A Geometrical Interpretation of the Symmetrical Invariant of Three Ternary Quadratics

By T. Scott, Emmanuel College, Cambridge.
(Received 2nd December, 1935. Read 6th December, 1935.)

Introduction.

In the paper, "Sul sistema di tre forme ternarie quadratiche," Ciamberlini ${ }^{1}$ has derived the complete irreducible system of concomitants for three ternary quadratics and has given a short treatment of their geometrical interpretations. Among the concomitants is the invariant ($a b c)^{2}$ which is symmetrical and linear in the coefficients of each quadratic. The purpose of this note is to give a geometrical interpretation of the invariant, and to extend the result for symmetrical invariants of forms in higher dimensions. ${ }^{2}$

§1. Notation.

In symbolic form the point and line equations of the three conics are taken to be:-

$$
\begin{array}{ll}
f_{1}=a_{x}^{2}=a_{x}^{\prime 2}=\ldots, & \phi_{1}=u_{a}^{2}=u_{a^{\prime}}^{2}=\ldots \\
f_{2}=b_{x}^{2}=b_{x}^{2}=\ldots, & \phi_{2}=u_{\beta}^{2}=u_{\beta^{\prime}}^{2}=\ldots \\
f_{3}=c_{x}^{2}=c_{x}^{\prime 2}=\ldots, & \phi_{3}=u_{\gamma}^{2}=u_{\gamma^{\prime}}^{2}=\cdots
\end{array}
$$

where $\quad a_{x}=\sum_{i=1}^{3} a_{i} x_{i}, \quad u_{a}=\sum_{i=1}^{3} u_{i} a_{i}, \quad a=\left(a a^{\prime}\right)$.
The equation in symbolic form of the Φ-conic for f_{1}, f_{2} is easily obtained from binary forms by the use of the Clebsch Transference Principle.

The invariant $(a b)^{2}=0$ signifies that the pairs of points represented by the binary equations $a_{x}^{2}=0, b_{x}^{2}=0$ form a harmonic range on a line, and so extending to ternary forms we have

$$
(a b u)^{2}=0
$$

as the envelope of lines cutting the conics f_{1}, f_{2} in harmonic point pairs-i.e. the Φ-conic for f_{1}, f_{2}.

[^0]Dually, we obtain $(\alpha \beta x)^{2}=0$ as the equation of the F-conic.
We shall use the notation

$$
\Phi_{23}=(b c u)^{2}, \quad \Phi_{31}=(c a u)^{2}, \quad \Phi_{12}=(a b u)^{2},
$$

to denote the three Φ-conics associated with $f_{1}, f_{2}, f_{3} ; \Phi_{i j}$ denoting the harmonic envelope of f_{i}, f_{j}.

From these results it is obvious that

$$
(a b c)^{2}=0
$$

is the condition for the conic locus f_{i} to be outpolar to the conic envelope $\Phi_{j k}$, where $i, j, k=1,2,3$ and i, j, k are all different. This, in fact, is the interpretation ascribed to $(a b c)^{2}$ by Ciamberlini. The following pages, however, set out a piece of geometry more in keeping with the symmetrical nature of the invariant.

§2. The invariant (abc) ${ }^{2}$.

It will now be proved that, if u is any line in the plane and u_{i} the polar with respect to f_{i} of the pole of u with respect to $\Phi_{j k}$, then u_{1}, u_{2}, u_{3} are concurrent when $(a b c)^{2}=0$.

Likewise, if we take a point P in the plane, then the three points P_{1}, P_{2}, P_{3} are collinear, where P_{i} is the pole with respect to $\Phi_{j k}$ of the polar of P with respect to f_{i}.

Consider a line u. Then its pole with respect to Φ_{12} is

$$
(a b u)(a b v)=0, \quad(v, \text { current coordinates })
$$

and the polar of this point with respect to f_{3} is

$$
\left(u_{1}\right), \quad(a b u)(a b c) c_{x}=0, \quad(x, \text { current })
$$

Thus, we get the three connexes
$\left(u_{1}\right),(a b c)(b c u) a_{x}=0, \quad\left(u_{2}\right),(a b c)(c a u) b_{x}=0, \quad\left(u_{3}\right),(a b c)(a b u) c_{x}=0$, defining the three lines u_{1}, u_{2}, u_{3} associated with the fixed line u. By the fundamental identity for determinantal permutations we have

$$
(a b c)(b c u) a_{x}+(a b c)(c a u) b_{x}+(a b c)(a b u) c_{x} \equiv(a b c)^{2} u_{x}
$$

Hence, if

$$
(a b c)^{2}=0
$$

the three lines u_{1}, u_{2}, u_{3} are concurrent in a point P. We may, however, start with a fixed point P and obtain three points P_{1}, P_{2}, P_{3} collinear on u.

We obtain a dual interpretation in terms of the F-conics for $(\alpha \beta \gamma)^{2}=0$ by using the identity

$$
(\alpha \beta \gamma)(\beta \gamma x) u_{a}+(\alpha \beta \gamma)(\gamma \alpha x) u_{\beta}+(\alpha \beta \gamma)(\alpha \beta x) u_{y} \equiv(\alpha \beta \gamma)^{2} u_{x}
$$

§3. Extension to Three Dimensions.
For four quaternary quadratic forms

$$
f_{1}=a_{x}^{2}, \quad f_{2}=b_{x}^{2}, \quad f_{3}=c_{x}^{2}, \quad f_{4}=d_{x}^{2},
$$

$(a b c u)^{2}=0$ represents the quadric envelope of planes cutting the quadrics f_{1}, f_{2}, f_{3} in three conics having the symmetrical property considered above.

This follows by application of the Clebsch Transference Principle to the ternary invariant $(a b c)^{2}$.

Hence, we obtain four quadric envelopes which we can specify by

$$
\Phi_{123}=(a b c u)^{2}, \quad \Phi_{234}=(b c d u)^{2}, \quad \Phi_{341}=(c d a u)^{2}, \quad \Phi_{412}=(d a b u)^{2} .
$$

As in §2, the vanishing of $(a b c d)^{2}$, the symmetrical invariant of four quadrics, is the condition for any f_{i} to be outpolar with respect to $\Phi_{j k l}$, where $i, j, k, l=1,2,3,4$, and i, j, k, l are all different.

If, however, we consider the four connexes

$$
\begin{array}{llll}
\left(u_{1}\right), & a_{x}(a b c d)(b c d u)=0, & \left(u_{2}\right), & b_{x}(a b c d)(c d a u)=0 \\
\left(u_{3}\right), & c_{x}(a b c d)(d a b u)=0, & \left(u_{4}\right), & d_{x}(a b c d)(a b c u)=0
\end{array}
$$

then, since
$(a b c d)(b c d u) a_{x}+(a b c d)(c a d u) b_{x}+(a b c d)(a b d u) c_{x}+(a b c d)(a c b u) d_{x} \equiv(a b c d)^{2} u_{x}$
it follows that $(a b c d)^{2}=0$ is the condition for the four planes u_{1}, u_{2}, u_{3}, u_{4} to meet in a point, where u_{i} is the polar with respect to f_{i} of the pole of u with respect to $\Phi_{j k l}$.

Dually, we can interpret $(a \beta \gamma \delta)^{2}=0$ by using the quadric loci $(\alpha \beta \gamma x)^{2}=0$ etc. It is obvious that by repeated application of the Clebsch Transference Principle it is possible to interpret $(a b c . . p)^{2}=0$ for p quadrics in $[p-1]$.
$\S 4$. $(a b c)^{2}$ in relation to the F-conics of the Φ-conics.
In this paragraph we suppose $(a b c)^{2}=0$. The F-conic of Φ_{12}, Φ_{23}, is

$$
F_{(12)(23)} \equiv\left(a b . b^{\prime} c \cdot x\right)^{2}=0
$$

Thus

$$
\left[\left(\dot{a} b^{\prime} c\right) \dot{b}_{x}\right]^{2}=0
$$

and

$$
(a b c)^{2} f_{2}+c_{\beta}^{2} f_{1}-2\left(a b^{\prime} c\right) b_{x}\left(b b^{\prime} c\right) a_{x}=0
$$

so that

$$
\begin{equation*}
(a b c)^{2} f_{2}+{ }_{x} a_{\beta} c_{x}=0 \tag{1}
\end{equation*}
$$

and ${ }_{x} a_{\beta} c_{x}=0$ represents the conic which is the locus of a point x whose polars with respect to f_{1}, f_{3} are conjugate lines with respect to ϕ_{2}.

From the result (1) we see that the conic ${ }_{x} a_{\beta} c_{x}=0$ meets f_{2} in four points which are vertices of harmonic pencils of tangents to Φ_{12}, Φ_{23}. For, since $(a b c)^{2}=0$, it follows that

$$
\begin{array}{ll}
& F_{(12)(23)} \equiv{ }_{x} a_{\beta} c_{x}=0, \\
& F_{(23)(31)} \equiv{ }_{x} a_{\gamma} b_{x}=0, \\
\text { and } & F_{(31)(12)} \equiv{ }_{x} b_{a} c_{x}=0 .
\end{array}
$$

The condition for $d_{x}^{2} \equiv{ }_{x} a_{\beta} c_{x}$ to be outpolar with respect to Φ_{31} is $(c a d)^{2}=0$, i.e., $\left(c a a^{\prime}\right) a_{\beta}^{\prime} c_{\beta}{ }_{\beta}\left(c a c^{\prime}\right)=0$.
Hence
$\frac{1}{2} c_{\alpha}^{2} c_{\beta}^{2}-\frac{1}{2} c_{a} c_{\alpha}^{\prime} c_{\beta} c_{\beta}=0$,
and therefore

$$
(a \beta \gamma)^{2}=0
$$

Thus, for $(a b c)^{2}=0$ and $(\alpha \beta \gamma)^{2}=0$ simultaneously, the symmetrical property holds for the Φ-conics and their F-conics.

[^0]: ${ }^{1}$ Giorn. di Mat., Napoli 24 (1886), 141.
 ${ }^{2}$ My thanks are due to Professor Turnbull who has superintended the work and given me much valuable advice and assistance.

