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Abstract. A new family of sheaves has been recently studied by M. Kashiwara and P. Schapira
generalizing to constructible sheaves the notion of moderate and formal cohomology. We prove
comparison theorems when we regard these sheaves as solutions of a D-module. These results
are natural generalizations of those of Y. Laurent and the author.
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Introduction

Let X be a complex n-dimensional analytic manifold. Let F be an object of the
derived category D‘j@ﬂ,(X ), that is, a complex of C-vector spaces with bounded
and R-constructible cohomology. We consider the object tHom(F,Oy) of
D'(Dy) introduced by M. Kashiwara in [K3]. Here Oy denotes the sheaf of
holomorphic functions and Dy the sheaf of linear holomorphic differential operators
of finite order on X.

As a functor in D%fC(X), tHom(-, Oy) generalizes the classical notions of
moderate growth for holomorphic functions, or of tempered distributions in the real
case.

Let us recall that there is a transformation of functors

tHom(-, Ox)—sRHom(-, Ox) (1)

which contains as particular cases:

(i) when F = Cy, for Y an analytic subset of X, the morphism RI'[y|(Ox)—
RI'y(Oy) between algebraic and usual cohomology supported by Y;

(i) when F = Cy, for M a real analytic submanifold complexified by X, the
inclusion Dby < By, of the sheaf of distributions in the sheaf of Sato’s
hyperfunctions.

*Work supported by Project Praxis/2/2.1/Mat/125/94 and EC contracts CHRX-CT94-0609,
TMR-ERBFMRXCT 960040.
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When M is a regular holonomic Dy-Module, a well-known result of M.
Kashiwara is the following general comparison theorem:

The natural morphism:
RHomp, (M, tHom(F, Ox))—RHomp, (M, RHom(F, Oy))

is an isomorphism.

More recently, M. Kashiwara V?/nd P. Schapira [K.S.1] introduced the so-
called Whitney functor, denoted - ® Oy, dual of tHom(:, Oy), from Dfﬁfc(X ) to
Db(Dy) (cf. [K-S]).

There is a transformation of functors

w
‘®OX—> - ® O)(.

In the case F = Cy for Y an analytic submanifold, Cy 55 Oy is identified with the
formal cog}pletion Oyiys when F = C,, for a real analytic submanifold complexified
by X, F ® Oy is identified to Cf7, the sheaf of C*°-functions on M.

As a consequence of the duality between the two functors, these authors proved
the following theorem:

Let M be a regular holonomic Dy-Module. Let F € Dr_.(X). Then the natural
morphism

4
RHomyp, (M, F ® Ox)—RHomp, (M, F ® Oy)
is an isomorphism.

Let now Y be a submanifold of X. Let us consider a Fuchsian (not necessarily
holonomic) Dy-Module M along Y. In a previous work with Y. Laurent [L-TMF],
we have proved that the complexes of solutions of M in the sheaf of holomorphic
hyperfunctions on Y, with either finite, or infinite order, are isomorphic. We have
also shown that the complexes of either holomorphic solutions or formal solutions
along Y are isomorphic.

Our aim here, in a first attempt, is to generalise both results of [L-TMF] replacing
Oy by tHom(F, Oy) is the first theorem and Oy by F (g Oy in the second. We treat
two distinct situations: the case where Y is the intersection of two submanifolds
each one containing either supp M or supp F; the case where (M; F) is an elliptic
pair in the sense of Schapira—Schneiders, together with a Levi condition and F
is C-constructible. The proofs are completely different. Actually the proof in the
second case relies on the reduction to the case treated by [L-TMF] thanks to the
well-known result of M. Kashiwara [K3] which asserts that tHom(F, Oy) is a
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complex of Dy-Modules with regular holonomic cohomology when F is C-
constructible. Another essential tool is the duality theorem of [K-S,Th. 6.1].

The reader may wonder whether our two cases are actually contained in a general
result. We are not able to give a definite answer to this question but we suspect it
would be negative.

In a next attempt, we consider the following problem: let us suppose X is a
complexification of a real analytic submanifold M in such a way that Y is a
complexification of a real analytic submanifold N of M. It is then natural to consider
an object F of D’ﬁ_(y,(M), M a coherent Dy-module and investigate under which

conditions the following morphisms are isomorphisms:

(3) RHomp, (M; RT y(tHom(F; Dbys))«—RHomp, (M, tHom(Fy, Dbyy))
W W

4) RHomp,(M; Cy® (F ® C$)))— RHomp, (M, Fy ® C3)).

When codim Y =1, M is defined by a strictly hyperbolic operator along N and
F = Cy, both results are consequence of a theorem of S. Alinhac [A] on the Cauchy
Problem for flat functions on N (cf. also [H]).

We end with an application suggested by P. Schapira: to define new functors
IHom(F; Oy) and ITens (F; Oyx) in D?_ (X) using the technique of [K-S]: essentialy
as third terms of distinguished triangles associated to

Hom(F, Ox)—s RHom(F, Oy)

w
FROxy—F ® Oy

and apply our comparison theorems to these sheaves.

1. Topics on Regularity for D-Modules and the Functors
w
tHom(-, Ox) and - ® Oy

We shall recall very briefly the concepts we need to state the results of this work.

1.1. REGULAR AND FUCHSIAN Dy-MODULES

Let Y C X be a complex n — d-dimensional submanifold of the n-dimensional
complex analytic manifold X. The sheaf Dy of holomorphic differential operators
may be endowed with two filtrations: let /y be the defining ideal of Y in X, denote
F, = Oy if j < 0. The first filtration is

Vi, (Dy) = (P € Dx,Vk € Z, PP, C I}"},

the so-called V-filtration. The second one is the usual filtration by the order and is
denoted Dy (j), j = 0. We note 0 the Euler vector field on Ty X, the normal bundle
to Y, and keep the same letter for any section of V' (Dyx) whose class in gr§, Dy
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is 0, as soon as there is no risk of confusion. Let DY denote the sheaf of differential
operator of infinite order. If M is a coherent Dy-module M* will denote DY ® M.

A coherent Dy-Module M is regular along Y (cf. [K2]) if for any local sectlon
u € M there exists a nontrivial polynomial b € C[s] and a differential operator
0 € V}(Dy) such that

DO bOu+Qu=0
(2) order of Q is majorated by the degree of b(s).

One also says that b(s) is a regular b-function for u.
This condition is equivalent to the local existence of a sub-module M, of M,
coherent over Oy, and of a nontrivial polynomial b(s) € C[s] such that:

b(O)My C (VH(Dx) N Dx(m) M, (1.0)

where m is the degree of b(s), and Dy My = M.

We say that b(s) is regular for M.

A result due to Kashiwara and Kawai asserts that any regular holonomic
Dx-Module is regular along any submanifold Y (cf. [K-K]). A more general concept
developped in [L-TMF] is that of Fuchsian Dy-Module; a coherent Dy-Module is
Fuchsian along Y if, for any xp € Y, one may choose local coordinates
(X1, ..., Xp, t1,...,tg) such that Y ={t; =--- =1, =0}, and for any local section
u of M on U there exists an operator P such that Pu = 0 and

P(x.t,Dy. D)= Y py()D} + Q(x. 1. D, D))

|Bl1=la|
Bl <m
such that
() Qe Vi(Dy)NDx(m), (L1)
(i) Vre CN{0}, 3 puplro)es #0
B1=la
|Bl=m

(such operators were introduced by [B-G]).

Remark. When codim Y =1, M is a Fuchsian D-Module if and only if it is
regular.

The main results of [L-TMF] are the following:

THEOREM 1.1.1. Let M be a coherent Dy-Module Fuchsian along Y. Then, the
natural morphism in D"(X)

RHOHIDX(M, RF[Y](Ox))HRHomDX(M’ RFY(OX))

is an isomorphism.
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THEOREM 1.1.2. Let M be a coherent Dy-Module Fuchsian along Y. Then the
natural morphism in D"(X)

RHomp, (M Ox ’ Y) —RHomp, (M, Oyiy)

is an isomorphism.

w
1.2. THE FUNCTORS rHom(-, Ox) AND - ® Oy

We refer to [K-S] for a detailed study of these functors.

To start with, let X be a real analytic manifold, C§ (respectively Dby) the sheaf of
infinitely differentiable functions (respectively, the sheaf of distributions) on X. Let
U be an open subanalytic subset of X. One sets

w
Cy ® C;oi = I}O\U

as the sheaf of flat functions on X \ U, i.e., C*-functions vanishing up to infinite
order on X'\ U.
On the other hand, one defines tHom(Cy, Dby) by the exact sequence

0— FX\U(Dbx) — Dby — ZHOHI(CU, Dbx) — 0,

that is, tHom(Cy, Dby) is the sheaf of tempered distributions on U defined by M.
Kashiwara in [K3]. In [K-S] these two constructions are proved to be particular
cases of two local exact functors:

. g CY:R — Const(X) - Mod(Dy)
tHom(-, Dby): (R — Const(X))°® — Mod(Dy)

where R — Const(X) denotes the Abelian category of R-constructible sheaves on X
and Mod(Dy) the category of Dy-Modules. The first is the Whitney functor
and the second the Schwartz functor.

Let us recall the classical Lemma (see [K-3] (Lemma 3.3)).

LEMMA 1.2.1. Let U be an open subanalytic subset of X. Let Q be an open relatively
compact subset of X, ua distribution on Q. Then, u € T'(Q, tHom(Cy, Dby)) (that is, u
is tempered on U) if and only if there exists C = 0 and m € N such that for any
peCr@nU),

|<u.¢>|<C Y sup|D.

o] <m

We now return to the complex analytic framework: let X be a complex analytic -
dimensional manifold, denote by Xy the underlying real analytic 2n-dimensional
manifold and by X the complex conjugate of X. A function on an open set
U C Xg is holomorphic on U C X if and only if / is holomorphic on U C X.
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The functors of formal and moderate cohomology were introduced in [K-S] as
functors on D%’R_C(X) with values in D’(Dy). Here Dy denotes the sheaf of
holomorphic differential operators on X.

One sets, for F e D} (X),

4 W
F ® Ox:=RHomp (Ox, F ® Cy),
rHom(F, Ox): = RHomp (Oy, tHom(F, Dby)).

To end this section we shall recall a few facts about the topological duality in the
derived categories. One notes FN (resp. DFN) a topological vector space with a
Fréchet nuclear topology (resp. a dual of Fréchet nuclear topology). That is the
case of C®(Q) and TI'.(Q, DZ)X), for Q an open subanalytic subset in X. Here
DVbX denotes the sheaf Dby tensorised by the sheaf of real analytic densities. Let
DP(FN) (resp. D’(DFN)) denote the localization of the additive category whose
objects are bounded complexes of topological FN (resp. DFN) vector spaces and
morphisms the linear continuous morphisms modulo homotopy, by the complexes
which are algebraically exact. We shall use one of the main results of [K-S]:

Let Qx denote the sheaf of holomorphic differential forms of degree n.

PROPOSITION 1.2.2 ([K-S], Theorem 6.1). Let M be a bounded complex
with coherent Dx-mog/ule cohomology, F € D%\ﬂf(X). Tiien we can define
RI'(X, RHomp, (M, F ® Oyx)) and RI (X; tHom(F,Qx)n] ® M) as objects of
DP(FN) and D*(DFN) functorially with respect to M and F anle}‘{hey are dual to each

other.
L
Remark that tHom(F, Qy)[n] ® M is naturally isomorphic to
Dy

RHomp, (M*, tHom(F, Qx))[n],
where M* = RHomyp, (M, Dy).

2. Comparison Theorems

2.1. THE COMPLEX CASE

Let X be a n-dimensional complex analytic manifold and Y a d codimensional sub-
manifold. Let us note D%_C(X ) the derived category whose objects are complexes
of C-vector spaces with bounded and C-constructible cohomology. Let SS(F)
denote the microsupport of F € D%_C(X ) and Car (M) denote the characteristic
variety of an object M of Df,(DX), that is, of a bounded complex of Dy-modules
with coherent cohomology.

Remark that when F belong to D% (X), rHom(F, Ox) belongs to D%(Dy) and has
regular holonomic cohomology (also denoted by M € th(DX)).
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Let M be a coherent Dy-module, V' a smooth involutive submanifold of the
bundle 7*X (the cotangent bundle 7*X minus the zero-section). The I-micro-
characteristic variety CL(M) C Ty(T*X) (the normal bundle to V) was defined
in [TMF] as well as in [L] with another notation. Now, if M € D’(Dy) one defines
CL(M) = U;CL(H/(M)). Recall that if y € Ty(T*X), nis non 1-microcharacteristic
for M along V if n ¢ Cl,(M).

Let F e D%._(X), N € D! (Dy) such that RHomp, (N, Ox) >~ F, let M be a
coherent Dy-module, Y C X a smooth submanifold. We say that Y is non-1-micro-
characteristic for (M, F) if the diagonal A C X x X is non-1-microcharacteristic
for M X DN along T}, X x X.

When S'is a subset of X, Is will denote the ideal of germs of holomorphic functions
vanishing on S.

Our first purpose is to investigate when the following morphism

RHomp, (M, Hom(Fy, OX)> — RHomp, (M, RIy(rHom(F, OX))). 2.1)

is an isomorphism in D’(X).
We shall prove the two following theorems:

THEOREM 2.1.1. Let M belong to D?(DX), Y be a smooth submanifold of X and F
belong to D%’R_C(X). Let us assume that Y is of the form Y\ NY,, for Y1, Y, two
submanifolds such that supp M C Y1, supp F C Y,. Then (2.1) is an isomorphism.

Remark. In particular (2.1) is an isomorphism for arbitrary F if supp M C Y and
for arbitrary M if supp F C Y, this last case being obvious.

THEOREM 2.1.2. Let us assume M is a coherent Dy-module, F € D%_C(X), M is
regular along Y and Y is non-1-microcharacteristic for (M, F). Then (2.1) is an
isomorphism.

Proof of Theorem 2.1.1. We get

RHomp, (M, RI'ytHom(F, Ox)) ~
~ RHomp, (M, RI'y, RT'y,tHom(F, Oy))
~ RHomyp, (M, RT y,tHom(F, Oy))
~ RHomyp, (M, RI'y,tHom(Fy,, Ox))

Hence it is enough to consider the case Y = Y;. We shall argue by induction on the
codimension d of Y. Suppose d = 1 and choose ¢ a local coordinate on X such that
Y = {r = 0}. We shall take in account the object tHom(Fy\y, Oyx).

By classical arguments we may reduce M to the case of a single local generator u
such that u=0 for some m e N. On the other hand ¢ is invertible on
tHom(Fy\y, Oyx), hence

RHomp, (M, tHom(Fx\y, Ox)) = 0.
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Using the distinguished triangle
tHom(Fy, Oy)—tHom(F, Oy)— tHom(Fy\y, OX))?

we deduce the isomorphism:
RHomp, (M, tHom(Fy, Ox)) ~ RHomp, (M, tHom(F, Oy)) (2.2)

Let us now assume d > 1, and that (2.2) holds for any submanifold Y’ of
codimension d < d. Let (t,...,t;) be coordinate functions on X such that
Y={t=-=t;=0,,=(t,....t), 1 <j<d, "= (t;1,...,ts). We have:

RHomp, (M, RT'y(tHom(F, Oy))) =~
~ RHomyp, (M, RI'jy—q)RT (y—oy(tHom(F, Oy)))
>~ RI'jy—o)RHomp, (M, RT s (tHom(F, Ox))
~ RI =g RHomp, (M, tHom(Fiy—g, Ox))
~ RHomyp, (M, tHom(Fy, Oy))
(by the induction hypotesis). O

Proof of Theorem 2.1.2. Let Dy. y and Dy_ xy denote the ‘transfer bimodules’
associated to Y X. By Theorem 5.7 of [K-S] we get

tHom(Fy, Ox)< Dy y gaﬁy tHom(i"'F, Oy)[—d]
On the other hand, by Theorem 5.8. of [K-S],
tHom(i"'F, Oy) ~ Dy_y 7%{ tHom(F, Ox)[—d]
Therefore, by the results of [K1] one gets

L L
tHom(Fy,Ox) ~ Dy y ® (DYﬁX ® tHom(F, OX)[_d])
Dy Dy (2.3)

o~ RF[Y](tHom(F, Ox)).

By the ‘way-out’ argument we may assume that the complex tHom(F, Oy) is con-
centrated in degree zero and we shall denote N = H°(rHom(F, Oy)). Let us identify
X to the diagonal A of X x X and let ¢ be the inclusion of A in X x X. Let us also
denote DA the left Dy-module adjoint of N:

DN:=N* @ Q%!
Ox
The assumption entails that A is noncharacteristic for M [X] DN. Therefore the

induced Dp-module £*(M X DN):= Da_xxx D® (MX DN) is coherent and so
is £/(M X DN). Here ¢' stands for the composifix())(n of functors Do £* o D.
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On the other side, M X DN is regular along W:=Y x X. We claim that
(M X DN) and, hence, £'(M X DN) is regular along Y.

This will be a consequence of the following sublemma, which is itself the
differential version of ([TMF], Th. 1.3.8):

SUBLEMMA 2.1.3. Let X be a complex n-dimensional manifold, Y and Z be
transversal submanifolds of X and M be a coherent Dy-module such that Z is
non I-microcharacteristic for M along T’;X and M is regular along Y. Then the
induced system £*M is regular along ZN'Y, where £: Z< X is the inclusion.

Proof. Let us consider a system of local coordinates on X, (¢, x, s), t = (¢1, . . ., tg),
x=0x1,...,%), s=(1,...,8) with d+r+h=n such that Y = {r=0},
Z = {x =0}. Therefore, W = Y NZ is the submanifold of Z defined by = 0.
We have

oM M

- =x1./\/l+---+xr./\/l'

Let My be a coherent Ox-submodule of M generating M and b(s) a b-function
satisfying (1.0) with respect to M. That is,

d
b( Z tiDt,)MO C (Vly(Dx) N DX(’”))-MO,
P

where m is the degree of b.

Remark that x;, s¢, Dy,, Dy, are in V5(Dy). Let {u1, ..., us} be a system of local
generators of M, hence of M as a Dy-module.

Because Z is non-1-microcharacteristic for M along T’{,X, foreachje{l,...,¢},
ie{l,...,r} there is an order p; such that

Dliuy= > Au (L x, 5)(1,D,)"DLDY, (2.4)
lo+B+71 < pi
i Sp—l

where A4,p, are holomorphic functions.
Let M = )" p;. In particular, setting w,; the class of D7.u; in £* M, |y| < M, the set
{w,:} is a system of local generators of £*M over Dy .

Let Mj be the coherent Ox-submodule of M generated by {Diu;}, <>
j=1,...,¢ and set

Ry = My
"TMN(aM A+ -+ M)

M is a coherent Oz-module generating £* M. We will check that

b(Z z,-D,,)A’Zo c (V;V(DZ) N Dz(m))]ﬁo.
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Set 0 = Zle t;D,,. It is enough to prove that b(0)w,; may be written as a finite sum
of terms of the form #,Qwg, where Q € V},(Dz) N Dz(m). By assumption b(0)D’.u; is

a finite sum of terms of the form tpéDﬁu, with é € V5 (Dx) N Dx(m), |p] < M.
By division, each Q may be written in the form

~ r ~ r ~
0= ZXIRI' + Z TiDy + 0,
i1 i1

where Q' € V},(Dz) N Dz(m), R; € Dx(m), T e Dx(m —1)N V5(Dy); at this point
(2.4) implies that the class of ¢, T:D,,D’u, is a sum of terms of the form t,Twg, with
T € V3y,(Dz) N Dz(m), hence the result. O
Continuation of the proof of Theorem 2.1.2.

Hence £*M is regular along Y.
Let us now identify Dy to Bajxxx @ x. Using again [K1] we have
Oy

RHomp, (M, R [y(N))

L
~ RF[Y](RHomDX(M, Dy)) 5@) N

L
~ RHOI’I]DX(M, RF[Y](D)()) 5@ N

~ RHOH’IDX(MEQN, Rr[y](BA|XxX)).
Therefore by (2.3) the left-hand side of (2.1) becomes

RHomyp, (M, RIy(Bajxxx))

and the right-hand side becomes RHomyp,, X(]\N/I , RI'y(Bajxxx)). We shall now con-
sider the following lemma:

LEMMA 2.1.4. Let M be a coherent Dx-module, Zp»Xa submanifold of X (of
codimension s) and Y>Za submanifold of Z (of codimension t). Assume that
Z isnoncharacteristic for M and £' M Fuchsian along Y. Then the morphism in D*(X)

RHO]’I’IDX(M, Rr[y](BZ|X)) — RHOIIIDX(M, RI Y(BZ|X))

is an isomorphism.
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Proof. We have RI'jy1(Bzx) ~ By x[—¢] and the isomorphisms:

RHomp, (M, Byix[-1)| =~ RHomp, ((£0i) M, Oy)[—]
~ RHomp, (£' M, BY|Z)[_Z]‘ v

~ RHomp, (£' M, Biﬂz)[—l]‘ v

because £'M is Fuchsian along Y.
The last complex is isomorphic to

RTy(RHomp, (€M, O7))| = R y(RHomp, (M. Bz)|

=~ RHOIHDX(M, Rl—‘y(BZ‘X))‘ - |

To end the proof of Theorem 2.1.2. we only have to apply the preceding lemma for
M,A and Y. O

Remark 1. Theorem 1.1.1. is a particular case of Theorem 2.1.2.

Remark 2. Lemmas 2.1.3. and 2.1.4. were the essential tools for the proof of
Theorem 2.1.2. The following example shows that the assumption £'M Fuchsian
along Y is crucial. However, one may possibly weaken the assumption Z
noncharacteristic for M and replace it by the condition of ellipticity defined by [L-S].

Let X = C? with the coordinates (x,0), Z={x=0}, Y ={t=0}, and M be
defined by the equation (D,+ D,)u =0. Hence Z is non characteristic for M
and M is regular along Y. However, {'M ~ D, is not Fuchsian along Y NZ =
{0}. One gets

RHomp, (M, RT y(tHom(Cyz, Oy)), =~ RI'yRHomp, (M, Bz x[—1]),
~ R[ynzRHomp, (€' M, Oz[—1]),
=~ Biyyiz[=2lo
# RHomp, (M, By 2)o[—2].

We also conjecture that we may replace the assumption M regular along ¥ by M
Fuchsian along Y in Theorem 2.1.2.

Remark 3. 1If Y C Z as in Lemma 2.1.4., and M is regular along Y and along Z,
the result will obviously be true.

EXAMPLE. Let X = C? with the coordinates (t1, 12, x), Y ={t; = t, = 0}, let M be
defined by D, ,u = 0, (t2D,, — Y)*u = t:D%u, F = RHomp, (N, Ox) where A is defined
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by

1\3
(1D, + 1w =0, (D, +6D)w=0 and (Di - 5) w = 0.

Then M, Y and F satisfy the assumptions of Theorem 2.1.2.

Our next purpose is to investigate the natural morphism

w w
RHomp, (M, Cy ® (F ® Ox))—s RHomp, (M, Fy ® Ox). (2.5)

We shall prove the following theorems:

THEOREM 2.1.5. Under the assumptions of Theorem 2.1.1 the morphism (2.5) is an
isomorphism in D?(X).

THEOREM 2.1.6. Under the assumptions of Theorem 2.1.2 the morphism (2.5) is an
isomorphism in DP(X).

Proof of Theorem 2.1.5. We shall adapt the proof of Theorem 2.1.1. When
supp F C Y the result is obvious for arbitrary M. Now, suppose codim Y =1
and suppM C Y.

We have the natural isomorphism

4 w
RHomp, (M, Cy @ (Fx\y ® Ox)) =~ RHomp, (M, Fx\y @ Ox)
and the result is true for Fy; by the exact sequence

0—>FX\y—>F—>Fy—>O

w
itis enough to check that RHomyp, (M, Fx\y ® Ox) = 0. But this is a consequence of
the duality theorem 1.2.2 because of the equality

RHomp, (M, tHom(Fx\y, Ox)) =0
obtained in Theorem 2.1.1.

Next, let us reason by induction on d and consider local coordinates on X,
(x.f,¢"), such that Y={n=--=f=41=--=14=0}j<d and
supp M C Y as in the proof of Theorem 2.1.1. We have

w
RHomp, (M, Cy ® (F ® Oyx))
114
~ RHomp, (M, Cy ® (Fy ® Ox))
W
~ RHomp, (M, Fy ® Oy),

where YV ={tj=---==0}, Y ={tjj, =--- =15} =0. O
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Before embarking in the proof of Theorem 2.1.6 we shall prepare two useful
formulas. Let us identify again X with the diagonal of X x X.
Denote p; the second projection of X x X over X.

PROPOSITION 2.1.7. Let F be an object of D‘%fc(X). Then one has a natural
isomorphism:

~ w
RHompzle(pgllHom(F, Ox), Oy, xiy) < F ® Ox. (2.6)

Proof. Once again we may assume that tHom(F, Oy) is a coherent (regular
holonomic) Dy-Module. For any open subanalytic set U of X, U’ any open sub-
analytic neighborhood of U in X x X, such that U’ N X = U, by Proposition 1.2.2

W
we have that RT'(U, F ® Oy) is dual of RT'.(U, rHom(F, Qy)[n]). This last complex
is quasi-isomorphic to

RT(U', RHom,-ip (p;' DiHom(F, Ox), Bx|xxx))[—7]

by a continuous linear quasi-isomorphism.
On the other hand, by Proposition 1.2.2 this last complex is dual to

w
RI(U', RHomp;DX(pz‘ltHom(F, Ox), Ca ® Oxxx)
~ RI(U/, RHomp;DX(pz_l tHom(F, Ox), Oy, yix)-
Now we use the argument of [R-R]. If two complexes in D’(FN) (resp. in D?(DFN))
are algebraically quasi-isomorphic by a continous linear quasi-isomorphism the dual

complexes are isomorphic in D’(DFN) (resp. in D’(FN)) (Lemma 2 of [R-R]) [

PROPOSITION 2.1.8. Let F be an object of D‘%ﬂ,(X). Then one has a natural
isomorphism:

w
RHom, ip, (p;' tHom(F, Ox), Oy, yiy) = Fy ® Ox.

Proof. We use the same argument as in the preceding proof. For any open sub-
analytic open set U C X and any open subanalytic neighborhood U’ of U in
4

X x X, such that U' N X = U, since OXxXTY ~ Cy ® Oxxy and denoting by N
the coherent Dy-Module rHom(F, Oy) by Proposition 1.2.2 we know that

w
RI(U/, RHomp;DX(pglN ,Cy ® Oxxx))

is dual to RFF(U/,RHomp;DX(pZ_I./\/*,RF[Y](BXU(X;() ® Qyyy[n]) and this last
Oy
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complex is continuously quasi-isomorphic to RT' (U, RI'yj(NV) ® Qy)[n], that is, to
Oy
RI'(U, tHom(Fy, Qx))[n].

Now we apply Proposition 1.2.2 and Lemma 2 of [R-R] to get the conclusion. []

Proofof Theorem 2.1.6. Once again we may suppose tHom(F, Oy) concentrated in
degree zero. Let us keep the notation A for the regular holonomic Dy-Module
tHom(F, Oy). Since the morphisms in the statement of the theorem are well defined
we are reduced to prove the result germwise. Let yy € Y and U belong to a funda-
mental system of open subanalytic neighborhood of yy. Let U’ be as in Proposition
2.1.7.

We have by Proposition 2.1.7.

w
RI(U, RHomp, (M, (F ® Ox) ® Cy))
~ RI(U', RHomp, (M, RHom,_ip (95N, Oy yixly)
~ RU(U', RHomp,, ,(MRN, Oy yiyly)-

On the other hand, the right-hand side of (2.5) becomes RHomp, (M XN,
Oy.xiy) by Proposition 2.1.8. we shall now use the following lemma:

LEMMA 2.1.9. Let M be a coherent Dy-module, Z and Y submanifolds of X
satisfying the assumptions of Lemma 2.1.4. Then the natural morphism

RHOmDX(M, OXTZ)' Y—)RHome (Mv OX\A}’)| Y

is an isomorphism.

Proof. We have the chain of isomorphism:

RHomp, (M, OXTZ)| y =~ RHomp, (£*M, O)|y
~ RHomp,(£* M, OZTY)| Y
~ RHomp, (£ 0i)* M, Oy)
~ RHomp, (M, Oyiyp)ly,

where the second isomorphism is a consequence of Theorem 1.1.2. O

The proof of Theorem 2.1.6 is an immediate application of the preceding lemma
for MRIN,X x X,A and Y. OJ
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Remark. A natural question is whether a duality theorem analogous to Theorem
1.2.2 would still be true if we consider

L
RI(X, rHom(F, Qy)[n]) @ M) and RT (X, RHomp (M, F g Ox)).

Of course, this situation is outside the FN and DFN framework, and it would
simplify our proofs. However, the answer is negative. For that purpose we may
consider the elegant example of P. Schapira: let X = C?, Y the diagonal of X

w
and F = Cy. It is easy to check that RI'.(X, Cy ® Oy) is concentrated in a single

degree; on the other side
RIT(X, tHom(Cy, Qy))[2] ~ RI(C, D¢)[1].

But RI'(C, D¢) is concentrated in two degrees, 0 and 1, therefore the duality fails: we
may identify D¢ to O¢[{] the sheaf of polynomials with holomorphic coefficients and
then consider the Dolbeault (soft) resolution of O¢[f]:

o—> Oclll— C[1] - C¥[—> o.

One may easily choose a family (f;),.y of C*°-functions with compact support K; Witkl
(K;) locally finite so that u =3, oJi(x)t is a global section of C[f] and u ¢ Im 0.

2.2. THE REAL CASE IN CODIMENSION ONE

We shall henceforth consider the following situation: Y is an hypersurface of X, X is
the complexified of a real analytic n-dimensional manifold M, such that Y
complexifies a smooth hypersurface N C M. We shall say that for a coherent
Dy-module M, or, more generally, for an object M of DQ(DX) the Cauchy problem
for flat functions on N is well posed if

RHomp, (M, ) = 0. (2.7)

Examples of such D-modules are provided by the Fuchsian strictly hyperbolic
operators studied by Alinhac [A]. Roughly speaking, these are Fuchsian operators
along N such that, in some local coordinate system on X, (x, ¢), real on M, satisfying
Y = {¢r = 0}, the total symbol a(P) is of the form "'p(x, t, £, ) where p is a hyperbolic
polynomial on 7.

In particular, the strictly hyperbolic operators in the sense of Hérmander [H] are
Fuchsian strictly hyperbolic.

PROPOSITION 2.2.1 (Chauchy problem for C§7). Let M be an object of Df,(DX).
Then the Cauchy problem for flat functions on N is well posed for M if and only
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if the following natural morphism is an isomorphism.
w
RHomp, (M, c;;)N)—>RHomDX(M, Cy ® C)

is an isomorphism.
Proof. One considers the exact sequence of sheaves

0—>CM\N—>CM—>CN—>0.

w
Since by definition Cyny ® C5 = J%, we have the distinguished triangle

Dy Dy W
RHOmDX <D—XP, CM)N) — RHOmDX <m, CN ® CM>
+1 Dy
R 4 (o ¢]
— HomDX(DXP’ jN>
hence the result. O

w
Remark. RHomp, (M, Cy ® C$7) ~ RHomp, (My, C¥).

PROPOSITION 2.2.2. Let M belong to D2(Dx) and assume that the Cauchy problem
for flat functions along N is well posed for M. Then

RHOIIIDX(M, tHom(CM\N, Ox)=0

Proof. One has RI' (X, RHomp, (M, tHom(Cnn, Ox)) = 0 as well as replacing
X by X\ {x}, for arbitrary x € X. Hence, denoting F, to simplify, the complex:
RHomp, (M, tHom(Cynn, Ox)) and considering the distinguished triangle:

RT(X\ {x}, F)—RI(X, F)—RI({x}, F)[1]

we get that RHomp, (M, tHom(Cnn, Ox)), = 0, hence the result.
In particular, if M satisfies (2.7) we have

RHomp, (M, RFN(IHOIH(CM\N, Ox) =0 (2.8)

therefore we conclude:

PROPOSITION 2.2.3. Let M belong to Dlj(Dx) such that the Cauchy problem for flat
Sfunctions on N is well posed for M. Then the natural morphism

RHomp, (M, tHom(Cy, Dbyy)) N—)RHomDX(M, RI N (Dbyy)) N (2.9)
is an isomorphism.

The following examples show that we cannot avoid strict hyperbolicity if we want
(2.8) and, hence, (2.9) to be an isomorphism:
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EXAMPLES

(1) Let X =C? with the coordinates (x,7) and P(x,t, Dy, D;) = D>+ D2,
M =Dy/DyP, Y ={t=0}, M =R* P is not hyperbolic, although it is
Fuchsian along N (or Y) and (2.8) does not hold. One checks that u(x, y) =
e!/* is a solution of Pu = 0 defined for ¢ > 0 (or ¢ < 0) and it is not tempered
at the points of M.

(2) (Example given by Boutet de Monvel): Let X = C? with coordinates (x, 1),
P(x,t, Dy, D;) = Df — D, the heat operator, M = (Dy/DxP) P is Fuchsian
along Y, weakly hyperbolic (the Cauchy Problem with respect to N is well posed
for hyperfunctions) but it is not strictly hyperbolic. The function

1
u(x, 1) = T e A

solves Pu=0 on t>0 (or t<0). Let y(D)=>,-, (iDy)*"/6n!. Then
Y(Dy)u(x, t) is still a solution of Pu =0 for ¢ > 0 but it is not a tempered dis-
tribution at the origin.

2.3. APPLICATION

Following an idea of P. Schapira, one may define two new functors in D’I’R_C(X ) which
we shall denote by IHom(:, Oyx) and ITens(F,Oyx) respectively and natural
transformation of functors

RHom(., Oy) — IHom(-, Oy) —tHom(-, Ox)[1] - g Oy
L (2.10)
—>ITens(-, Oy) —- ® Ox[l1]

such that the associated triangles when (2.10) applied to F are distinguished.

These two functors are constructed by application of Theorem 1.1 and 1.4 of [K-S]:
for any open subanalytic set of X, denote IHom(Cy, Dby) the Dy-Module defined
by the exact sequence:

O—)lHOl’n(Cu, Dbx)—>ru(Dbx)—>IHOm(Cu, Dbx)—)O

Similarly, we define ITens(Cy, Oy) by the exact sequence

w
0—CyeCy—Cy ® C¥—>ITens(Cy, CT)—0

ITens(-, C¥) and I'Hom(:, Dby) extend to exact local functors in the category
R-Const(X) (resp. in R-Const(X)?).
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Finally one defines
I'Hom(F, Oyx): = RHomp (O, 'Hom(F, Dby)),
ITens(F, Oy): = RHomp, (Oy, ITens(F, CY)),
and by Proposition 1.4 of [K-S] these new functors are left derivable.
COROLLARY 2.3.1. Let M be a regular Dyx-Module along a submanifold Y. Let F

be an object ofD{%j_c(X) such that M and F satisfy the assumption of Theorem 2.1.2.
Then

(1) RHomp,(M, I'Hom(Fy, Oy)) =0,
(2) RHomp, (M, ITens(Fy, Ox)) = 0.

Proof. The condition (M, F) elliptic pair entails that the natural morphism
RHomp, (M, tHom(F, Ox))— RHomp, (M, tHom(F, Ox)>)
is an isomorphism hence

RHomyp,(M,RI'y(tHom(F, Oy)))
~ RHomp, (M, RT y(tHom(F, Ox)>))
~ RHomp, (M, (RIy)(tHom(F, Ox))™)
~ RHomp, (M, RHom(Fy, Ox)).

w
Similarly RHomp, (M, F ® Ox) ~ RHomp, (M, F @ Oy) thanks to Proposition
2.1.7. Hence
w
RHomp, (M, Cy ® F ® Ox) ~ RHomp, (M, Fy @ Oy)
w
x>~ RHOHIDX(M, FY ® 0)() ]

Remark. Under the assumptions of Theorem 2.1.1. Corollary 2.3.1. does not hold
in general, as the following example shows in the C-constructible case:

X = Cz, F= C{x=0}, Y = {l = 0}, M

defined by fu = 0.
Then

lHOm(Fy, Ox) o~ B{O}\(Cz[_2]’
RHOm(Fy, O)() =~ B?(?}\Cz [—2]
and obviously ¢ is not an isomorphism on

lo@)
B {0}1C?

By
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