'(x) = 1 .•
X

and therefore the expression for v may be written

This is the value of the temperature at points (r, 6), (r>r'), in the
infinite cylinder r = a, due to a source at t = 0 at the points (r', ff).

* Cf. Weber. Uber die stationaren StrOmungen der Mectridtat in Cylindtrn.
Crelles' Journal. Bd. 76, p. 10.

Graf u. Gubler, loc. cit. Erstes Heft, pp. 43-45.
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Since for the points r<r', we have to interchange r and r' in the
above work, as they enter symmetrically, this expression holds for
both cases.

The Green's Function for this case is therefore given by the
expression

where a, = % and «„= 1 (m^l), and the summation takes place over
the positive roots of the equation J,n(Aa) = 0.

The solutions of the temperature problems in the Cylinder follow
at once.

In particular when the initial temperature is/(r) we obtain the
temperature at (r, 6) by integration in the form

\
o

which may be written

and when the initial distribution is/(r, 6) the solution is given by

the summation extending over the positive roots of

J.(Xo)-0.

If we assume that this series may be integrated term by term we
have for the co-efficient of Jm(Ar)cosm# the expression

A r T , , . J r'/(r', ff)3JM)
ira- [J,,,(Affi)]-J0 Jo

These two series correspond with the expansions obtained for the
arbitrary functions f{r) and f(r, 6) by the Fourier Method, and
occur here as the limiting cases of the expressions obtained for the
temperature when t vanishes.*

* Cf. Gray and Mathews, Chapter VI.

https://doi.org/10.1017/S0013091500034507 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034507


62

§8-

INFINITE CYLINDER r — a. RADIATION AT BOUNDARY INTO

A MEDIUM AT ZEBO.

Starting with the expression for the source in the infinite solid,
we transformed it as before into

V = ^ - 2 o B cosw(6> - ff)[ ke ~K*H J«(Ar') Vm(kr)dk (r > r)

the integral being taken over the path (P).
We then obtain the supplementary solution

f\ - K\H Jm(kr)Jm(kr')(kV'm(ka) + AU,(Aa)) „
J AJT O(/

over the same path (P), and we prove that

which satisfies the Boundary Condition

—- + hv = 0 at r = a,
or

also satisfies the Initial Conditions for a source at (r, 6').
The proof follows exactly the same lines as before. We examine

JAJm(Ar)Jm(Ar')

over the path (P) and show that this vanishes, when r + r - 2o<0,
using the fact that the roots of the equation

are real and simple.
The choice of the path (P) then allows us to deduce that

Lt JA« Jm(Xr)Jm(Xr)

vanishes.
This expression for the temperature, involving Contour Integrals,

may be reduced to a Double Infinite Series by taking the path (Q),

* Cf. Heine. Einige Anwendungen der Besiduen-Rechnung.
Crelle's Journal, Bd. 89.
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as before, instead of the path (P). By this means the co-efficient of
amcosm{6 - ff) in the expression for v becomes

- - Xa Jm(X,) Jm(Xr ) a

the summation extending over the positive roots of the equation

and substituting for Jm"(Xa) we obtain for this term the series

rrar "

which holds for ^
We are thus led to the following expression for the temperature

at (r, ff) in the cylinder r = a, due to the source at (r', ff) at t = 0:—

the summation extending over the positive roots of the equation

The results of the general problems with arbitrary initial
temperature and arbitrary temperature for the surrounding medium
may be at once deduced. In particular when the initial temperature
is/(r) and the medium is at zero, the temperature at (r, ff) at time t
is given by

i I w
and this gives the expansion of the arbitrary function/(r) in the form,

while in the case of an arbitrary initial temperature f(r, ff) we
obtain
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If we assume that we may integrate this Double Series term by
term, this expression gives for the co-efficient of the term in

Jm(Ar)cosm0
the value

a \i. - ieX2t ("2ir ra

r'/(r',e')Jm(\r')cosmd'dr'de',

and we obtain for the expansion of f(r', 6') a series which corresponds
with the Fourier-Bessel Series obtained by Fourier's method.*

§9-
The solution of the three Dimensional Problems discussed in

Hobson's paper §§ 5, 6 follow from Green's Functions which may be
at once written down. The case of the sphere may be treated as
we have done the cylinder, and the problem of a source between
two planes meeting at an angle a admits of a corresponding treat-
ment. This latter problem has been discussed for special cases of a
by the Method of Images in a Biemann's Space in my paper in the
Proceedings of the London Mathematical Society, f The extension
to a solid bounded by planes, cylinders, and spheres offers no special
difficulty. I propose to return to these questions in a later paper.

* Cf. Gray and Mathews, Chapter VI.
t Proo. Lond. Math. Soc, Vol. XXX., pp. 151-161.
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