A Geometrical Interpretation of the Symmetrical Invariant of Three Ternary Quadratics

By T. Scott, Emmanuel College, Cambridge.

(Received 2nd December, 1935. Read 6th December, 1935.)

Introduction.

In the paper, "Sul sistema di tre forme ternarie quadratiche," Ciamberlini¹ has derived the complete irreducible system of concomitants for three ternary quadratics and has given a short treatment of their geometrical interpretations. Among the concomitants is the invariant $(abc)^2$ which is symmetrical and linear in the coefficients of each quadratic. The purpose of this note is to give a geometrical interpretation of the invariant, and to extend the result for symmetrical invariants of forms in higher dimensions.²

§1. Notation.

In symbolic form the point and line equations of the three conics are taken to be:—

$$f_{1} = a_{x}^{2} = a'_{x}^{2} = \dots, \qquad \phi_{1} = u_{a}^{2} = u_{a'}^{2} = \dots,$$

$$f_{2} = b_{x}^{2} = b'_{x}^{2} = \dots, \qquad \phi_{2} = u_{\beta}^{2} = u_{\beta'}^{2} = \dots,$$

$$f_{3} = c_{x}^{2} = c'_{x}^{2} = \dots, \qquad \phi_{3} = u_{\gamma}^{2} = u_{\gamma'}^{2} = \dots,$$

$$= \sum_{i=1}^{3} a_{i} x_{i}, \quad u_{a} = \sum_{i=1}^{3} u_{i} a_{i}, \quad a = (aa').$$

The equation in symbolic form of the Φ -conic for f_1 , f_2 is easily obtained from binary forms by the use of the Clebsch Transference Principle.

The invariant $(ab)^2 = 0$ signifies that the pairs of points represented by the binary equations $a_x^2 = 0$, $b_x^2 = 0$ form a harmonic range on a line, and so extending to ternary forms we have

$$(abu)^2 = 0$$

as the envelope of lines cutting the conics f_1 , f_2 in harmonic point pairs—*i.e.* the Φ -conic for f_1 , f_2 .

¹ Giorn. di Mat., Napoli 24 (1886), 141.

where a_x

 2 My thanks are due to Professor Turnbull who has superintended the work and given me much valuable advice and assistance.

Dually, we obtain $(\alpha\beta x)^2 = 0$ as the equation of the *F*-conic. We shall use the notation

$$\Phi_{23} = (bcu)^2$$
, $\Phi_{31} = (cau)^2$, $\Phi_{12} = (abu)^2$,

to denote the three Φ -conics associated with f_1 , f_2 , f_3 ; Φ_{ij} denoting the harmonic envelope of f_i , f_j .

From these results it is obvious that

$$(abc)^2 = 0$$

is the condition for the conic locus f_i to be outpolar to the conic envelope Φ_{jk} , where i, j, k = 1, 2, 3 and i, j, k are all different.

This, in fact, is the interpretation ascribed to $(abc)^2$ by Ciamberlini. The following pages, however, set out a piece of geometry more in keeping with the symmetrical nature of the invariant.

§ 2. The invariant $(abc)^2$.

It will now be proved that, if u is any line in the plane and u_i the polar with respect to f_i of the pole of u with respect to Φ_{jk} , then u_1, u_2, u_3 are concurrent when $(abc)^2 = 0$.

Likewise, if we take a point P in the plane, then the three points P_1 , P_2 , P_3 are collinear, where P_i is the pole with respect to Φ_{jk} of the polar of P with respect to f_i .

Consider a line u. Then its pole with respect to Φ_{12} is

(abu)(abv) = 0, (v, current coordinates),

and the polar of this point with respect to f_3 is

 $(u_1), (abu) (abc) c_x = 0, (x, current).$

Thus, we get the three connexes

 (u_1) , $(abc)(bcu)a_x = 0$, (u_2) , $(abc)(cau)b_x = 0$, (u_3) , $(abc)(abu)c_x = 0$, defining the three lines u_1 , u_2 , u_3 associated with the fixed line u. By the fundamental identity for determinantal permutations we have

$$(abc) (bcu) a_x + (abc) (cau) b_x + (abc) (abu) c_x \equiv (abc)^2 u_x$$

Hence, if
$$(abc)^2 = 0,$$

the three lines u_1 , u_2 , u_3 are concurrent in a point P. We may, however, start with a fixed point P and obtain three points P_1 , P_2 , P_3 collinear on u.

We obtain a dual interpretation in terms of the F-conics for $(\alpha\beta\gamma)^2 = 0$ by using the identity

$$(a\beta\gamma)(\beta\gamma x)u_a + (a\beta\gamma)(\gamma a x)u_\beta + (a\beta\gamma)(a\beta x)u_\gamma \equiv (a\beta\gamma)^2 u_x.$$

T. Scott

§ 3. Extension to Three Dimensions.

For four quaternary quadratic forms

 $f_1 = a_x^2, \quad f_2 = b_x^2, \quad f_3 = c_x^2, \quad f_4 = d_x^2,$

 $(abcu)^2 = 0$ represents the quadric envelope of planes cutting the quadrics f_1 , f_2 , f_3 in three conics having the symmetrical property considered above.

This follows by application of the Clebsch Transference Principle to the ternary invariant $(abc)^2$.

Hence, we obtain four quadric envelopes which we can specify by

$$\Phi_{123} = (abcu)^2, \quad \Phi_{234} = (bcdu)^2, \quad \Phi_{341} = (cdau)^2, \quad \Phi_{412} = (dabu)^2.$$

As in §2, the vanishing of $(abcd)^2$, the symmetrical invariant of four quadrics, is the condition for any f_i to be outpolar with respect to Φ_{jkl} , where *i*, *j*, *k*, l = 1, 2, 3, 4, and *i*, *j*, *k*, *l* are all different.

If, however, we consider the four connexes

$$(u_1), a_x(abcd)(bcdu) = 0, (u_2), b_x(abcd)(cdau) = 0, (u_3), c_x(abcd)(dabu) = 0, (u_4), d_x(abcd)(abcu) = 0,$$

then, since

$$(abcd) (bcdu) a_x + (abcd) (cadu) b_x + (abcd) (abdu) c_x + (abcd) (acbu) d_x \equiv (abcd)^2 u_x$$

it follows that $(abcd)^2 = 0$ is the condition for the four planes u_1, u_2, u_3, u_4 to meet in a point, where u_i is the polar with respect to f_i of the pole of u with respect to Φ_{ikl} .

Dually, we can interpret $(a\beta\gamma\delta)^2 = 0$ by using the quadric loci $(a\beta\gamma x)^2 = 0$ etc. It is obvious that by repeated application of the Clebsch Transference Principle it is possible to interpret $(abc..p)^2 = 0$ for p quadrics in [p-1].

§4. $(abc)^2$ in relation to the *F*-conics of the Φ -conics.

In this paragraph we suppose $(abc)^2 = 0$. The F-conic of Φ_{12} , Φ_{23} , is

$$F_{(12)(23)} \equiv (ab \cdot b' c \cdot x)^2 = 0$$

[(ab' c) \dot{b}_x]² = 0,

Thus

and
$$(abc)^2 f_2 + c_\beta^2 f_1 - 2 (ab' c) b_x (bb' c) a_x = 0,$$

so that $(abc)^2 f_2 + {}_x a_\beta c_x = 0,$ (1)

and $_{x}a_{\beta}c_{x} = 0$ represents the conic which is the locus of a point x whose polars with respect to f_{1} , f_{3} are conjugate lines with respect to ϕ_{2} .

260

From the result (1) we see that the conic $_{x}a_{\beta}c_{x}=0$ meets f_{2} in four points which are vertices of harmonic pencils of tangents to Φ_{12}, Φ_{23} . For, since $(abc)^2 = 0$, it follows that

$$\begin{array}{l} F_{(12)\,(23)}\equiv {}_{x}a_{\beta}\,c_{x}=0,\\ F_{(23)\,(31)}\equiv {}_{x}a_{\gamma}\,b_{x}=0,\\ \end{array} \\ \text{and} \quad F_{(31)\,(12)}\equiv {}_{x}b_{a}\,c_{x}=0. \end{array}$$

The condition for $d_x^2 \equiv {}_x a_\beta c_x$ to be outpolar with respect to Φ_{31} is $(cad)^2 = 0,$ $(caa') a'_{\beta} c'_{\beta} (cac') = 0.$ i.e., $\frac{1}{2}c_{a}^{2}c_{\beta}^{2} - \frac{1}{2}c_{a}c_{a}c_{a}c_{\beta}c_{\beta} = 0,$ $(a\beta\gamma)^{2} = 0.$ Hence

and therefore

Thus, for $(abc)^2 = 0$ and $(a\beta\gamma)^2 = 0$ simultaneously, the symmetrical property holds for the Φ -conics and their *F*-conics.