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On Harnack inequality and harmonic
Schwarz lemma
Rahim Kargar

Abstract. In this paper, we study the (𝑠, 𝐶 (𝑠) )-Harnack inequality in a domain 𝐺 ⊂ R𝑛 for 𝑠 ∈
(0, 1) and𝐶 (𝑠) ≥ 1 and present a series of inequalities related to (𝑠, 𝐶 (𝑠) )-Harnack functions and
theHarnackmetric.We also investigate the behavior of theHarnackmetric under𝐾-quasiconformal
and𝐾-quasiregular mappings, where𝐾 ≥ 1. Finally, we provide a type of harmonic Schwarz lemma
and improve the Schwarz-Pick estimate for a real-valued harmonic function.

1 Introduction

Harnack’s inequality is a fundamental result in the study of partial differential equations
(PDEs), with applications across various branches of mathematics, particularly in the
theory of elliptic and parabolic equations. The Harnack inequality typically concerns
positive solutions to elliptic or parabolic equations in divergence form. In the case of
elliptic equations, which describe steady-state problems such as heat conduction or
electrostatics, the inequality establishes bounds on the solutions by comparing themax-
imum and minimum values within a domain. Moreover, the German mathematician
Axel Harnack developed the original formulation of this inequality for harmonic func-
tions in the plane, see [18] for more details. It should be noted that this inequality was
first published in 1887 in the book [11].

In the context of the theory of partial differential equations, the current formulation
of the Harnack inequality for harmonic functions is expressed as follows:
Harnack inequality. Let 𝐵𝑛 (𝑥, 𝑟) be a Euclidean ball centered at 𝑥 with the radius
𝑟 ∈ (0, 1) such that the concentric ball 𝐵𝑛 (𝑥, 2𝑟) is contained in a domain 𝐺 ⊂ R𝑛,
𝑛 ≥ 2. Then there exists a positive constant𝐶 depending on 𝑛 such that

sup
𝐵𝑛 (𝑥,𝑟 )

𝑢(𝑧) ≤ 𝐶 inf
𝐵𝑛 (𝑥,𝑟 )

𝑢(𝑧) (1.1)

holds for all nonnegative harmonic functions 𝑢 : 𝐺 → R.
We recall that a real-valued function𝑢 : 𝐺 ⊂ R𝑛 → R is called harmonic in a domain

𝐺 ⊂ R𝑛 if it is twice continuously differentiable and satisfies the Laplace equation∑𝑛
𝑖=1 𝜕

2𝑢/𝜕𝑥2
𝑖
= 0. The progress of potential analysis linked to the Laplace equation

hinges on the key role of Harnack’s inequality (1.1), see [12].
Subsequently, we revisit a definition presented in [24]. Define R+ as the set {𝑥 ∈ R :

𝑥 > 0}.
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2 R. Kargar

Definition 1.1 Consider a proper subdomain 𝐺 of R𝑛, and let 𝑢 : 𝐺 → R+ ∪ {0} be
a continuous function. We say that 𝑢 satisfies the Harnack inequality in𝐺 if there exist
numbers 𝑠 ∈ (0, 1) and𝐶 (𝑠) ≥ 1 such that

max
𝐵𝑥

𝑢(𝑧) ≤ 𝐶 (𝑠)min
𝐵𝑥

𝑢(𝑧) (1.2)

holds, whenever 𝐵𝑛 (𝑥, 𝑟) ⊂ 𝐺 and 𝐵𝑥 = 𝐵
𝑛 (𝑥, 𝑠𝑟). A function that meets this

condition is referred to as a Harnack function.

Here are some examples:

Example 1.1 i) Let 𝑢 : 𝐺 → R+ be a continuous function on a domain 𝐺 with
0 < 𝑚 ≤ 𝑢(𝑥) ≤ 𝑀 < ∞. Then 𝑢 satisfies (1.2) with𝐶 (𝑠) = 𝑀/𝑚 for all 𝑥 ∈ 𝐺 .
ii) Let 𝐺 be a domain and 𝑑 (𝑥, 𝜕𝐺) be the minimum distance from 𝑥 to the boundary
of𝐺 . If 𝑢 : 𝐺 → R+ is defined as 𝑢(𝑥) = 𝛼 𝑑 (𝑥, 𝜕𝐺)𝛽 , where 𝛼 > 0 and 𝛽 ≠ 0, then 𝑢
satisfies (1.2) with𝐶 (𝑠) = ((1 + 𝑠)/(1 − 𝑠)) |𝛽 | .
iii) All nonnegative harmonic functions satisfy (1.2) with a constant 𝐶 (𝑠) such that
𝐶 (𝑠) → 1 as 𝑠 → 0+, see [9, p. 16].
iv) Let 𝑢(𝑧) = arg 𝑧 and 𝐺 = R2 \ {𝑥 ∈ R : 𝑥 ≥ 0}. Then 𝑢 satisfies (1.2) in 𝐺 with
𝐶 (𝑠) = (4 + 𝜋)/(4 − 𝜋), where 𝑠 = 1/2; see [10, Exercise 6.33(1)].

In this paper, we study the (𝑠, 𝐶 (𝑠))-Harnack inequality, which is defined as follows,
where 𝑠 ∈ (0, 1) and𝐶 (𝑠) ≥ 1.

Definition 1.2 Under the assumptions of Definition 1.1, for 𝑠 ∈ (0, 1) and 𝐶𝑠 ≥ 1
we say that 𝑢 satisfies the (𝑠, 𝐶 (𝑠))-Harnack inequality in a domain 𝐺 ⊂ R𝑛, if the
inequality (1.2) holds. A function satisfying (1.2) for all 𝑠 ∈ (0, 1) is called the (𝑠, 𝐶 (𝑠))-
Harnack function.

This paper is organized as follows: Section 2 provides the essential notations and
definitions required for the discussions in this paper. In Section 3, we investigate the
behavior of the (𝑠, 𝐶 (𝑠))-Harnack functions and the Harnack metric. Lastly, Section
4 presents a version of the harmonic Schwarz lemma and improves the Schwarz-Pick
estimate for a real-valued harmonic function.

2 Preliminaries

This section establishes a foundation for our subsequent discussions by introducing
essential notations and definitions.

Let sh, ch, th, and arth denote the hyperbolic functions sinh, cosh, tanh, and arctanh,
respectively. Consider the Euclidean space R𝑛 with 𝑛 ≥ 2 and define H𝑛 = {𝑥 =

(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 : 𝑥𝑛 > 0} as the Poincaré half-space or the upper half-plane. The
ball with center 𝑥 in R𝑛 and radius 𝑟 > 0 is denoted as 𝐵𝑛 (𝑥, 𝑟), defined as the set
{𝑦 ∈ R𝑛 : |𝑦− 𝑥 | < 𝑟}. Correspondingly, the sphere sharing the same center and radius
is 𝑆𝑛−1 (𝑥, 𝑟) = {𝑦 ∈ R𝑛 : |𝑦 − 𝑥 | = 𝑟}. The unit ball will be denoted by B𝑛 = 𝐵𝑛 (0, 1).
Also, 𝐵

𝑛 (𝑥, 𝑟) = {𝑦 ∈ R𝑛 : |𝑦 − 𝑥 | ≤ 𝑟}. For any 𝑥 within a domain 𝐺 in R𝑛, the
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On Harnack inequality and harmonic Schwarz lemma 3

Euclidean distance 𝑑𝐺 (𝑥) is defined as the minimum distance from 𝑥 to the boundary
of𝐺 , denoted by 𝑑𝐺 (𝑥) = 𝑑 (𝑥, 𝜕𝐺) = inf{|𝑥 − 𝑤 | : 𝑤 ∈ 𝜕𝐺}. In the hyperbolic space
H𝑛, the hyperbolic distance 𝜌 is characterized by the differential equation d𝜌 = |d𝑥 |/𝑥𝑛.
Explicit formulas for the distances between points in both the upper half-spaceH𝑛 and
the unit ball B𝑛, respectively, are as follows (see [10, (4.8), p. 52; (4.16), p. 55]):

ch𝜌H𝑛 (𝑥, 𝑦) = 1 + |𝑥 − 𝑦 |2
2𝑑H𝑛 (𝑥)𝑑H𝑛 (𝑦) , 𝑥, 𝑦 ∈ H𝑛,

and

sh2
𝜌B𝑛 (𝑥, 𝑦)

2
=

|𝑥 − 𝑦 |2
(1 − |𝑥 |2) (1 − |𝑦 |2) , 𝑥, 𝑦 ∈ B𝑛.

The quasihyperbolic distance, denoted as 𝑘𝐺 (𝑥, 𝑦), between points 𝑥 and 𝑦 in the
domain 𝐺 , is formally defined as the infimum of the integral along rectifiable curves
𝛾 ⊂ 𝐺 containing both 𝑥 and 𝑦. This integral is calculated as the quotient of the abso-
lute value of the differential element d𝑥 by the distance function 𝑑𝐺 (𝑥), as given by the
expression:

𝑘𝐺 (𝑥, 𝑦) = inf
𝛾

∫
𝛾

|d𝑥 |
𝑑𝐺 (𝑥)

.

Gehring and Palka introduced the metric 𝑘𝐺 (𝑥, 𝑦) in [8, p. 173] and provided a proof
for the sharp inequalities ([8, Lemma 2.1]). These inequalities are expressed as follows:

𝑘𝐺 (𝑥, 𝑦) ≥
����log 𝑑𝐺 (𝑥)𝑑𝐺 (𝑦)

���� (2.1)

and

𝑘𝐺 (𝑥, 𝑦) ≥ log
(
1 + |𝑥 − 𝑦 |

𝑑𝐺 (𝑥)

)
. (2.2)

For a detailed discussion, we refer to [10, p. 68]. It is well-known that (see [8, p. 174])

𝑘H𝑛 (𝑥, 𝑦) = 𝜌H𝑛 (𝑥, 𝑦), and 𝑘B𝑛 (𝑥, 𝑦) ≤ 𝜌B𝑛 (𝑥, 𝑦) ≤ 2𝑘B𝑛 (𝑥, 𝑦). (2.3)

For any open setΩ inR𝑛, whereΩ is not equal to the entire spaceR𝑛, the distance ratio
metric is defined by

𝑗Ω (𝑥, 𝑦) = log
(
1 + |𝑥 − 𝑦 |

min{𝑑Ω (𝑥), 𝑑Ω (𝑦)}

)
, 𝑥, 𝑦 ∈ Ω.

WhenΩ ∈ {B𝑛,H𝑛} as per [10, Lemma 4.9], the following double-inequality holds:

𝑗Ω (𝑥, 𝑦) ≤ 𝜌Ω (𝑥, 𝑦) ≤ 2 𝑗Ω (𝑥, 𝑦). (2.4)

Modulus of a curve family. Let Γ be a family of curves in R𝑛. Also, let F (Γ) denote
the family of all non-negative Borel-measurable functions 𝜎 : R𝑛 → R ∪ {∞} such
that

∫
𝛾
𝜎d𝜏 ≥ 1 for each locally rectifiable curve 𝛾 ∈ Γ. The modulus of a curve family

Γ ⊂ R𝑛 is defined by (see [10, p. 104])

M(Γ) = inf
𝜎∈F(Γ)

∫
R𝑛
𝜎𝑛d𝑚,

where 𝑚 stands for the 𝑛-dimensional Lebesgue measure.
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•
𝑥

•
𝑦

𝐺

𝐶𝑥𝑦

Figure 1: Conformal invariant 𝜇𝐺 (𝑥, 𝑦).

We denote by Δ(𝐸, 𝐹;𝐺) the family of all closed non-constant curves joining two
non-empty sets 𝐸 and 𝐹 in a domain𝐺 , where 𝐸 , 𝐹 , and𝐺 are subsets of R

𝑛
.

Modulus metric. Let 𝐺 be a proper subdomain of R
𝑛
. The modulus metric is defined

by
𝜇𝐺 (𝑥, 𝑦) = inf

𝐶𝑥𝑦

M(Δ(𝐶𝑥𝑦 , 𝜕𝐺;𝐺)),

where the infimum is taken over all continuous paths 𝐶𝑥𝑦 in 𝐺 joining 𝑥 and 𝑦, repre-
sented by a continuous function 𝛾 : [0, 1] → 𝐺 satisfying 𝛾(0) = 𝑥 and 𝛾(1) = 𝑦. The
definition of modulus metric is illustrated in Figure 1.
Uniformity. (See [10, Definition 6.1]) A domain 𝐺 of R𝑛, where 𝐺 ≠ R𝑛, is termed
uniform if there exists a constant 𝐴 = 𝐴(𝐺) ≥ 1 such that 𝑘𝐺 (𝑥, 𝑦) ≤ 𝐴 𝑗𝐺 (𝑥, 𝑦) for
all 𝑥, 𝑦 ∈ 𝐺 . The unit ball B𝑛 and the upper half-space H𝑛 are examples of uniform
domains with the constant 2, as implied by (2.3) and (2.4), respectively.
Absolutely Continuous on Lines (ACL). Consider R𝑛−1

𝑗
as the set R𝑛−1

𝑗
= {𝑥 ∈ R𝑛 :

𝑥 𝑗 = 0}, where 𝑗 = 1, 2, . . . , 𝑛. Suppose that 𝑇𝑗 : R𝑛 → R𝑛−1
𝑗

is an onto orthogonal
projection 𝑇𝑗𝑥 = 𝑥 − 𝑥 𝑗𝑒 𝑗 and 𝑄 = {𝑥 ∈ R𝑛 : 𝑎 𝑗 ≤ 𝑥 𝑗 ≤ 𝑏 𝑗 } is a closed 𝑛-interval.
A mapping 𝜙 : 𝑄 → R is called absolutely continuous on lines, abbreviated as ACL, if it
is absolutely continuous on almost every line segment in 𝑄, parallel to the coordinate
axes 𝑒1, . . . , 𝑒𝑛. More precisely, if 𝐸 𝑗 is the set of all 𝑥 ∈ 𝑇𝑗𝑄 such that the mapping
𝑡 ↦→ 𝜙(𝑥 + 𝑡𝑒 𝑗 ) is not absolutely continuous on [𝑎 𝑗 , 𝑏 𝑗 ] , then 𝑚𝑛−1 (𝐸 𝑗 ) = 0 for all
𝑗 = 1, . . . , 𝑛.

For an open setΩ in R𝑛, an ACL mapping 𝜙 : Ω → R is said to be ACL𝑛, 𝑛 ≥ 1, if 𝜙
is locally 𝐿𝑛-integrable in Ω and if the partial derivatives 𝜕 𝑗𝜙 (which exist a.e. and are
measurable) of 𝜙 are locally 𝐿𝑛-integrable as well; see Ref. [20, p. 22].
Quasiregularmappings. Consider a domain𝐺 ⊂ R𝑛. A mapping 𝑓 : 𝐺 → R𝑛 is said
to be𝐾-quasiregular if 𝑓 belongs to ACL𝑛 and if there exists a constant𝐾 ≥ 1 satisfying
the inequality

| 𝑓 ′ (𝑥) |𝑛 ≤ 𝐾𝐽 𝑓 (𝑥), where | 𝑓 ′ (𝑥) | = max
|𝜙 |=1

| 𝑓 ′ (𝑥)𝜙|,
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On Harnack inequality and harmonic Schwarz lemma 5

almost everywhere in𝐺 . Here, 𝑓 ′ (𝑥) and 𝐽 𝑓 (𝑥) represent the formal derivative and the
Jacobian determinant of 𝑓 at the point 𝑥, respectively.
Quasiconformal mappings. Let 𝐺 , 𝐺′ be domains in R

𝑛
= R𝑛 ∪ {∞}, 𝐾 ≥ 1 and

let 𝑓 : 𝐺 → 𝐺′ be a homeomorphism. Then, 𝑓 is 𝐾-quasiconformal if and only if the
following conditions are satisfied:

• 𝑓 is ACL𝑛;
• 𝑓 is differentiable;
• for almost all 𝑥 ∈ 𝐺

| 𝑓 ′ (𝑥) |𝑛/𝐾 ≤ |𝐽 𝑓 (𝑥) | ≤ 𝐾𝐿 ( 𝑓 ′ (𝑥))𝑛,

where 𝐿 (𝜆) = min |𝜙 |=1 |𝜆𝜙 |.

The Harnack inequality provides a basis for defining a Harnack (pseudo) metric. Con-
siderH+ (𝐺) as the class of all positive harmonic functions 𝑢 in𝐺 .
Harnack metric. For arbitrary 𝑥, 𝑦 ∈ 𝐺 , the Harnack metric is defined by

ℎ𝐺 (𝑥, 𝑦) = sup
����log 𝑢(𝑥)𝑢(𝑦)

���� ,
where the supremum is taken over all 𝑢 ∈ H+ (𝐺). This metric has been investigated in
various contexts, including studies in [3, 5, 14, 15, 19, 22].

3 (𝑠, 𝐶 (𝑠))-Harnack functions and Harnack metric

In this section, we present our results on (𝑠, 𝐶 (𝑠))-Harnack functions and the Har-
nack metric under 𝐾-quasiconformal and 𝐾-quasiregular mappings. We start with the
following:

Lemma 3.1 All positive harmonic functions on 𝐵𝑛 (𝑥, 𝑟) ⊂ R𝑛 are (𝑠, 𝐶 (𝑠))-Harnack with

𝐶 (𝑠) = 𝐶 (𝑠, 𝑛) = 1
1 − 𝑠2

(
1 + 𝑠
1 − 𝑠

)𝑛
for all 𝑠 ∈ (0, 1).

Proof Let 𝑢 be any positive harmonic function on 𝐵𝑛 (𝑥, 𝑟) and 0 < 𝛿 < 𝑟 . Then, by
[12, Theorem 3.2.1] we have

𝑢(𝑥1)
𝑢(𝑥2)

≤ 𝑟2

𝑟2 − 𝛿2

(
𝑟 + 𝛿
𝑟 − 𝛿

)𝑛
(3.1)

for all 𝑥1, 𝑥2 ∈ 𝐵𝑛 (𝑥, 𝛿). Now, it is enough to put 𝛿 = 𝑟𝑠 in (3.1) since 𝑟𝑠 < 𝑟 for all
𝑠 ∈ (0, 1). ■

Theorem 3.2 (i) Let 𝑠 ∈ (0, 1) and 𝑢 : B𝑛 → (0,∞) be a Harnack function. Then for all
𝑥, 𝑦 ∈ B𝑛

𝑢(𝑥) ≤ 𝐶 (𝑠)1+𝑡𝑢(𝑦), 𝑡 =
log((1 + 𝑟)/(1 − 𝑟))
log((1 + 𝑠)/(1 − 𝑠)) ,
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6 R. Kargar

where 𝑟 = th(𝜌B𝑛 (𝑥, 𝑦)/2) and 𝐶 (𝑠) ≥ 1.
(ii) If 𝑢 is a positive harmonic function, 𝑥 ∈ B𝑛, 𝑠 ∈ (0, 1) and 𝑦 ∈ 𝑆𝑛−1 (𝑥, 𝑠(1− |𝑥 |)), then

𝑢(𝑥) ≤ 1
1 − 𝑠2

(
1 + 𝑠
1 − 𝑠

)𝑛
𝑢(𝑦), 𝑠 < exp(𝜌B𝑛 (𝑥, 𝑦)) − 1.

Proof (i) The proof follows from Definition 1.2 and [10, Lemma 6.23].
(ii) It follows from [10, Lemma 4.9(1)] that

𝜌B𝑛 (𝑥, 𝑦) ≥ 𝑗B𝑛 (𝑥, 𝑦) ≥ log
(
1 + 𝑠(1 − |𝑥 |)

1 − |𝑥 |

)
= log(1 + 𝑠).

This completes the proof. ■

We continue with the following result on quasiregular mappings; in fact, we show
that if 𝑓 : 𝐺 → R𝑛 is a quasiregular mapping, and if 𝜕 𝑓 𝐺 satisfies some additional
conditions, then the function 𝑢(𝑥) = 𝑑 𝑓 𝐺 ( 𝑓 (𝑥)), (𝑥 ∈ 𝐺), satisfies the (𝑠, 𝐶 (𝑠))-
Harnack inequality.

Remark 3.3 It is important to clarify that the theorem presented herein diverges from
Theorem 5.2 in [23]. Specifically, our theorem assumes that 𝑓 𝐺 is a 𝐴-uniform domain
with a connected boundary, while Sugawa et al. [23] regarded 𝜕 𝑓 𝐺 as uniformly per-
fect. The connectedness of 𝜕 𝑓 𝐺 is decisive in the following theorem, as demonstrated in
Remark 3.5 below.Conversely, in the proof ofTheorem5.2, Sugawa et al. [23] employ the
definition of the modulus metric 𝜇𝐺 to establish an upper bound, whereas we utilize a
general upper bound derived fromLemma 10.6(2) of [10] for 𝑦 ∈ 𝐵𝑛 (𝑥, 𝑠𝑑𝐺 (𝑥)).More-
over, the constant𝐶 (𝑠) obtained here is more generality than the constant obtained by
Sugawa et al. in [23].

Theorem 3.4 Let 𝐺 be a proper subdomain of R𝑛, and 𝑓 : 𝐺 → R𝑛 be a 𝐾-quasiregular
mapping such that 𝑓 𝐺 ⊂ R𝑛 is a 𝐴-uniform domain. Also, let 𝜕 𝑓 𝐺 be connected such that it
consists of at least two points. Then, the function 𝑢(𝑥) = 𝑑 𝑓 𝐺 ( 𝑓 (𝑥)), (𝑥 ∈ 𝐺), satisfies the
(𝑠, 𝐶 (𝑠))-Harnack inequality with the constant

𝐶 (𝑠) = exp

(
𝐴𝐾𝐼 ( 𝑓 )
𝑐𝑛

𝜔𝑛−1

(
log

𝑠𝑑𝐺 (𝑥)
|𝑥 − 𝑦 |

)1−𝑛)
, 𝑠 ∈ (0, 1), (3.2)

for 𝑦 ∈ 𝐵𝑥,𝑠 = 𝐵𝑛 (𝑥, 𝑠𝑑𝐺 (𝑥)), where𝜔𝑛−1 is the (𝑛−1)-dimensional surface area of 𝑆𝑛−1,
𝐾𝐼 ( 𝑓 ) is the inner dilatation of 𝑓 , and 𝑐𝑛 is a constant number depending only on 𝑛.

Proof Since 𝜕 𝑓 𝐺 is a connected domain and 𝑓 𝐺 is a 𝐴-uniform domain, by [10,
Lemma 10.8(1)] and by definition, we have

𝜇 𝑓 𝐺 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≥ 𝑐𝑛 𝑗 𝑓 𝐺 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≥
𝑐𝑛

𝐴
𝑘 𝑓 𝐺 ( 𝑓 (𝑥), 𝑓 (𝑦)), 𝑥, 𝑦 ∈ 𝐺, (3.3)

where 𝐴 ≥ 1, and 𝑐𝑛 is a constant number depending on 𝑛. Also, by [10, Theorem
15.36(1)] the following inequality

𝜇 𝑓 𝐺 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝐾𝐼 ( 𝑓 )𝜇𝐺 (𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝐺 (3.4)
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holds for a non-constant quasiregular mapping 𝑓 : 𝐺 → R𝑛, where 𝐾𝐼 ( 𝑓 ) ≥ 1 is the
inner dilatation of 𝑓 . It follows from [10, Lemma 10.6(2)] that if 𝑥 ∈ 𝐺 and 𝑦 ∈ 𝐵𝑥,𝑠 =
𝐵𝑛 (𝑥, 𝑠𝑑𝐺 (𝑥)) with 𝑥 ≠ 𝑦, then

𝜇𝐺 (𝑥, 𝑦) ≤ 𝜇𝐵𝑥,𝑠
(𝑥, 𝑦) ≤ 𝜔𝑛−1

(
log

1
𝑟

)1−𝑛
, (3.5)

where 𝑟 = |𝑥 − 𝑦 |/(𝑠𝑑𝐺 (𝑥)). Now, by (2.1) and (3.3)-(3.5), we obtain����log 𝑑 𝑓 𝐺 ( 𝑓 (𝑥))𝑑 𝑓 𝐺 ( 𝑓 (𝑦))

���� ≤ 𝑘 𝑓 𝐺 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤
𝐴

𝑐𝑛
𝜇 𝑓 𝐺 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤

𝐴𝐾𝐼 ( 𝑓 )
𝑐𝑛

𝜇𝐺 (𝑥, 𝑦)

≤ 𝐴𝐾𝐼 ( 𝑓 )
𝑐𝑛

𝜇𝐵𝑥,𝑠
(𝑥, 𝑦) ≤ 𝐴𝐾𝐼 ( 𝑓 )

𝑐𝑛
𝜔𝑛−1

(
log

𝑠𝑑𝐺 (𝑥)
|𝑥 − 𝑦 |

)1−𝑛
.

This establishes the desired inequality (3.2), and thus concludes the proof. ■

Remark 3.5 In Theorem 3.4, the connectedness of 𝜕 𝑓 𝐺 is crucial. However, it is note-
worthy that the statement of Theorem 3.4 can be invalidated by the existence of an
analytic function 𝑓 : B2 → B2 \ {0} = 𝑓B2. An explicit example of such a function is
defined by 𝑓 : B2 → B2 \ {0} as

𝑓 (𝑧) = exp
(
𝑧 + 1
𝑧 − 1

)
, 𝑧 ∈ B2.

Let 𝑥𝑝 = (𝑒𝑝 − 1)/(𝑒𝑝 + 1) for 𝑝 = 1, 2, . . .. Considering 𝑓 (𝑥𝑝) = exp(−𝑒𝑝) and
𝑓 (𝑥𝑝+1) = exp(−𝑒𝑝+1), we can deduce���� 𝑓 (𝑥𝑝)𝑓 (𝑥𝑝+1)

���� = exp(𝑒𝑝+1)
exp(𝑒𝑝) .

Additionally, employing a straightforward calculation, we can infer from (2.2) that(
log

𝑠𝑑 (𝑥𝑝)
|𝑥𝑝 − 𝑥𝑝+1 |

)1−𝑛
≤

(
log

𝑠

exp(𝑘B2 (𝑥𝑝 , 𝑥𝑝+1)) − 1

)1−𝑛
.

Moreover, due to 𝑘B2 (𝑥, 𝑦) ≤ 2 𝑗B2 (𝑥, 𝑦), the preceding inequality leads to(
log

𝑠𝑑 (𝑥𝑝)
|𝑥𝑝 − 𝑥𝑝+1 |

)1−𝑛
≤

(
log

𝑠

exp(2 𝑗B2 (𝑥𝑝 , 𝑥𝑝+1)) − 1

)1−𝑛
.

Finally, by applying Theorem 3.4 and utilizing (2.4), we derive

exp(𝑒𝑝+1)
exp(𝑒𝑝) ≤ exp

(
𝐴𝐾𝐼 ( 𝑓 )
𝑐𝑛

𝜔𝑛−1

(
log

𝑠

exp(2𝜌B2 (𝑥𝑝 , 𝑥𝑝+1)) − 1

)1−𝑛)
.

As 𝜌B2 (𝑥𝑝 , 𝑥𝑝+1) = 1, the right-hand side of the last inequality remains bounded.
However, the left-hand side of the same inequality diverges to infinity as 𝑝 approaches
infinity.Consequently,we can infer that the assertion inTheorem3.4 loses validitywhen
𝜕 𝑓 𝐺 includes isolated points.
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8 R. Kargar

In the following, we shall study the Harnack metric ℎ𝐺 (𝑥, 𝑦), where 𝐺 is a proper
subdomain of R𝑛.

Theorem 3.6 Let 𝑠 ∈ (0, 1) and 𝐶 (𝑠) ≥ 1. (i) If 𝐺 is a proper subdomain of R𝑛, then

ℎ𝐺 (𝑥, 𝑦) ≤
(
1 + 𝑘𝐺 (𝑥, 𝑦)

2 log(1 + 𝑠)

)
log𝐶 (𝑠).

(ii) If 𝐺 = B𝑛 or 𝐺 = H𝑛, then we have

ℎ𝐺 (𝑥, 𝑦) ≤
(
1 + 𝜌𝐺 (𝑥, 𝑦)

log[(1 + 𝑠)/(1 − 𝑠)]

)
log𝐶 (𝑠).

Proof (i) Let 𝑢 : 𝐺 → (0,∞) be a Harnack function. By [10, Lemma 6.23] we have

𝑢(𝑥)
𝑢(𝑦) ≤ 𝐶 (𝑠)1+𝑡 ⇔ log

𝑢(𝑥)
𝑢(𝑦) ≤ (1 + 𝑡) log𝐶 (𝑠),

where 𝑡 = 𝑘𝐺 (𝑥, 𝑦)/(2 log(1 + 𝑠)). The claim is now a direct consequence of the Har-
nack metric definition.
(ii) According to [10, Lemma 6.23], the proof closely resembles that of part (i), so we skip
the details. ■

To prove the next results, the following two lemmas will be helpful.

Lemma 3.7 ([2, Corollary 1]) For all 𝑥, 𝑦 ∈ B𝑛,

ℎB𝑛 (𝑥, 𝑦) = 2𝜌B𝑛 (𝑥, 𝑦).

Lemma 3.8 ([3, Lemma 2.5]) If 𝑥, 𝑦 ∈ H𝑛, then

ℎH𝑛 (𝑥, 𝑦) = 𝜌H𝑛 (𝑥, 𝑦).

Theorem 3.9 i) If 𝑓 : B𝑛 → 𝑓B𝑛 is a non-constant 𝐾-quasiregular mapping with 𝑓B𝑛 ⊂
B𝑛, then the inequality

ℎ 𝑓B𝑛 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 2𝐾 (ℎB𝑛 (𝑥, 𝑦)/2 + log 4)

holds for all 𝑥, 𝑦 ∈ B𝑛.
ii) If 𝑓 : B𝑛 → 𝑓B𝑛 = B𝑛 is a 𝐾-quasiconformal mapping, then the inequality

ℎ 𝑓B𝑛 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝑏max{ℎB𝑛 (𝑥, 𝑦), 21−𝛼ℎB𝑛 (𝑥, 𝑦)𝛼}

holds, where 𝛼 = 𝐾1/(1−𝑛) and 𝑏 is a constant depending on 𝐾 and 𝑛. Here, 𝑏 tends to 1 as
𝐾 tends to 1.

Proof (i) By [10, Theorem 16.2 (2)] we have

𝜌 𝑓B𝑛 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝐾 (𝜌B𝑛 (𝑥, 𝑦) + log 4) (3.6)
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for all 𝑥, 𝑦 ∈ B𝑛, where 𝑓 : B𝑛 → 𝑓B𝑛 ⊂ B𝑛 is a 𝐾-quasiregular mapping. It follows
also from Lemma 3.7 that, for 𝑥, 𝑦 ∈ B𝑛

ℎ 𝑓B𝑛 ( 𝑓 (𝑥), 𝑓 (𝑦)) = 2𝜌 𝑓B𝑛 ( 𝑓 (𝑥), 𝑓 (𝑦)). (3.7)

Now, combining (3.7) and (3.6) with Lemma 3.7 gives the desired result.
(ii) Let 𝑓 : B𝑛 → 𝑓B𝑛 = B𝑛 be a 𝐾-quasiconformal mapping and 𝑥, 𝑦 ∈ B𝑛. Then, by
Corollary 18.5 in [10] we have:

𝜌B𝑛 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝑏max{𝜌B𝑛 (𝑥, 𝑦), 𝜌B𝑛 (𝑥, 𝑦)𝛼}, (3.8)

where 𝛼 = 𝐾1/(1−𝑛) and 𝑏 is a constant depending on 𝐾 and 𝑛. Now, by (3.8), and using
Lemma 3.7, the conclusion is obtained. ■

Theorem 3.10 Let 𝑓 : H𝑛 → H𝑛 be a non-constant 𝐾-quasiregular mapping such that
𝑓H𝑛 ⊂ H𝑛. Then

ℎ 𝑓H𝑛 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝐾 (ℎH𝑛 (𝑥, 𝑦) + log 4),

where 𝐾 ≥ 1.

Proof If 𝑓 : H𝑛 → H𝑛 is a non-constant 𝐾-quasiregular mapping such that 𝑓H𝑛 ⊂
H𝑛, then by [10, Theorem 16.2 (2)], we have

𝜌 𝑓H𝑛 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝐾 (𝜌H𝑛 (𝑥, 𝑦) + log 4), (3.9)

where 𝐾 ≥ 1. Also, by Lemma 3.8, for all 𝑥, 𝑦 ∈ 𝑓H𝑛 ⊂ H𝑛, we have:

ℎ 𝑓H𝑛 ( 𝑓 (𝑥), 𝑓 (𝑦)) = 𝜌 𝑓H𝑛 ( 𝑓 (𝑥), 𝑓 (𝑦)). (3.10)

The result now follows from (3.9)-(3.10), and Lemma 3.8. The proof is now complete.
■

For 𝑟 ∈ (0, 1) and 𝐾 ∈ [1,∞), the function 𝜑𝐾 : [0, 1] → [0, 1] is defined as
follows:

𝜑𝐾 (𝑟) = 𝜇−1
(
𝜇(𝑟)
𝐾

)
, 𝜑𝐾 (0) = 0; 𝜑𝐾 (1) = 1,

where 𝜇 : (0, 1) → (0,∞) is a decreasing homeomorphism given by

𝜇(𝑟) = 𝜋

2
K(

√
1 − 𝑟2)

K(𝑟) , with K(𝑟) = 𝜋

2
𝐹

(
1
2
,
1
2
; 1; 𝑟2

)
,

and 𝐹 represents the Gaussian hypergeometric function. For additional information
about the function 𝜑𝐾 (𝑟) and its approximation, readers are encouraged to consult [17].

Theorem 3.11 If 𝑓 : B2 → B2 is a non-constant 𝐾-quasiregular mapping, then

ℎB2 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝑐(𝐾)max{ℎB2 (𝑥, 𝑦), 21−1/𝐾 ℎB2 (𝑥, 𝑦)1/𝐾 }

for all 𝑥, 𝑦 ∈ B2, where 𝑐(𝐾) = 2arth(𝜑𝐾 (th(1/2))). In particular, 𝑐(1) = 1.
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10 R. Kargar

Proof Let 𝑓 : B2 → B2 be a non-constant 𝐾-quasiregular mapping. Then, by
Theorem [10, Theorem 16.39], we have:

𝜌B2 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝑐(𝐾)max{𝜌B2 (𝑥, 𝑦), 𝜌B2 (𝑥, 𝑦)1/𝐾 } (3.11)

for all 𝑥, 𝑦 ∈ B2, where 𝑐(𝐾) = 2arth(𝜑𝐾 (th(1/2))). The desired assertion can be
obtained by utilizing Lemma 3.7 and inequality (3.11). ■

4 Harmonic Schwarz lemma

This section first generalizes the Schwarz lemma for harmonic functions in the com-
plex plane utilizing the Poisson integral formula. Then, it improves the Schwarz-Pick
estimate for a real-valued harmonic function. First, we recall that the classical Schwarz
lemma states that if 𝑢 : B2 → B2 is a holomorphic function with 𝑢(0) = 0, then

• |𝑢(𝑧) | ≤ |𝑧 | for all 𝑧 ∈ B2;
• |𝑢′ (0) | ≤ 1.

Heinz (see [13]) has obtained an improvement of the classical Schwarz lemma for a
complex-valued harmonic function, see Lemma 4.1 below. A complex-valued function
𝑓 : 𝐺 → C, where 𝑓 = 𝑢 + 𝑖𝑣 is said to be harmonic if both 𝑢 : 𝐺 → R and 𝑣 : 𝐺 → R
are harmonic in the sense defined above.

Lemma 4.1 Let 𝑢 : B2 → B2 be a complex-valued harmonic function with 𝑢(0) = 0. Then

|𝑢(𝑧) | ≤ 4
𝜋
arctan |𝑧 |.

The inequality is sharp for each point 𝑧 ∈ B2.

The following Theorem 4.2 is known as the Poisson integral formula (see, for
example, [7]).

Theorem 4.2 Let 𝑢 be a complex-valued function continuous on 𝐵
2 (𝑎, 𝑅), (𝑅 > 0), and

harmonic on 𝐵2 (𝑎, 𝑅). Then for 𝑟 ∈ [0, 𝑅) and 𝑡 ∈ R the following formulas hold:

𝑢
(
𝑎 + 𝑟𝑒𝑖𝑡

)
=

1
2𝜋

∫ 𝜋

−𝜋

𝑅2 − 𝑟2
𝑅2 + 𝑟2 − 2𝑟𝑅 cos(𝑡 − 𝜃) 𝑢

(
𝑎 + 𝑅𝑒𝑖 𝜃

)
d𝜃 (4.1)

and

𝑢(𝑎) = 1
2𝜋

∫ 𝜋

−𝜋
𝑢

(
𝑎 + 𝑅𝑒𝑖 𝜃

)
d𝜃. (4.2)

Motivated by Lemma 4.1 and applying Theorem 4.2, we derive the following
Theorem 4.3 which is an extension of the above Schwarz lemma:
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Theorem 4.3 Let 0 < 𝑟 < 𝑅 and 𝑀 > 0. If 𝑢 is a complex-valued harmonic mapping in
the disk 𝐵2 (𝑎, 𝑅) such that |𝑢(𝑤) | ≤ 𝑀 for all 𝑤 ∈ 𝐵2 (𝑎, 𝑅), then����𝑢(𝑎 + 𝑧) − 𝑅2 − |𝑧 |2

𝑅2 + |𝑧 |2 𝑢(𝑎)
���� ≤ 2𝑀

𝜋
arctan

(
2𝑅 |𝑧 |
𝑅2 − |𝑧 |2

)
, 𝑧 = 𝑟𝑒𝑖𝑡 .

The result is sharp.

Proof Suppose that 0 < 𝑟 < 𝑅. Applying formula (4.1) for 𝑧 = 𝑟 , we obtain

𝑢 (𝑎 + 𝑟) − 𝑅2 − 𝑟2
𝑅2 + 𝑟2 𝑢(𝑎)

=
1
2𝜋

∫ 𝜋

−𝜋

(
𝑅2 − 𝑟2

𝑅2 + 𝑟2 − 2𝑟𝑅 cos(𝜃) −
𝑅2 − 𝑟2
𝑅2 + 𝑟2

)
𝑢

(
𝑎 + 𝑅𝑒𝑖 𝜃

)
d𝜃

=
𝑟𝑅(𝑅2 − 𝑟2)
𝜋(𝑅2 + 𝑟2)

∫ 𝜋

−𝜋

cos(𝜃)
𝑅2 + 𝑟2 − 2𝑟𝑅 cos(𝜃) 𝑢

(
𝑎 + 𝑅𝑒𝑖 𝜃

)
d𝜃.

By the last equality and the assumption |𝑢 | ≤ 𝑀 , we obtain����𝑢 (𝑎 + 𝑟) − 𝑅2 − 𝑟2
𝑅2 + 𝑟2 𝑢(𝑎)

���� ≤ 𝑀
𝑟𝑅(𝑅2 − 𝑟2)
𝜋(𝑅2 + 𝑟2)

∫ 𝜋

−𝜋

| cos(𝜃) |
𝑅2 + 𝑟2 − 2𝑟𝑅 cos(𝜃) d𝜃. (4.3)

Now, we calculate the integral

𝐼 =

∫ 𝜋

−𝜋

| cos(𝜃) |
𝑅2 + 𝑟2 − 2𝑟𝑅 cos(𝜃) d𝜃.

It is easy to check that,

𝐼 =

∫ 𝜋/2

−𝜋/2

(
cos(𝜃)

𝑅2 + 𝑟2 − 2𝑟𝑅 cos(𝜃) +
cos(𝜃)

𝑅2 + 𝑟2 + 2𝑟𝑅 cos(𝜃)

)
d𝜃

= 2(𝑅2 + 𝑟2)
∫ 𝜋/2

−𝜋/2

cos(𝜃)
(𝑅2 + 𝑟2)2 − 4𝑟2𝑅2 cos2 (𝜃) d𝜃

= 4(𝑅2 + 𝑟2)
∫ 𝜋/2

0

cos(𝜃)
(𝑅2 − 𝑟2)2 + 4𝑟2𝑅2 sin2 (𝜃)

d𝜃

=
2(𝑅2 + 𝑟2)
𝑟𝑅(𝑅2 − 𝑟2) arctan

(
2𝑟𝑅
𝑅2 − 𝑟2

)
.

Thus, from (4.3) follows that����𝑢 (𝑎 + 𝑟) − 𝑅2 − 𝑟2
𝑅2 + 𝑟2 𝑢(𝑎)

���� ≤ 2𝑀
𝜋

arctan
(

2𝑟𝑅
𝑅2 − 𝑟2

)
,

which implies the desired result. It is easy to see that the result is sharp for the function

𝑢0 (𝑧) = −2𝑀
𝜋

arg
(
𝑅 − 𝑧
𝑅 + 𝑧

)
=
2𝑀
𝜋

arctan
(
2𝑟𝑅 sin 𝜃
𝑅2 − 𝑟2

)
, 𝑧 = 𝑟𝑒𝑖𝑡 ,

or one of its rotations, where 0 < 𝑟 < 𝑅 and 𝑀 > 0, completing the proof. ■

2024/05/08 06:43
https://doi.org/10.4153/S0008439524000298 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000298


12 R. Kargar

Remark 4.4 It should be noted that Theorem 4.3 is also an extension of [21, Theorem
3.6.1]. Indeed, Pavlović proved that if 𝑓 : B2 → B

2
is a complex-valued harmonic

function, then the following sharp inequality holds:����𝑢(𝑧) − 1 − |𝑧 |2
1 + |𝑧 |2 𝑢(0)

���� ≤ 4
𝜋
arctan |𝑧 |, 𝑧 = 𝑟𝑒𝑖𝑡 .

Let ∇𝑢 be the gradient of 𝑢 at 𝑥 defined by

∇𝑢(𝑥) = (𝜕𝑢/𝜕𝑥1, . . . , 𝜕𝑢/𝜕𝑥𝑛).

In 1989 (see [6]), Colonna proved the following Schwarz-Pick estimate for complex-
valued harmonic functions 𝑢 from the unit disk B2 to itself:����𝜕𝑢(𝑧)𝜕𝑧

���� + ����𝜕𝑢(𝑧)𝜕𝑧

���� ≤ 4
𝜋

1
1 − |𝑧 |2 , 𝑧 ∈ B2.

If 𝑢 is a real-valued function, Kalaj and Vuorinen established the above Schwarz-Pick
estimate as the following theorem; refer to [16, Theorem 1.8] for details.

Theorem 4.5 Let 𝑢 be a real harmonic function of the unit disk into (−1, 1). Then the
following sharp inequality holds:

|∇𝑢(𝑧) | ≤ 4
𝜋

1 − |𝑢(𝑧) |2
1 − |𝑧 |2 , 𝑧 ∈ B2.

In accordance with the findings of Chen [4, Theorem 1.2], the subsequent result has
been derived:

Theorem 4.6 Let 𝑢 be a real harmonic mapping of B2 into the open interval (−1, 1). Then

|∇𝑢(𝑧) | ≤ 4
𝜋

cos
(
𝜋
2 𝑢(𝑧)

)
1 − |𝑧 |2

holds for 𝑧 ∈ B2. The inequality is sharp for any 𝑧 ∈ B2 and any value of 𝑢(𝑧), and the
equality occurs for some point in B2 if and only if 𝑢(𝑧) = (4Re{arctan 𝑓 (𝑧)})/𝜋, 𝑧 ∈ B2
with a Möbius transformation 𝑓 of B2 onto itself.

In the subsequent discussion, we aim to expand upon Theorem 4.5 in the following
manner: Furthermore, it is worth noting that our extension encompasses the findings
presented in Theorem 6.26 of [1].

Theorem 4.7 Let 𝛼 and 𝛽 be two real numbers such that 𝛼 < 𝛽. If 𝑢 : B2 → (𝛼, 𝛽) is a
real-valued harmonic function, then we have

|∇𝑢(𝑧) | ≤ 2(𝛽 − 𝛼)
𝜋

1 − 4
(𝛽−𝛼)2

���𝑢(𝑧) − 𝛼+𝛽
2

���2
1 − |𝑧 |2 , 𝑧 ∈ B2.

The result is sharp.
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Proof Define 𝑣(𝑧) as

𝑣(𝑧) = 2
𝛽 − 𝛼

(
𝑢(𝑧) − 𝛼 + 𝛽

2

)
, 𝑧 ∈ B2,

where 𝑢 : B2 → (𝛼, 𝛽) is a real valued harmonic function, 𝛼 and 𝛽 are real numbers
such that 𝛼 < 𝛽. Then it is clear that 𝑣 is a harmonic function of the unit disk B2 into
(−1, 1). Therefore, 𝑣 satisfies the assumption of Theorem 4.5. Moreover, we have

2
𝛽 − 𝛼 |∇𝑢 | = |∇𝑣 | ≤ 4

𝜋

1 − 4
(𝛽−𝛼)2

���𝑢(𝑧) − 𝛼+𝛽
2

���2
1 − |𝑧 |2 , 𝑧 ∈ B2,

which implies the desired result. To show that the result is sharp, we take the harmonic
function

ℓ(𝑧) = 𝛼 + 𝛽
2

+ 𝛽 − 𝛼
𝜋

arctan
2𝑦

1 − 𝑥2 − 𝑦2 , 𝑧 ∈ B2.

It is easy to see 𝛼 < ℓ(𝑧) < 𝛽. A simple calculation yields

|∇ℓ(0) | = 2(𝛽 − 𝛼)
2

=
2(𝛽 − 𝛼)

2
·
1 − 4

(𝛽−𝛼)2

��� 𝛼+𝛽2 − 𝛼+𝛽
2

���2
1 − 02

,

which is the desired conclusion. ■

Applying Theorem 4.6, we get the following result:

Theorem 4.8 If 𝑢 : B2 → (𝛼, 𝛽) is an into harmonic mapping, then

|∇𝑢(𝑧) | ≤ 2(𝛽 − 𝛼)
𝜋

cos
(
𝜋

𝛽−𝛼

(
𝑢(𝑧) − 𝛼+𝛽

2

))
1 − |𝑧 |2 ,

where 𝛼 and 𝛽 are real numbers such that 𝛼 < 𝛽. The result is sharp.

Proof Theproof is the same as the proof ofTheorem4.7, therefore,weomit the details.
■

We conclude this paper by presenting the following open question:

Open question.What is the connection between the Harnack metric ℎ and the hyper-
bolic metric 𝜌 in a simply connected Jordan domain in the complex plane C?
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