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THE PRIMITIVE IDEAL SPACE OF
A C*-ALGEBRA

JOHN DAUNS

Introduction. The commutative Gelfand-Naimark Theorem says that any
commutative C*-algebra A is isomorphic to the ring Cy(M, C) of all continuous
complex-valued functions tending to zero outside of compact sets of a locally
compact Hausdorff space M. A very important part of this theorem is an
intrinsic and also a complete characterization of M as exactly the primitive
ideal space of A4 in the hull-kernel (or weak-star) topology. In the non-
commutative case, 4 = T\(M, E)—the ring of sections tending to zero out-
side of compact subsets of a locally compact Hausdorff space M with values
in the stalks or fibers E. Furthermore, this representation reduces to £ = M X
Cand Tw(M, M X C) = Co(M, C) if A is commutative (see [1]). However,
in the non-commutative case it has not been possible to determine the topology
of M precisely. Here, a partial answer is given to this very troublesome flaw
in the general Gelfand-Naimark Theorem.

Consider a C*-algebra 4 and its primitive ideal space B in the hull-kernel
topology. Any topological space B has a complete regularization ¢:B — M,
where M is a completely regular topological space with the universal property
that any continuous map of B into a completely regular topological space
factors uniquely through ¢. The points m € M can be identified with ideals of
A by

m = N {b ¢ Blp() = m}.
Here the main interest will be in the case when A does not contain an identity,
in which case in general neither B nor M need be compact. If % is any family
of compact subsets of M that is closed under finite unions and with U = M,
then a Hausdorff one point compactification of M is obtained by taking
{M\K|K € A} as a neighborhood basis of the point of infinity. The finest
one point compactification of A is obtained by taking ¢ as all compact sub-
sets of M. However, let
H = {{m € Ml||la + m|| = N]a € 4; x> 0}.

Then by the non-commutative Gelfand-Naimark Theorem (see [4, p. 119,
8.13]), there is a fiber-bundle or sheaf-like structure

w:EEU{%Im EM > M
&M—>E,am) =a+m€ xi(m) a€ A, M€ M.
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Let T'y(M, E) denote all continuous cross sections ¢: M — E (with roe =
identity) vanishing at infinity on this particular one point compactification of
M given by the above 2#". The non-commutative Gelfand-Naimark theorem
(see [1, p. 119, 8.13]) asserts that A = T'\(M, E). The objective of this note
is to show that the 2#-compactification is the finest one, provided each primi-
tive ideal of A does not contain the center of A. The general case still remains
an open question.

1. Spaces of ideals. Some of the facts from [5] and [6] are used without
proof. It will be convenient to take equivalent, but slightly different definitions
than were used previously in [5] and [6] for some of the basic invariants
associated with a C*-algebra.

1.1 Notation. For any C*-algebra 4 whatever with or without an identity,
consider its primitive ideal space Prim 4 = B, its centroid R, and the maximal
ideal space Y of the centroid (see [5] and [6]). There is a map F:B— 7Y,
F() = {r € R|rA C b}. For each p € ¥, define an ideal m(p) of 4 by

m(p) = N {b € BIF®) = p} = N F({p}).

Let M be the set of ideals M = {m(p)|p € F(B)}. Now define a map
¢:B — M by ¢(b) = m(F(b)). (This is the complete regularization map used
in the introduction.) (For various properties of R, V, F, and M, see [6].) Let
Z = center A. If 1 € 4, then R = Z and the map ¢ simply becomes ¢ (b) =
N{g € BlgM Z = b M Z}. There is a one-to-one correspondence F(B) — M
given by p — m(p). Consequently, let us simply transfer the topology from
F(B) to M by means of this identification.

I't will be convenient to view 4 as an ideal and R as a subalgebra of M (4),
the multiplier (or double centralizer) of 4 (see [6]). Then 4 T R+ A C
M(A). (In a C*-algebra such as M (A4), the sum of a closed ideal and a closed
subalgebra can be shown to be closed [10, p. 18, 1.8.3]). Let 4, = R + A4.
The above objects B, M, ¢, and F are defined for any C*-algebra whatever
with or without identity. For the C*-algebra A; they will be denoted by
Bi1, M1, ¢1, and F;. Since center A; = R, the centroid of 4, is also R (so that
Ry =R, Y, =7Y). Let F;:B;— Y. Since 1 € 4,, Fi(B:) = Y.

1.2. Since M is indexed by the subset F(B) C Y and M; by all of Y, there is
a natural injection defined by

it M — My, i(m(p)) = mi(p) p € F(B)

where m;(p) = N {by € By|bs N R = p}. Since the topologies on M and M,
were transferred from F(B) C F:1(Bi), the map 7 is a homeomorphism onto
its image.

1.3. For b € B, define b = {a € Ailad C b} and set B = {b|b € B}. Then
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it can be shown directly or it follows from [6] thatb = {a € 4,jad + Aa C b}
and that B = {J ¢ By|A & J}. Now define a function

JiB— By, j(b) =b b€ B.

The symbol ‘1"’ will denote ideals. Since 4 <1 44, j is a homeomorphism of B
onto the open subset B of B;y. Furthermore, b N 4 = b.

In the next paragraph some of the relations between the objects ¢, F, M, B
defined for A and ¢,, F1, M;, B; and A, are explained.

1.4. Since center A; = R, for any J € By, F;1(J) = JM R. In particular,
for b € B and b = j(b), b "\ R = F{(0). But by definition of & and F(0),
bNR = {rc RlrA C b} = F(b). Thus F,j = F. It follows from the defini-
tion of m;(p) that m,(p) D p and that m,(p) N R = p.

1.5. Some facts about the hull-kernel topology, the primitive ideals, and the
norm of an arbitrary C*-algebra 4 (with or without an identity) have to be
recalled.

(a) Forb € B,and a« + b € A/b, ||la + b|| is the quotient norm ||a + b|| =
inf {||la + ¢|| |c € b}. The sets

{b€Bllla+0d]|>N 0<Na€Ad

form a basis for the hull-kernel open sets [11, p. 257, 4.9.15].

(b) Each subset of the form {b € B| ||a 4+ b|| = N} is compact [11, p. 258,
4.9.19]. (All these latter sets are also closed if and only if B is Hausdorft [11,
p. 258, 4.9.19].)

(c) For any closed subset A C Bandanya € 4, sup {||a + b|| |b € A} exists
{11, p. 256, Theorem 4.9.14]. If m <1 A4 is any closed ideal, then Prim 4/m =
{b/m|b € A}, where A C B is the closed set A = {b € B|b D m}, i.e., the hull
of m. For any C*-algebra A, and any @ € 4,

lla|| = sup {||la + J|| |7 € Prim A}.

Take 4 = A/m and @ = a« + m. The last two facts imply that |la + m|| =

sup {|la + b|[ [m S b € Bj.
(d) In (c) above, actually there exists an ideal ¢ € B with ||e|| = ||« + ¢||.
Similarly, for an ideal m C 4, ||le + m|| = ||la + ¢|| for some m C q ¢ B.

Both of these assertions follow from [11, p. 256, 4.9.14].

The next proposition is stated in slightly greater generality than actually
later used in order to emphasize that it involves no topological considerations.
It also should be noted that any closed ideal in a C*-algebra is the intersection
of all the primitive ideals containing it; thus in later applicationsm = (N ¢~ (m)
below.

1.6. PROPOSITION. Suppose that A is any C*-algebra (with or without identity’),
that B = Prim A, that M s any set of closed ideals of A, and that ¢:B — M 1s
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any surjective function whatever subject only to the restriction that
o) =mem Cb b B,mc M.

Then for each real N > 0 and a € A4,
(i) 6(10 € Bllla + 0|l = N\}) = {m € M||la 4+ m|| = \};
(i) ({0 € Bl |la +0|| > A\}) = {m € M| ||la + m|| > \}.

Proof. (i) For b € B with |la + b|| = ), it follows from ¢(») C b that
[la + ¢(®)]| = |la + b|]| = \. Hence

o ({0l lla + 0|l 2 M) S {m] [la + m|| = N}.

Conversely, if |la + m|| = X\ for some m € M, then 1.5(d) shows that there
exists a ¢ € B with m C ¢ and ||a + ¢|| = ||a + m||. Consequently, also

fm| |la + m|| = N} € ¢({0] |l + b]| = N}).

(i) If [la 40| >\, then ¢(b) b and [la + ¢O)|| = ||le + b]] > \.
Whereas if m € M with [[a + m|| > A, then 1.5 (c) shows that [|la + m|| =
[l + b]| > X for some m C b € B. Thus

({0 [la + 0| > N}) = {m € M||la + m| > N}

Although not needed for later purposes, the previous proof actually proves
the next corollary. It is stated with possible later generalizations to more
general than C*-algebras in mind.

1.7. COROLLARY. Assume that A is a Banach algebra with ¢:B — M as in 1.6
and assume that 1.5 (c) holds. Then
(i) {m € Ml|lla +m|| >N S ¢({d € Bllla+0[ 2)\) S
{m € M||la + m|| = \};
(ii) (10 € B| |la 4+ b]| > N\}) = {m € M||la + m|| > \.

1.8. Remark. If in the previous corollary ||e + m|| = \, it may be impossible
to find a b € B with b 2 ¢(0) = m and |la + || = \.

1.9. COROLLARY. In addition assume that ¢:B — M is the complete regulariza-
tion map of the primative ideal space B of a C*-algebra and that B has the hull-
kernel topology while M has the topology defined in 1.2. Then {m| ||a + m|| = N}
is a compact subset of M. If ¢ is an open map then {m € Mla + m|| > N} is
open in M.

Proof. By 1.5 (b) and the fact that ¢ is continuous, the set
{m € Ml|la + m|| = N

is compact. (Note that it is closed because M is Hausdorff since F(B) is.)
By 1.5 (a), {0| |la + b|] > A} is open in B. But then 1.6 (ii) shows that so is
{m| |la 4+ m|| > N} provided ¢ is open.
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2. The main theorem. For the remainder assume that 4 does not contain
an identity. Then B is locally compact while B; is compact.
2.1. LEMMA. In the notation of the previous section there is a commutative

diagram
B> 1 > By
¢ b1
Y Y
Y Y
M » - > M,
1

Proof. For b € B, and the corresponding & = {a € A;lad C b}, we have
bR = {r € RlrA C b} = p, where F(b) = p. But by the definition of ¢
and m (or ¢, and m;) we have

6:1(8) = mi(p) = N{J|J € B, JNR=56NR = p}.
Since, ¢(b) = m(p), i(m(p)) = mi(p), it follows that ¢.17(b) = i¢ (). Thus
¢1j = 1¢ and the diagram commutes.

2.2. LEMMA. Let center A = Z. Then B\B = {p + A|p € ¥V, Z C p}.

Proof. f Z L p,then p+Z =R, and p+ A4 =R+ A. If Z C p, then

R4+4 R _R
p+A " RN@P+4) »p

Thus p + 4 € B\B if Z C p. Conversely, since B = {J € B,|JA & J}, if
I¢B\B, thend ZICR+ A.ThusI = RNIT+ A with (R+ 4)/I =
R/R M I. Thus the latter isCand p = RN I € Y. Hence I = p + A.

= C.

The first three conclusions of the next proposition would immediately follow
from the commutativity of the diagram in 2.1 in case ¢ was one-to-one.

2.3. PROPOSITION. For an arbitrary C*-algebra, the following hold:

(i) i1 (M) < B, ) ]
(i1) For any I € ¢~ (2 (M))\DB, there exists a b € B with ¢(I) = ¢(b).
(iii) Furthermore, IMR =b N\ R € Y, and
(iv) Z Cb.

Proof. (i) The commutativity of the diagram in 2.1, i.e., i¢ = ¢,j, implies
that ¢~ (Z(M)) D B.

(i) By 22, I = p 4+ A4 for some p € YV with Z C p. Since
I€ ¢ 1(@i(M)), p1(I) = 2(m) for some m € M. Since M = ¢(B), there exists
ab ¢ B with m = ¢(b). Thus ¢:(I) = i¢(b) = ¢1(b) = ¢:1(b).
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(iii) For any I € By, $:({/) "R =TNR € Y. Set p = ¢:(I) N\ R. Thus
p=e:B)NR=FNR=F).

(iv) Suppose Z & b. Then z € Z\b implies that 24 & b and hence z ¢ b.
Thus Z € b M\ R = p, a contradiction. Thus Z C b.

Some additional information about p, b, and I is contained in the next
corollary.

2.4. COROLLARY. Under the assumptions and with the notation of the previous
proposition for p = I M R = b M R as in (iii), the following hold
(v) b is non-modular = b = b + p;
(viyl =e+ b€ A/b for somee ¢ A =b=R(1 —e) + b;
(vii)I = A4 + p; b C I

Proof. (v) It will be shown that b = b + p. Suppose r — ¢ € b =
fa € A1|lad C b} withr € R,c € A. Then for x,y € 4

rey = xry = cxy = xcy modulo (b).

Thus (cx — xc)A € b. But b = {a € Aled C b}. Hence cx — xc € b for any
x € A. Thus ¢ + b € center A/b. At this point our additional hypothesis that
b is non-modular has to be invoked. Thus center 4/b = 0 and ¢ € b. But then
(r —¢)A C b if and only if ¥4 S b, or r € F(b) = p. Thus b =b + p C
A + p = I, and conclusion (v) follows.

(vi) Clearly, [R(1 — e) 4+ b]A C b, hence

R(1—e)4+bC{ac€ Adijad C b} =b.

Conversely, if » —c €5, then r —¢c =7r(l — e) + (re — ce) + (ce — ¢),
where the last two terms are in b. Thus b = R(1 — e) + b.

(vii) By 2.2, I = A + p. By (v) and (vi), b C I. Alternatively, since
bCI=1{a€ Ailad, C I}, alsob C I.

2.5. THEOREM. Consider a C*-algebra A with center Z, primitive ideal space B
in the hull-kernel topology, and ¢:B — M its complete regularization. Assume
that Z & b for every primitive ideal b of A. Then an arbitrary compact subset
K C M 1s contained in a compact subset of M of the form

KCi{me¢c M||la + m|| =\
for some positive real X > 0.

Proof. Since 7 is continuous (in fact, a homeomorphism) and K compact,
also 4(K) is compact in M. Since M, is Hausdorff, 2(K) is closed. Since ¢,
is continuous, ¢;~1(2(K)) is also closed. But B; is compact and hence ¢, (2(K))
is compact. As a consequence of 2.3 (iv) and the assumption that Z &€ b for
all b € B, it follows that ¢,"1(i(K)) C B. However, for any 5 € B, A £ b
because 5 M A = b. Let j* be the corestriction j*:B — B of j to its image B.
Since j* is a homeomorphism, 7*~1(B M ¢:71(:(K))) C B is compact. If ¢;* is
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the restriction of ¢, to B, then ¢*~1(:(K)) = B N ¢*~1(i(K)) and the following
diagram commutes:
%

J W B
>

B »
¢‘ #*

M »- - —> M,
7

Consequently, ¢~1(K) = j*"1¢;*~1(1(K)) is a compact subset of B. By 1.5 (a),
there isa p > 0 and a finite subset # (C 4 such that

¢ 1K) C U b€ B||lc+b]|>pcc FI.

Set @ = Y. {c*c|c € #}. In any C*-algebra 4, if 0 < x <y € A4, then also
0 < ||x]| < |lyll- Thus [[(c* + b)(c + b)|| = |lc*¢ + b]| < |la + b||. Thus
if ||c + b|| < p, then

p* = le + 0l = [lc*c + 0[| = [la + ]|
and ¢ 1(K) C {b € Bl |la + b|| = A} with X\ = p2 For |la + b|| = A, set
m = ¢(b). Then b 2 m and ||e + m|| = ||e + b||. Thus
K = ¢(¢71(K)) S {o®)]lla + b]| = A}
C {m|lla + m|| = N
The next result is stated only for the sake of completeness.

2.6. COROLLARY. If 4 is any C*-algebra with ¢:B — M an open map, then any
compact subset K C M 4s contained in one of the form

K C{meMlla+ml =N
for some real N > 0.

Proof. Since ¢ is open, by 1.5(a), sets of the form {m| ||c + m|| > p} =
#{b] ||lc + b|| > p} with varying ¢ € A and fixed real p > 0 provide an open
cover of K in M. The rest of the proof is as before.

The next proposition isolates the obstruction to proving the main Theorem
2.5 in general.

2.7. Propros1TION. Consider an arbitrary C*-algebra A with centroid R, and
¢:B — M as previously. Any compact subset K C M is of the form

KC{me M|lla+m|| =N\ x>0
provided By = Prim (R + A) D B (see 1.3) satisfy the following condition:
for all I € B:\B and all r € R with ||r + I|| = \, there exists
a € A such that for all b € B, ||r 4+ b|| < ||la + b|].
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Proof. Throughout, let A > 0 be any fixed real number. For « € 4, let
O (a, \) C B, be the open set O (a, \) = {I € By |la + I|| > \}. Fora € 4
and b € B it follows from b = A Nb that A4/b =~ (4 +5)/b C 4,/b and
hence that ||la 4 b|| = ||a + b||. Since A & b for all b € B, ¢;7'(i(K)) N\ B is
covered by open sets of the form & (a, \) for varying a€ A. For I€ ¢, (i (M))\B,
by 2.3, 1 = ¢1(6) = A+ p with b € BT Dbandp =INR=bNREC Y.
Thus ¢, (i (M))\B is covered by sets of the form & (r; \) for various r € R.
Thus since it follows from the proof of Theorem 2.5 that ¢;=1(i(K)) C B, is
compact, there are finite subsets # , C R, % , C A such that

6 (i(K)) S ULO @ Nlr € 13 U U {O(a, N)|a € Fl.

For each 7 € %# 1, let a = a(r) be the element given by the hypothesis. Then for
any I € O(r,\), there exists a b € B with b C I, with ¢;(8) = ¢1(I), and
¢(b) = m € K. Furthermore,
lla(r) +ml| = |la(r) + ]| = |la(r) + b]|
z lla(r) + 1| z [Ir + 1] > N
On the other hand, any element I € BN ¢,"1(i(K)) is of the form I = g
with ¢ € B. Hence if § € O (a, \), then

lla + @Il = [la + gll = lla + gll >\

Consequently
KC{me Mll|la+m||zZNa€ Fyor
a=al) withr € ¥},

and the rest of the proof is as before.
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