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METRIC SPACES WITHOUT LARGE CLOSED 
DISCRETE SETS 

W. W. COMFORT AND ANTHONY W. HAGER 

We investigate the structure of those non-separable metric spaces X, and 
their Stone-Cech compactifications, for which X has no closed discrete sub-
space of power equal to the weight of X. (Throughout this paper we denote the 
weight of X—the smallest power of a base for the topology of X—by the 
symbol w l . ) 

For a metric space X as above the cardinal number w l is a sequential 
cardinal, i.e., wX = ^n<wmn with mn < tnn+i for all n < co. Further, for every 
sequential cardinal m the hedgehog H(m), consisting of a center p and, for 
n < co, mn isolated points at distance 1/n from p, is such a space. A more 
complex example, H(m, K), is obtained by replacing the center p by an 
arbitrary compact metric space K. These spaces almost exhaust the examples: 
for any such X with weight m, the subset K(X) of points each of whose neigh
borhoods has weight m is compact, and X contains a dense subset which is a 
one-to-one uniformly continuous image of H(m, K{X)) under a map which 
takes K(X) onto K(X) and which takes isolated points to points of X with 
neighborhoods of small weight. 

As to Stone-Cech compactifications: the space ($H(m) is the one-point com-
pactification of the "disjoint union" n̂<Wjfrmw, the "point at infinity" being 
the point p; here fimn denotes the Stone-Cech compactification of the discrete 
space of power mn. Similarly, 0H(m, K) is obtained by compactifying X^<w/3mw 

with K; and for a general space X as above such that wX = m, the space &X 
is a continuous image of @H(m, K(X)). It follows that every point of @X\X is 
in the closure in pX of a subset of X of power < m. Thus \$X\ = Y<n<<» exp 
exp mn, and wftX = Sn<<o exp mn. Under the generalized continuum hypothe
sis, then, \fiX\ = wftX = wX. This is in marked contrast to the situation for 
a metric space Y which does contain a closed discrete set of power w F; for 
such F, one has 

|/3F| = exp exp w F ^ exp \Y\ = W/3F > w F . 

1. Preliminary remarks. The subset S of the topological space X is said 
to be discrete if 5* is discrete in the relative topology. Clearly, 5 is closed and 
discrete if and only if each point of X has a neighborhood meeting 5 in at 
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most one point. A subset 5 of the metric space X is e-discrete (for e > 0) if any 
two different points of 5 have distance at least e. A subset 5 is metrically 
discrete if it is e-discrete for some e > 0. Such a subset is closed and discrete. 
On the other hand, if 5 is a closed, discrete subset of the metrizable space X, 
then according to a well-known theorem of Hausdorff (see, for example, [14, 
Exercise 22.E] for a proof) the "discrete metric" on S (which assigns distance 1 
to every two distinct points of S) may be extended to a compatible metric d 
on all of X. 

The density of the topological space X, denoted bX, and sometimes called 
the density character of X, is the minimum cardinal of a dense subset of X. 

1.1. LEMMA. For metrizable X, the following cardinals coincide. 
(a) w l ; 
(b) bX; 
(c) the supremum of the powers of closed discrete sets; 
(d) the supremum of the powers of metrically discrete sets (with respect to any 

one fixed compatible metric). 

Proof. This is well-known. For wX = 5X, see for example [6, § 4.1, Theorem 
(6)]. We sketch the rest of the proof, assuming throughout that \X\ ^ co since 
otherwise the cardinals in question are (obviously) all equal to \X\. Let a and £ 
be the numbers in (c) and (d), respectively. Then fi ;g a because any metrically 
discrete set is closed. If S is closed and discrete, and if 3ë is a base for X such 
that \SS\ = w l , then for x G S there is Bx £ 38 such that BXC\ S = {x} and 
it follows that 

\S\ = \{Bx:xeS\\ SwX; 

hence a :g w J = 8X. To prove, finally, the inequality bX ^ ft, we record the 
following lemma. 

1.2. LEMMA. Let (X, d) be an infinite metric space and let 0 be as defined above. 
For n < co, let Dn be a maximal 1/n-discrete set, and set D = Un<co Dn. Then 

(a) D is dense and \D\ = bX; and 
(b) bX = Zn<»\Dn\ = P. 

Proof. The sets Dn are chosen by Zorn's lemma; their maximality gives (a). 
Since \Dn\ ^ 0 for all n < co we have 

bX ^ \D\ S £»<* \Dn\ g co • p = $ S bX, 

and hence (b). The proofs of 1.1 and 1.2 are complete. 

1.3. PROPOSITION. Let X be a metrizable space with no closed, discrete subset 
of power wX. Then wX is a sequential cardinal. 

Proof. Clearly \X\ ^ co. With Dn as in Lemma 1.2 and mn = \Dn\ we have 
w l = Zn<a>m„ and 

mn < w l . 
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Evident ly there is a sequence {nk : k < œ) such tha t m ^ < mn (and wX = 

2. S o m e e x a m p l e s . We construct some simple spaces whose weight is a 
given sequential cardinal m, and which have no closed discrete subsets of 
power m. 

Throughout this section, m denotes a sequential cardinal, and we fix 
{mn : n < o)} such t ha t m = £n<wTtt„ and mn < tnn+i for all n < co. 

2.1. The hedgehog H(m). Let {Dn : n < co} be a sequence of disjoint sets such 
tha t \Dn\ = mn for w < co, let p d_ Un<uDni and let X be the set X = 
\Jn«*Dn ^J {p}> Define d o n l X l a s follows: 

^(£> *) = d(x, p) = 1/n for x G Z>n, w < co; 

d(x, y) = d(y, x) = \/n + 1/w for x Ç P w , y G Z)w, n ^ m < œ,x 9^ y; 

d(x,x) = d(p,p) = 0 fo rx G \Jn<(aDn. 

I t is readily verified tha t d is a metric. The resulting metric space, H(m), has 
weight and power m—indeed, the weight of any neighborhood of p is m—and 
no closed discrete set of power m. The proofs are deferred to 2.3 (and are 
very easy) . 

T h e space H(m) is a closed subset of the "hedgehog with m spines" intro
duced (in different terminology) by Urysohn [13, pp. 50-51] and Schmidt [11, 
footnote 4]. See [6] or [14] for discussions of this space, which consists of m unit 
intervals, the spines, a t tached together a t 0, with distance d(x, y) = \x — y\ 
if x and y lie on the same spine, d(x, y) = \x\ + \y\ if not. 

T h e space H(u) is easily seen to be a convergent sequence. Next, we fatten 
the hedgehog. 

2.2 The hedgehog H(m, K, A). Let K be a compact metric space with metric 
p, and let A be a dense subspace of K. We erect pairwise disjoint hedgehogs, 
each isometric to H(m), over the points of A as follows. 

Let {Ha : a G A} be a family of \A\ disjoint copies of H(m), let da be the 
metric in Ha, identify the center of Ha with a G A C K, and on this "quo t i en t " 
of K \J \J {Ha : a G A} define d as follows: 

d(x, y) = da(x, y) for x, y G Ha, a G A; 

d(x, y) = da(x, a) + p(a, b) + db(b, y) for x G Ha, y G Hb, a,b G A 

and a 9^ b\ 

d(p,q) = p(P,q) for p, q G 2C. 

I t is readily verified tha t d is a metric. The resulting metric space, H(m, K, 
A), has the following properties. 

(a) wff (m, i£, 4 ) = m • \A\, and |ff(m, K, A)\ = |i£| + m. 
(b) Each closed discrete set is metrically discrete, and has power S nt* • \A\ 

for some n < œ. 
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(c) K = {x G H (m, K, A): the weight of each neighborhood of x is ^ m}, 
and each point of H(m, K, A)\K is isolated. 

(d) If \A| < m, then wH(m, K, A) = m and Him, K, A) has no closed 
discrete subset of power m. 

The space H (m, K, A) is easy to visualize, and since the proofs of (a), (b), 
(c) and (d) are easy we omit them. Apart from a hedge concerning the conti
nuum hypothesis (see the next paragraph), the space H(m, K, A) is homeo-
morphic to the space H(m, K) defined in 2.3 (as Theorem 3.6 will show). 

We note that (2'°)'° = 2W, while mw > m. (For a proof of this familiar conse
quence of Konig's theorem, see for example [4, Corollary 1.20].) It follows that 
if the continuum hypothesis is assumed (and m > co) then m > 2W, so that 
(since \K\ ^ 2") there is no dense A (Z K such that \A\ ^ m; see (a) and (d) 
above. On the other hand it follows from the theorem of Easton [5] that it is 
consistent with the usual axioms of Zermelo-Fraenkel set theory that there are 
(sequential) m such that co < m < 2W. In this case for any compact K such 
that \K\ = 2W there is dense A C K such that \A\ = m, and although wi?(m, 
K, A) = m (from (a) above) in this case there is a closed discrete subset 5 
such that |5 | = tn; indeed if 

Da = {x G Ha : da(x, a) = 1} 

for a G A then \JaÇADa is such a set. 

2.3 The hedgehog H(m, K). Let K be a compact metric space with metric p. 
Let {en} be any sequence of positive reals with en —+ 0, and for each n select a 
finite ew-net Nn in K, in such a way that Nn C Nn+i for all n < co. 

(The statement that N is an e-net in K means that for each q Ç K there is 
p (z N such that p(p, q) < e. The family {Nn : n < co} is defined recursively: 
No is any maximal e0-discrete subset of K, and then, Nn having been defined, 
Nn+1 is any maximal ew+i-discrete subset of K such that Nn C Nn+\. Maximality 
makes Nn an en-net, and compactness of K makes Nn finite.) 

Let \Nn\ = kn, write Nn = {pt
n : 1 ^ i ^ kn}} and let {Dt

n\l ^ i ^ kn} be 
kn disjoint sets each of power mn, with D™ (~\ DJ1 = 0 for m ^ n, as well. 

On the set K \J ^JntîDin define d as follows: 

d(x, p) = 1/n + p(p, p/1) for x G Dt
n, p G K; 

d(p,q) = p(p,q) forp, q G K; 

d(x, y) = 1/n + pip?1, pjm) + \/m for x G D/1, y G Djm 

(i.e., we measure down, over, and up). 

It is readily verified that d is a metric. The resulting metric space, H(m, K), 
has the following properties. 

(a) wH(m, K) = m, and \H(m, K)\ = \K\ + m. 
(b) Each closed discrete set is metrically discrete, and has power < m. 
(c) K = [x G H (m, K): the weight of each neighborhood of x i s m ) , and 

each point of H(m, K)\K is isolated. 
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Proof. Clearly H(m, K)\K has power m, and hence \H(m, K)\ = \K\ + tn. 
Since H(m, K)\K is discrete, it has weight m, so that 

wH(m, K) £ w(#(m, K)\K) = m. 

For the reverse inequality, we note that H(m, K)\K, together with a countable 
dense subset of K, is dense in H(m, K) ; hence 

wH(m, K) = èH(m, K) g m. 

If p G K, then any neighborhood of p contains m isolated points, and thus 
has weight m. 

Now let F be a closed, discrete subset of H (m, K). Since \F P\ K\ < co, it is 
enough to show that F is metrically discrete under the additional assumption 
that F C\ K = 0. The function p —> d(p, F) is continuous and never zero on K. 
Thus there is n < w such that d(p, F) ^ 1/n for all p £ K. Now 

F C W {2V: 1 ûl£n,l £i£ kx), 

and since this latter set is 2/w-discrete and of power 

Z{nt* : 1 S I ^ n} = mn < m, 

the same is true of F. 
The proof is complete. 

2.4 Remark. The space i^(Ttt, i£) apparently depends on the representation of 
m as ]Cn<eotttw (as does H(m)), and the sequence {Nn} (and the sequence {cn}). 
Theorem 3.6 below shows that this dependence is illusory. 

3. Structure of general spaces. We show now how an arbitrary metrizable 
space X with no closed discrete subset of power wX looks rather like one of 
the spaces iJ(m, K). 

For an infinite cardinal n, a space X is n-compacl if every open cover of X 
has a subcover of power < n. It is well-known (see for example [6]) that 
(metrizable) X has wX ^ n if and only if X is n+-compact (where n+ denotes 
the cardinal successor of n). 

3.1. LEMMA. Let X be metrizable. Then X has no closed discrete set of power wX 
if and only if X is wX-compact. 

Proof. If 5 is a closed, discrete subset of X such that |5 | = wX, and if 
{Ux : x £ S} is a family of open subsets of X such that Ux Pi S = {%) for 
x Ç 5, then {X\5} U { Ux : x Ç S\ is an open cover of X with no subcover of 
power < wX. 

Let ^ be an open cover of X with no subcover of power < w J . Since X is 
paracompact, we may assume without loss of generality that °tt is locally finite. 
We choose xv G U for U G ^ , and we note that {xv : U G °tt\ is closed and 
discrete in X, and of power wX. 
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3.2. THEOREM. Let X be a metrizable space with no closed discrete subset of 
power wX, and define 

K(X) = {x G X: the weight of each neighborhood of x is wX}. 

Then 
(a) K(X) is non-empty and compact; and 
(b) if wX > co, then K(X) is nowhere dense. 

Proof. We write wX = m = ^2n<umn with mn < mn+i for n < œ (using 
Proposition 1.3). 

(a) Suppose first that there is î < m such that each point has a neighbor
hood of weight ^ Ï. Then by 3.1, X has a cover % by open sets of weight ^ f, 
with | ^ | < m. For U G °ll, let Ses

v be a base for U with \^v\ ^ f; then 
\J{38u\ U G °tt\ is a base for X of powder ^ Î- \°l/\ < m, a contradiction. It 
follows that for each n < co there is xn G X such that each neighborhood of xn 

has weight ^ mn. If the set {xn : n < co} is not closed and discrete, then there 
is x G X such that every neighborhood of x contains infinitely many of the 
points xn; clearly such a point x is an element of K(X). We assume, then, that 
{xn : n < co} is closed and discrete, and we construct by recursion a sequence 
{ Un : n < co} of disjoint open sets such that 

Un is a neighborhood of xn, and the diameter of Un is ^ 1/n. 

Then wUn ^ mn, and by Lemma 1.2 (applied to the space Un) for w > 0 there 
is a closed discrete subset Dn of £/w such that \Dn\ ^ mw_i. Since \Ji^n<03Dn is 
discrete and of power m, this set has a cluster point x. It is clear that x G K(X) 
(and in fact that x is a cluster point of {xn : n < co}). 

If K(X) were not compact, there would be an infinite closed discrete subset 
{xn : n < co} of K(X), and as above there would be a sequence { Un : n < co} 
of disjoint closed sets such that 

Un is a neighborhood of xn, and the diameter of Un is ^ 1/n. 

Then with £>w as above the set \Jn<03Dn is closed and discrete of power m, a 
contradiction. 

(b) If intK(X) 9^ 0 then wK(X) = m and we have the contradiction 
co = wK(X) = m > co. 

The proof is complete. 

Recall that a space X is weight-homogeneous if wU = w J for every non
empty open subset U of X. 

3.3 COROLLARY. NO nonseparable metrizable space X without a closed discrete 
set of power w J is weight-homogeneous. 

Corollary 3.3 also can be derived, somewhat elaborately, as follows: 
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(a) If w l = m, and X has no closed discrete set of power m, then the 
completion of X has these properties also. 

(b) A complete metric space which is weight-homogeneous and of sequential 
weight J^n<œtnn contains a closed copy of Yin<<JiD(mn), where D(mn) denotes the 
discrete space of power mn (see [11] or [12] for a proof). 

(c) Y[n<uD(mn) contains a closed discrete set of power m. (Such a set may 
be constructed as follows. Assume without loss of generality that nto = co and 
for n < co and % < mn define 

U(n, f) = {p £ Un<ù)D(mn): p0 = n, pn = £). 

Then { U(n, £) : n < co, £ < mn} is a cover of Yln<uD(mn) by non-empty, pair-
wise disjoint, open (and closed) sets. The required discrete set is obtained by 
choosing a point from each of the sets U(n, £).) 

We note the following consequence of (b) and (c): If m is an uncountable 
cardinal and {Xn : n < co} is a sequence of metric spaces each of weight m, 
then nw<C0Xw contains a closed discrete subset of power m = w(Tln<œXn). For 
either there is n < co such that Xn contains such a set, or the product of the 
completions of the spaces Xn is a weight-homogeneous space of sequential 
weight m (so that (b) and hence (c) apply). 

3.4. PROPOSITION. Let X be a metric space with no closed discrete set of power 
w l . There are a metric space Y and a function h : F —* X such that 

(a) w F = wX; 
(b) each closed discrete subset of Y is metrically discrete, and has power < w F ; 
(c) K(Y) = K(X), and each element of Y\K(Y) is isolated; and 
(d) h is a one-to-one uniformly continuous function onto a dense subspace of X. 

Proof. If wX = co we set Y = X and we take for h the identity function on 
X. We assume in what follows that wX = m > co. 

Let m = ^n<^\n with mn < mn+i < m for n < co, set K(X) = K and fix 
a metric d for X. 

The set Xi = {x Ç X: d(x, K) ^ 1} is closed in X and hence has no closed 
discrete set of power m. Since X\ C\ K = 0, X\ has no points each of whose 
neighborhoods has weight m, From 3.2 (or 3.1) we have wZi < m, so there is 
n\ < co such that w l i ^ mni. Let Yx be a dense subset of X\ of power ^ mni. 
(The possibility of choosing Y\ = X\—and more generally of choosing Y = X 
and h a function onto X—is discussed in Corollary 3.5 and the remark preceding 
it.) By the same argument, X2 has a dense subset F2 of power ^ mn2. 

By induction, we construct for each k a dense subset Yk of {x G X: l/(k — 1) 
> d(x, K) ^ l/k] such that |F , | ^ mnjfc. 

Evidently the sets Yk are pairwise disjoint, \Jk<(aYk is dense in X\K, and 
ÇUk<aYk) U K is dense in X. 

It follows that sup {| Yk\: k < co} = m. 
Let F be the space ÇUk<wYk) U K with all points of yjk<ccYk made isolated. 
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T h e following function e is easily seen to be a metric generat ing this topology. 

e(y, p) = e(p, y) = d(y, p) + 1/k for p £ K, y G Yk; 

e(y, z) = d(y, z) + 1/k + l/l for y 6 Yk, z Ç F , . 

Since the neighborhoods in F of points p £ K are exactly the sets U C\ Y 
with £7 a neighborhood of £ in X , and since sup {|Ffc|: ft < co} = m, every 
F-neighborhood of every point of K has weight m; in par t icular we have 
w F = wX, which is (a) . 

Wi th respect to e, the set Yk is 2/ft-discrete; it follows t h a t the larger set 
U ^ T j is also 2/ft-discrete. 

Now let F be a closed discrete subset of F. Since | F P i i£| < co, in order to 
prove (b) it is enough to show tha t 7MS metrically discrete (and t ha t \F\ < m) 
under the additional assumption t ha t F P\ K = 0. We claim t h a t there is 
n < co such t ha t F (Z^-J tén Y \. If the claim fails there are a sequence {nk : ft < co} 
with ft* < Wfc+i for ft < co and 3 ^ G FWA. such t h a t 3>WÂ; G F. For ft < co there is 
7?Wfc G X such tha t 

d(ynk,Pnk) < l/(nk - 1), 

and from 

efrn*» Pnfc) = d(ynk, pnk) + 1 / % 

it follows t h a t e(;yWA., ^nA.) —•> 0. Since {̂ Wfc : ft < co} C i ^ and X is compact , 
this sequence has a subsequence converging to some point p of K; the cor
responding subsequence of {ynjc : ft < co} then also converges to p and we have 
p G F r\ K, a contradict ion. T h u s it follows t h a t there is n < co such t h a t 
F C \Ji^nYi, so t h a t F is 2/w-discrete and \F\ ^ mn < m. 

T h e proof of (b) is complete, and (c) is obvious. 
For h in (d) we take the ident i ty function on F. Then h is cont inuous because 

the topology of F is finer than the topology inherited from X. T h a t h is in 
fact uniformly continuous follows from the fact t h a t h decreases distances. 

Remark. According to Atsuji [1] and Rainwater [10], the proper ty (in (b) , 
and of the spaces in § 2) t h a t each closed discrete set be metrically discrete is 
characterist ic of those metric spaces for which the metric uniformity is the 
finest uniformity compatible with the topology. 

Remark. If in Proposition 3.4 the sequentially accessible cardinal m = w l 
has the proper ty t ha t 2 < m whenever f < m (i.e., if m is a s trong limit 
cardinal) then the function h m a y be taken onto X (by defining Yn = Xn for 
all n < co). Bu t if m is a sequentially accessible cardinal, not a s t rong limit 
cardinal, then it is easy to construct a metric space X as in 3.4 with w l = m 
and with \Xk\ ^ m for some ft < co; since Yk is a metrically discrete subset of F, 
the choice Yk = Xk (and a fortiori the definition F = X) is then incompatible 
with condition (b) of 3.4. Since h[Y] is dense in X (and since \Z\ ^ exp exp hZ 
for every regular Hausdorff space Z) we have \X\ = \Y\ = m in case m is a 
s trong limit cardinal. We s ta te this formally. 

https://doi.org/10.4153/CJM-1976-060-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-060-0


METRIC SPACES 619 

3.5. COROLLARY. Let X be a metrizable space with no closed discrete set of 
power wX, and suppose that the (sequentially accessible) cardinal wX is an un
countable strong limit cardinal. Then \X\ = w J . 

In view of remark (a) following Corollary 3.3, it follows from 3.5 that if X 
is as in 3.5 (and with wX an uncountable strong limit cardinal), then every 
completion of X (with respect to a compatible metric) has power m. This is, 
perhaps, surprising, since one might expect completions of power mw; that 
mw > m for sequentially accessible m has been remarked above. 

The observation of the preceding paragraph is closely related to Theorem 2.3 
of [7]. 

We note that under the generalized continuum hypothesis every sequentially 
accessible cardinal—indeed, every limit cardinal—is a strong limit cardinal. 

We show now that the space Y of Proposition 3.4 is one of the spaces 
H(m,K). 

3.6. THEOREM. Let Y be a metrizable space with no closed discrete subset of 
power w F = m > co and suppose that every point not in K(Y) (as defined in 
Theorem 3.2) is isolated. Then Y is homeomorphic to H(m, K(Y)). 

Proof. The set K(Y) is precisely the set of nonisolated points of Y, and is 
compact by Theorem 3.2(a). According to Atsuji [1] and Rainwater [10], a 
metrizable space in which the set of nonisolated points is compact has a 
compatible metric with respect to which any closed discrete set is metrically 
discrete. We equip Y with such a metric, d. We set K = K(Y). 

By Proposition 1.3 there is a sequence {mn : n < co} of cardinals such that 

mn < ntw+i < m for n < co, and 

nt = Zn<o>mw. 

As in 2.3 we select and fix a sequence {en : n < co} of positive real numbers and 
for n < co, a finite ew-net Nn in K such that 

€n —> 0, and Nn C Nn+1 for n < co; 

as before we write Nn = {pt
n : 1 ^ i ^ kn}. 

We are going to homeomorphically coordinatize Y\K by the sets Dt
n used 

in constructing H(m, K). In this recursive process we appeal repeatedly to 
the following lemma. 

3.7. LEMMA. Let (Z, d) be a metric space with no closed discrete set of power 
wZ > co, let K = K(Z)y let {pi : i ^ k} be a finite subset of Z, and for b > 0 
define 

Z(b) = {% G Z : d(x,K) ^ b). 

Ifo>0 and n < m then there is b > 0 such that b ^ 8 and the cover {Et : i rg k\ 
of Z(b) defined by 

Et = {x G Z(b): i = min {j : d(x, pf) = min^ d(x, pi)}} 

decomposes Z(b) into sets Et such that \Et\ ^ nfor all i ^ k. 
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Proof. (Note that for x G Z(b) and i rg k, x £ Et if and only if i is the first 
index such that d(x, pi) S d(x, pj) for all j ^ k.) 

For c > 0 define 

£,°(c) = {x e Z(c): d(x, pi) < d(x, pj) for j £ k,j 9*i}. 

If c' < c we have Et
0(cf) Z) Et°(c) for all i S k, so it is enough to show that for 

i S k there is ct > 0 such that |E*°(c*)| ^ n; for then the number b = min 
{ci : i S k] will be as required. 

We fix i ^ k, and we define a = min {d(ptl pj) :j 9e i}. Then a > 0, and 

S (pi, a/2) H Z(c) C Ei°(c) for all c > 0. 

Thus, if \S(piy a/2) P\ Z(c)\ < n for all c > 0, then choosing a sequence 
{cn : n < o)} such that cn —> 0, we have 

S(ptt a/2)\K = Un<„(S(pif a/2) C\ Z(cn)), 

and thus \S(piy a/2)\K\ ^ co • n < m. Since wK = co, it then follows that 
w(5(^0t a / 2 ) < ™> contradicting that £< £ i£. 

The proof of Lemma 3.7 is complete, and we return to Theorem 3.6. 

We choose a sequence {ôn : n < co} such that 0 < bn for all n < œ and ôn —> 0. 
We apply Lemma 3.7 with Z = Zx = F, with {pi : i ^ k) = {£ / : i g jfei}, 

with 5 = ôi and n = nti. There is b\ > 0 such that fri ^ 5X and the disjoint 
sets {Ei1 : i ^ ki}, with union 

Z(bi) = {x £ Y:d(x,K) è h], 

are of power ^ nti. 
We note that Z(b\) is discrete and closed in F, so there is r± < co such that 

|2(M ^ mri. 
Now recursively for 1 < n < œ we set 

Z„ = Y\Uk<nZ(bk) = {x £ F: d(*, X) < 6„.i} 

and, noting that K(Zn) — K, we apply Lemma 3.7 with {pt : i ^ k} = 
[pi1 •' i ^ &n}, with 5 = ôn and n = mn. There is bn > 0 such that &re ^ 5n and 
the disjoint sets {Et

n : i ^ &wi, with union 

Z(bn) = {x£ Y: bH-! >d(pc, K) §:&»}, 

are of power ^ mn. As above, there is rn < œ such that |Z(6n)| ^ mrn. 
We note next that if x £ £/* then d(x, £/*) ^ ôw-i + €n. Indeed, there is 

p £ K such that d(x, p) = d(x, K), and since Nn is an ew-net in K there is 
7 û K such that J(^?, pp) < en\ then from the definition of Et

n we have 

d(x, pin) S d(x, pp) ^ d(x, p) + d(p, p.?) < 6w_i + en ^ àn-! + €». 

We now exhibit the homeomorphism of F onto H(m, K). The proof is 
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particularly simple if it should happen that {E*| = mn for all n < co, i S kn-
(This is indeed the case for the spaces Y = H(m, K, A) of 2.2, if \A\ < m.) 
We first sketch the proof under this assumption. 

Given n, and i with 1 ^ i ^ kn, we identify the set JE/1 in F with the set D? 
in H(m, K), and we identify the sets K in each space. Thus as sets we have the 
equality F = H (m, K). We must show that the metrics are topologically 
equivalent. 

Let h denote the metric of H(m, K), defined as in 2.3; p is the metric of K, 
h(pj Q.) = P(PI Q.) f° r aH Pi <Z 6 K, and the metric d of F is compatible with p 
onK. 

To establish the required homeomorphism it is clearly sufficient to show 
that if %i (? K and p G K, then h(xh p) —» 0 if and only if d(xh p) —» 0. 

For I < co there are w(/) < co and i (0 = K(i) such that x^ G Di(<i)n^l). 
Suppose first that h(xh p) —> 0. Since 

h(xhp) = l/n(l) + p(p,Pi(i^l)), 

we have n(l) —* oo and p(p, pi<n)Hl)) —> 0. In F we have x^ G E i ( 0
n ( 0 , and 

d(*«, />) ^ <2(x*, ^c»w(î )) + d(P, £<con(0). 

Since ci and p are compatible on K, we have d(p, pni)n(l)) —» 0, so from 

d(xhPi(l)
n^) ^ ôn(0-l + €n(»-+0 

we have d(xj, £) —> 0. 
For the converse, suppose that d(xh p) —> 0. Since d(xz, i£) ^ d(xh p) —> 0, 

we have also d(x*, i£) —» 0, and hence n(l) —> oo . Thus 

d(p,pi(l)
n^) ^ d(xhp) +d(xhpi(l)

n^)^d(xhp) + ôJl(J)_1 + e , , ^ - * 0 ; 

so from the definition 

h(xhp) = l /»(/) + P ( £ , ^ ( » W ( 0 ) 

and the fact that d and p are equivalent on i£, it follows that h(xh p) —> 0. 
The proof is complete in the case that \Et

n\ = mn for all n < co, i ^ kn. We 
turn now to the general case. 

We define a function/ from F onto H(my K), with f(p) = p for all p £ K. 
We begin by defining/ on the set \J{Eil : i ^ ki}. Since mi ^ IE*1! ^ m n 

for i ^ fei, there is F*1 C Et
l such that |/<y| = nti; and there is i' ^ &n such 

that p^ = pi>TK We define/ on Et
x so that 

i) / is a one-to-one function, 

i i ) j ™ = 2 V , 
iii)/[E^XF,1] C 2 V 1 , and 
iv) \Dt^\f[Eft\ = mri. 
More generally,/ having been defined on UjE/* - 1 : i ^ &n-i}, we note that 
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since mn S \Et
n\ S tn rn for i ^ kn, there is F" C E" such t h a t \Ft

n\ = mn; 
and there is i' ^ kTn such t h a t pt

n = pvTn. 
We define / on Et

n so t h a t 
i) / is a one-to-one function, 

ii)f[Fn = z ? A U i < » . w i M 
iii) f[Et

n\Ft
n] C 2 V » , and 

iv) | 2 V r A ^ * . ^ * j / [ £ / ] | = m rn . 
I t is clear t h a t / is a one-to-one function from Y onto i f (m , i£)- T h e proof 

t ha t / is a homeomorphism proceeds essentially as in the special case t reated 
above: I t is sufficient to verify for Xi (? K and p G K t h a t h(xh p) —> 0 if and 
only if d(xh p) —* 0, and this follows from the compatibi l i ty of h and p on K 
and the fact t ha t if xl G £ i ( i )

n ( 0 C F a n d / ( x , ) 6 £ > n » " ( 0 C # ( m , # ) , then 
«( / ) —> oo if and only if n'(I) —> oo . We omit the details of the proof. 

Remark. I t follows from the Atsuj i-Rainwater theorem mentioned after the 
proof of Proposition 3.4 t h a t the metric d used above for Y makes the spaces Y 
and H(m, K) uniformly isomorphic. 

3.8 COROLLARY. The space H(m, K, A) of 2.2 is homeomorphic to H(m, K) if 
and only if \A\ < m. Thus, if the continuum hypothesis is assumed, then all 
spaces H(m, K, A) are homeomorphic to H(m, K). 

4. S t o n e - C e c h c o m p a c t i f i c a t i o n s . W e consider the problem of comput ing 
certain cardinal functions on Stone-Cech compactifications of metric spaces, 
in terms of cardinal properties of the metric spaces. T h e functions which we 
t rea t are the density, the power, and the weight. 

As to density, the result is simple. 

4.1 P R O P O S I T I O N . If X is metrizable, then Ô/3X = 5X. 

Proof. In general, if X is dense in Y, then any dense subset of X is dense in Y, 
and hence hX ^ ÔY. Thus , ôX ^ Ô0X. 

For the opposite inequali ty, we use the (obvious) fact t h a t for any space Y, 
if °tt is a family of disjoint open sets and D is dense, then | ^ | ^ \D\. By a 
theorem of Hara tomi [9] (see also [3]), metrizable X contains a family % of bX 
disjoint open sets. For each U Ç °tt, let V be an open subset of f$X with 
U' r\ X = U. Then { U'\ U G °ti\ is disjoint. I t follows t h a t Ô/3X è | ^ | = SX. 

4.2. Remarks, (a) T h e proof of Proposition 4.1 works for any compactification 
bX of (metrizable) X, showing directly t ha t ôbX = 5X. We note, however, 
t ha t ôbX = ô/3X for every compactification bX of every Tychonoff space X. 
This follows easily from the facts t ha t the Stone extension (3X —> bX of the 
injection of X into bX is '"irreducible" (i.e., it carries proper closed sets to 
proper subsets) , and t ha t an irreducible map preserves density. 

(b) For appropr ia te (non-metrizable) Tychonoff spaces X, the inequali ty 
bfiX < 5X can occur; see for example [2]. 
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We turn now to the cardinals W/3X and \PX\, where the situation is more 
involved. A good starting point is the following important result of Hausdorff 
and Pospisil (see [8]). 

4.3. THEOREM. If X is an infinite discrete space, then w(3X = exp \X\ and 
\pX\ = exp exp \X\. 

We record the following familiar lemma (whose proof is available, for 
example, in [3]). 

4.4. LEMMA. If Y is a regular Hausdorff space, then wY ^ exp 8 Y and 
| Y\ ^ exp w Y g exp exp 8 Y. 

Theorem 4.3 now extends easily, as follows: 

4.5. THEOREM. Let X be metrizable, and suppose that X has a closed discrete 
set of power w l . Then wpX = exp wX and \PX\ = exp exp w l . 

Proof. The inequalities ^ are given by Lemma 4.4. If D is a closed discrete 
subset of X with \D\ = wX then (since X is normal) the set D is 
uC*-embedded" in X, hence in PX\ it follows that the closure of D in PX is 
(3D [8]. Thus, pX contains a copy of pD, so that wpX ^ wpD = exp wX 
and \pX\ ^ exp exp wX by Theorem 4.3. 

We set out now to complete the picture. 

4.6. PROPOSITION. Let X be a metrizable space with no closed discrete subset of 
power w l , and (by Proposition 1.3) let 

w l = m = J2n<œKin with mn < mn+i < m for n < œ. 

Then 

X)w<co exp mn S wpX g exp m, and J2n<o> exp exp mn ^ \6X\ ^ exp exp m. 

Proof. The upper bounds follow from 4.4. For the lower bounds, we use 1.1 
to find in X, for each n, a closed discrete set Dn of power mn, and then (as in 
4.5) a copy of pDn in pX. Thus exp mn ^ wpX and exp exp mn ^ \pX\ from 
4.3, and the results follow. 

Whether or not the upper and lower bounds in 4.6 coincide depends on the 
axioms of set theory. If the limit cardinal m is a strong limit cardinal (i.e., if 
exp ï < m for all f < m)—and hence surely if the generalized continuum 
hypothesis holds—then 

J2n<o> exp mn = m < exp m and Yln<* exp exp mn = m < exp exp m. 

On the other hand it is, according to the results of Easton [5], consistent to 
have, say, 

exp nto = exp m (and hence exp exp mo = exp exp m). 

https://doi.org/10.4153/CJM-1976-060-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-060-0


624 W. W. COMFORT AND A. W. HAGER 

But whatever the axioms adopted for set theory, the lower bounds of 
Proposition 4.6 are exact. We prove this by use of Theorem 3.6 and explicit 
computations concerning (3H(m, K). 

If {Xa : a 6 A} is a family of topological spaces, we denote by ^açAXa their 
"topological sum" ; this is the disjoint union of the sets Xa, topologized so that 
a set G is open if and only if G C\ Xa is open in Xa for each a £ A. 

Now, in H(m, K), with co < m = Y^nK^n as before, set 

D(mi) = {x: d(x,K) è 1}; 

and for 1 < n < co set 

D(mn) = {x: l/n S D(x,K) < l/(w - 1)}. 

Then \D(mn)\ = mnj and D(mn) is closed and discrete. 
Thus£T(m, K)\K = Y,D(mn), and i7(m, K) can be written as K U J^D(mn). 
Since D(mn) is closed and discrete, it follows as in the proof of Proposition 4.6 

that the closure in (3H(m, K) of D(mn) is a copy of (3D(mn). 

4.7. THEOREM, 02ï(m, K) = KU D 3 D ( m J . 

That is, there are no points in fiH(m, K)\H(m> K) other than those in the 
closure of the sets D(mn). 

In particular, pH(m) = [p] W 2j&P(mw); that is, (3H(m) is the one-point 
compactification of J2/3D(mn). Theorem 4.7 says that f3H(m, K) is obtained 
by compactifying J^/3D(mn) with K. In particular, then, any compact metric 
space can be adjoined to Yl3D(mn) to create a Stone-Cech compactification. 

We now prove Theorem 4.7. 
Since 2j32}(mn) is dense in f$H(m, K), it is enough to show that every 

accumulation point p of J20D(mn) in f3H(m, K) lies in K. If not, then there is 
a closed neighborhood U of p such that U C\ K = 0. For infinitely many w, 
there is xn G £7 H Z>(mn), and since ^(xn, i£) —> 0 and i£ is compact, the set 
{xn : « < co} has an accumulation point q £ £/, a contradiction. 

4.8. COROLLARY. w(iH(m, K) = J^n<u exp mw, awrf \PH(m, K)\ = J2n<o> exp 
exp mn. 

Proof. That |]Si7(m, K)\ = !]«<« exp exp mn is immediate from Theorem 4.7 
(and the hypothesis m > co). Now the identity function 

K + 2jM>(mJ -> # U ZPD(mn) = #? (m, if) 

is continuous, and the domain clearly has weight co + ]Cn<«expmw = J2n<œ exp 
mre. But a continuous function with compact range cannot increase weight 
(see for example [6, Corollary 2 to Theorem 3.1.11]. The proof is complete. 

4.9. COROLLARY. Let X be a metrizable space with no closed discrete subset of 
power wX > co, let wX = m = Yn<u^n as in Proposition 1.3, and let K be the 
compact set of Theorem 3.2. Then 

https://doi.org/10.4153/CJM-1976-060-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-060-0


METRIC SPACES 625 

(a) @X is a continuous image of (3H(m, K); 
(b) w(3X = J2n<œ exp mnand \(3X\ = Y<n<o> exp exp mn; and 
(c) every point of f$X\X is in the closure (in 0X) of a subset of X of power 

< m—indeed there is a sequence \En : n < co} of subsets of X, each of power < m, 
such that (3X = K \J Uw<a> dpx En-

Proof. There is a continuous function g from H(m, K) onto a dense subset 
of X. (In the notation developed above in § 3, we have g — h of _ 1 : H(m, K) 
—» X, where Y is the space defined in the proof of Proposition 3.4, / is the 
function of 3.4, and h is the homeomorphism from Y onto H(m, K) defined in 
the proof of Theorem 3.6.) The Stone extension g of g takes fiH(m} K) onto 
PX, so (a) is proved. The equalities of (b) follow from 4.6, 4.8 and the fact 
(as in the proof of 4.8) that 

wpX = w(g[(3H(m, K)]) g w(3H(m, K). 

To prove (c) we let D(mn) be as in Theorem 4.7 and the paragraphs pre
ceding it, and we set En = g[D(mn)]. For every p Ç PX\X there is q 6 @H(m, 
K) such that g(q) = p, and since g[H(m, K)] = g[H(m, K)} C X we have 
q G @H(m, K)\H(m, K). It follows from Theorem 4.7 that there is n < co 
such that g G cl0/7(m,A:)£K*nra),

 a n c l from the continuity of g we have^? G c\$xEn, 
as required. The proof is complete. 

We recall, finally, that the space f$X may be identified with the set of 
"s-ultrafilters" on X suitably topologized (see [8]), and that for X discrete 
there are many p Ç (3X which are "uniform", i.e., for which \E\ = \X\ when
ever E C X and p G c\^xE. In this respect, as with Theorem 4.7, we find the 
result of Corollary 4.9 (c) unexpected and even bizarre: despite the presence of 
the huge dense subset E = \Jn<wEn of X, no ultrafilter p G @X is uniform over E. 
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