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Abstract

If two functions of a real variable are integrable over two intervals, say of t, T, respectively, then the
product of the two functions should be integrable over the rectangular product of the two intervals of t
and T. For the Lebesgue integral, definable using non-negative functions alone, the proof is easy. For
non-absolute integrals such as the Perron, Cesaro-Perron, and Marcinkiewicz-Zygmund integrals we
have difficulties since the functions cannot be assumed non-negative. But the present paper gives a
proof.

1980 Mathematics subject classification (Amer. Math. Soc): 26 A 39.

A problem posed recently by Washek Pfeffer is formulated as Theorem 1 below.

THEOREM 1. Iff(t),<p(r) are Perron integrable to F(a, b), 4>(a, /?) over the
intervals [a, b], [a, /?] of the real line, respectively, then f(t)<p(r) is Perron
integrable over [a, b] X [a, /}] to F(a, b)<&(a, /?)> that is,

(1) / f(t)<p(r)d(t,T) = ( f(t)dtj <p(r)dT.

This is easy for Lebesgue integration, and F is a Lebesgue integral when / > 0.
[26], page 63, Theorem 7, is more general, but the assumption of bounded
variation shows that we are again dealing with absolute integrals. The problem
ought to be easy even when the integrals are not absolute, but the changing of
sign of / and <p causes difficulties. A quick proof notes several integral equiva-
lences, namely, the Perron integral is equivalent to the Ward integral, to the
variational integral, and to the Riemann-complete integral, a form of the gener-
alized Riemann integral, see [49,21,25]. Then [28], page 83, Theorem 11, with the
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hj there of generalized bounded variation, the remarks just after the proof of the
theorem, and f(xv x2) = 1 everywhere, finish the proof. But, because of the
integral equivalences and the remarks in [28] that are too brief, this is not a clear
lucid proof, so the present paper gives a proof of the Perron integral result using
variational integration. The author was sorely tempted to give the theorem in a
much more general setting, such as that of W. Pfeffer [40,41] or in division
spaces. But in the interests of readability the simple case for a two-dimensional
rectangle is given first, and then a similar proof for certain convergence-factor
integrals on the two-dimensional rectangle. This last result seems to be the first
theorem for product spaces using convergence-factor integrals, and it includes the
straightforward Perron result, but the Perron result is given so as to illuminate
and provide a pattern for the more difficult part, and to start an inductive chain.
The reason for using convergence-factor integrals in mathematics is that for some
everywhere convergent trigonometric series, the sum

1 °°
(2) f(t) =7f l o + 2 (ancosnt + bnsin nt)

n=\

is not Denjoy integrable. Thus more general integrals were introduced using
generalized derivatives. For fixed r s* 1, J. C. Burkill [7,8,9] used right-hand
derivates

(3) lim (5) fn+ («, v, t)(F(t) - F(u)) dt/ (S) fn+ (u, v, t)(t - u) dt

of F with n+(u, v, t) = r(v — t)r~l/(v — u)r, (S) being £esaro-Perron integra-
tion of order r — 1 when r 2* 2 and Perron integration when 1 < r < 2; and
left-hand derivates of F

(4) lim (S) / V ( « , v, t)(F(v) - F(t)) dt/ ( S ) f°n_ ( u , v, t)(v - t) dt

with the same (S) and «_ (u, v, t) = r(t — M)'~V(t) — u)r, to define £esaro-Per-
ron integrals of order r, giving an inductive chain of integrals. See also L. S.
Bosanquet [2], W. L. C. Sargent [43], and S. Verblunsky [47]. H. W. Ellis [16]
started from the general Denjoy integral and defined a scale of mean-continuous
integrals more general than the scale of £esaro-Perron integrals, see P. S. Bullen
and C. M. Lee [4], page 495, 6.2. J. Marcinkiewicz and A. Zygmund [34] used
Borel derivates with Perron integration (5),

(5)

lim (5) [U+hn(u -h,u + h, t)(F(t) - F(u)) dt/ (S) f"+hn(u - h,
h-*0+ Ju-h

 Ju-h

u + h,t)(t- u)dt
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where n(u — h,u + h,t) = \{t — w)~ ' (/ =£ u), n(u — h, u + h, u) — 0, for their

T- or MZ-integral. For Burkill's symmetric Cesaro-Perron (SCP) integral [10],
n(u — h,u + h,t) is sgn(f — u), + 1 if / > u, — 1 if t < u. In both cases of (5) the
constant F(u) in the integrals cancels. R. L. Jeffery and D. S. Miller [32] gave a
general definition with (3), (4), positive functions n+ , n_ , and (5) some suitably
defined integration process. [32], p. 128, assumed an unnecessary limit, namely,
for Lebesgue integration,

1 rv / ( fv 1
— = l i m / n + ( u , v , t ) ( t — u ) d t / \ ( v — u ) j n + ( u , v , t ) d t \ ,

and similarly for n_ , but here we disregard this limit and follow [22]. P. S. Bullen
and C. M. Lee [4] gave a general theory excluding Stieltjes-type integrals. In [5]
they gave a scale of SCP-type integrals. Here again, if we wish to generalize
Theorem 1 we need/and <p that change sign often, for S. Foglio [17] showed that
if / s * 0 and g is monotone increasing, the A^-Perron integral of f(t) with respect
to g(t) in [22] is also a Lebesgue-Stieltjes integral. There are other generalized
Perron-type integrals, such as integrals between Perron's and the £esaro-Perron,
defined by L. Gordon [19] using for his upper right derivate the greatest lower
bound of all constants a for which

fh[F(u + t)- F(u) - at]r
+ dt = o(hr+i), [x]+ = max(x,0),

the integration being Lebesgue's. If no such a exists, the upper right derivate is
written + oo. Other integrals use second or higher order derivates, such as the
Pn- and <?"-integrals of R. D. James [30,31], see P. S. Bullen [3], G. E. Cross
[11,12,14,15], and S. N. Mukhopadhyay [38], and the Peano derivatives of S.
Verblunsky [48]. There is also the Abel-Poisson-Perron integral of S. J. Taylor
[45]. See G.E. Cross [13].

Convergence-factor integrals may also be needed if one needs path integrals, of
functions whose squares are not integrable, for infinite dimensional spaces with
Wiener measure, for see H. P. McKean [36], page 31, Problem 1. The oscillation
shows the need of some smoothing device.

1. Perron and variational integrals

For R the real line and [a, b] C R a bounded closed interval let /, M be
functions from [a, b] to R. Then M is defined a Perron major function of f on
[a, b], if

(6) M is continuous on [a, b] with M(a) = 0,
(7) for M' the lower derivate of M, M' >/almost everywhere on [a, b],
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(8) M' > — oo except for a countable set X on [a, b\.
This definition is in a sense an amalgam of the worst features of O. Perron [39],

H. Bauer [1], H. Hake [20], H. Looman [33], S. Saks [42], pages 186-203, and E. J.
McShane [37], page 313, except that McShane used four functions instead of two,
and that we use a finite-valued/. See D. N. Sarkhel [44]. In Perron integration the
integrand is finite almost everywhere, and the exceptional set, in which / i s infinite
and we can replace/by 0, can be put with that of (7).

The infimum of M(b) for all Perron major functions M of / o n [a, b], is called
the upper Perron integral off on [a, b]. An m: [a, b] -* R is a Perron minor function
off on [a, b], if and only if — m is a Perron major function of —/on [a, b]. The
lower Perron integral of f on [a, b] is the supremum of m(b) for all such m.
Strengthening (7,8), we say that M is a strong Perron major function of f on [a, b],
if and only if (6) holds with

(9) M' > f everywhere on [a, b],

while m is a strong Perron minor function of f on [a, b] if and only if - m i s a
strong Perron major function of —/on [a, b].

THEOREM 2. The upper and lower Perron integrals of f on [a, b] are unaltered if
Perron major and minor functions of f are replaced by strong Perron major and
minor functions of f, respectively, and in consequence, if f is replaced by an
/*: [a, b] -> R with f*=f almost everywhere.

PROOF. Using (6) on continuity, we remove the sequence (sn) of points in X of
(8). Let

L(t,H)= sup \M(t + h) - M(t)\,
(10) 0<|A|«=/7

L(/,0)=0, L{t,-H)=-L{t,H).

For each fixed t, L(t, H) is bounded and continuous in H and monotone
decreasing to 0 as H -» 0 + . Thus, given e > 0, there are an Hn > 0 and Ln(t)
such that

(11) L(sn,Hn)^e-2~"-1 (n=l,2,...),

[L(sn,t)-L{sn,-Hn) (\t\<Hn),

(12) Ln(t + sn) = U(sn,Hn)-L(sn,-Hn) (t>HH),

0 (t<-HH).
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Then for 0 < h < Hn, using (10,11,12),

L n ( s n + h ) - L n ( s n ) > \ M ( s n + h ) - M ( s n ) \ ,

Ln(sn) - Ln(sn - h) >\M(sn) ~ M(sn - h)\,
00 00

o< 2 K<e> a n d
 MX=M+ 2 Ln

is continuous in [a, b] with M[ > 0 at each sn. As a countable set is of measure
zero, Mx satisfies (7) while A'is empty in (8) for Mx.

Next we remove the exceptional set Y of measure zero implicit in (7) using a
construction of Burkill [10], page 47, Lemma. Given n, there is an open set
Gn D Y of measure less than e • 4~". We define

e2-", y(b)<e.

Then yn(t) and >»(?) are continuous and monotone increasing in [a, b]. Putting
M2(t) s M,(/) + y(t) + e(t - a), M{ > - oo gives

and the continuous M2 satisfies (9) everywhere on [a, b]. Thus M2 is a strong
Perron major function o f /on [a, Z>] and Theorem 2 follows from

M(fc) < M2{b) < M(b) + e(2 + b - a ) .

By Borel's covering theorem every strong Perron major function of / on
[u,v]C[a,b]is not less than m, for each strong Perron minor function m of / o n
[M, t>]. Thus, taking M, m for [a, 6], we have

M(v) - m(v) - M(u) + m(u) > 0

and M — mis monotone increasing while the upper integral over [a, b] is not less
than the lower integral. Their common value, if equal, is the Perron integral off on
[a, b] and, given e > 0, there are Perron major and minor functions M, m of /
with

(13) O^M(b) - m(b)<e.

Conversely, if (13) is true for all e > 0 and some M, m, major and minor
functions of / and depending on e, the Perron integral exists over [a, b]. As
M — m is monotone increasing the Perron integral exists over [a, t] for each t in
a < t < b, say with value P(t), and M — P, P — m are monotone increasing.
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If there is a P: [a, b] -> R with P(a) = 0 and the properties that, given e > 0,
there are a monotone increasing function K(t) and a 8(f) > 0 on [a, b] such that

(14) \K(t + h)- K(t)\>\P(t + h)~ P(t) -f(t)h\

(\h\ =£ 8(t), t and t + h in [a, b]),

(15) K(b)-K(a)<e,

we say that P is the variational integral of f over [a, b]. May I emphasize tha t / i s
finite-valued.

THEOREM 3. If M, m are strong Perron major and minor functions, respectively,
of f on [a, b] then M — m is monotone increasing. Further, if the Perron integral
exists over [a, b] it exists, say as P(t), over [a, t], for a < t < b, and if P(a) = 0
then P is the variational integral of f over [a, b]. Conversely, the variational integral
is the Perron integral.

PROOF. Much of the theorem has already been proved. Let M satisfy (9), so
that, for some 5,(/) > 0,

(16) M(t + h) -M{t)>f(t)h (a^t<t + A < i , 0 < A < 8 , (0 ) ,

(17) M{t) - M{t - h) > f{t)h (a^t- A < f < 6, 0 < A < 8 , ( 0 ) -

If / is Perron integrable to P(t) over [a, t] for each t in a < t < b then
Q = M — P s* 0 and is monotone increasing, and we can write (16) as

(18) Q(t + h)- Q(t) > ~ {P(t + h)- P(t) -f(t)h)

(a<t<t + h^b,O<h = £ 8 , ( 0 ) -

For a strong Perron minor function m of / over [a, b], with q = P — m > 0 and
monotone increasing, the result corresponding to (18) is

(19) q(t + h)- q{t) > {P(t + h)~ P(t) -f(t)h)

(a<t<t + h^b,O<h< 8 2 ( 0 ) .

Replacing 8,, 82 by 8 = min(8,, 82), as Q, q are monotone increasing, (18,19) give

(20) Q(t + h)~ Q{t) + q(t + h)- q(t) > \P(t + h) - P{t) - f(t)h\

(a^t<t + h^b,O<h^ 8(t)).

From (17) and an inequality for m, a similar result holds for

a^t-h<t^b, 0<h^8(t).

Q(a) + q(a) = 0, Q(b) + q(b) = M(b) - P(b) + P(b) - m{b) = M(b) -
m(b), so that by choice of M, m, by (13) this is less than e and P is the variational
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integral of / over [a, b]. Conversely, if for each e > 0 there is a monotone
increasing K satisfying (14,15), then by (14), P + K and P — K are Perron major
and minor functions, respectively, of/ in [a, b], satisfying (9) with s* for > , so
that by (15), P is the Perron integral of/over [a, b].

We now turn to the original problem, first defining the two-dimensional
integral of a function w: T = [a, b] X [a, /?] -» R. By the two-dimensional ana-
logue of Theorem 3 we can use a variational integral definition, and we need the
second difference

A2V = tfV(u,t;p,T) = V(t,r)- V(t,,x)- V(U,T)+ K(K, / I )

(where V:T^R).

Given w, if there is a W: T -> R with the properties that, given e > 0, there are a
V: T -> R with 0 < A2K< e for all second differences in T, and a 8(t, T) > 0,
such that

(21) A2V(u, t; li, T) ^\&W{U, t; p, r) ~ w(t*, r*)(t - M)(T - ju)|

for (t*, T*) a vertex of the rectangle [u, t] X [ju, T] that lies in the circle centre
(/*, T*), radius 8(t*, T*), we say that A?W(a, b; a, /?) is the variational integral of
w over T.

PROOF OF THEOREM 1. Given e > 0 and an integer j > 0, by Theorems 2,3 there
are functions 6.(0 -* 0 a n ^ ^ 7 (0 m [«5 b] such that

Kj(s) ~ Kj{r) >\f(t)(s - r ) - F(r, s)\ (t = r or s, 0 < s - r < «,.(/)),

and there are SJ'(T) > 0, ^ ( T ) , relative to <JP, $, a, /J. Writing

K(t) = 1 V{Kj(t) - Kj(a)} (a<t< b),

. K ( T ) = 2 2>{K,(T) - Ky.(a)} ( a < T < / S ) ,
(22)

then AX 6) < e, K(j8) < e. If Zo is empty with Zy the set of (/, T) in T with
|/(01<2>, | V ( T ) | < 2 > ( 7 = 1,2,3,...), we put «(/, T) = min(8/r), 6/(T)) in
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Zj\ZJ_i (j = 1,2,...) and have for / = r or s, s > r, T = p or a, a > p, and

(23) f(t)<p(r)(s - r)(o - p) - F(r, s)9(p, a)

= {f(t)(s-r)-F(r,s)}<p(T)(o-p)

+f{t)(s-r){q>(r)(o-p)-*(p,o)}

r)(a - p) - F(r,

*,(*) - f,(r)}2>(a - p) + 2>(* - r){Ky(a) -

{*,(,)-*//•)} {K,(a)-K,(p)}

- Jf(r)}(a - p) +(* - r){K(a) - K(p)}

+ {AT(J)-A:(r)}{K(a)-K(p)}.

The last expression is non-negative and finitely additive over rectangles, with
value

K(b)(/3 -a) + (b- a)K(P) + K(b)K(0) < e{j8 - a + b - a + e)

for T. Thus f<p is variationally integrable and so Perron integrable over T to
F(a, b)<b(a, /?), proving Theorem 1.

The preceding proofs can easily be given for Perron-Stieltjes integration with
strictly increasing g(t) in [a, b], y(r) in [a, /?], on replacing s — r by A,g(r, s) =
?(*) ~ ^C''). CT ~ P by A2y(p, a) = y(a) — y(p), with "g-ahnost everywhere" and
"y-almost everywhere", in appropriate places. When g, y are sometimes constant
in intervals or not monotone we replace Perron-Stieltjes integration by Ward [49]
integration which is easily shown equivalent to the appropriate variational in-
tegration, see [21]. Similar proofs hold for general Denjoy and BurkilFs approxi-
mate Perron integration [6] as these are equivalent to variational integration over
division spaces using intervals and rectangles, see [27,29]. Similarly for m-dimen-
sional and n-dimensional "rectangles" with (m + n)-dimensional Cartesian prod-
ucts, or generalized intervals in product division spaces in which we use finitely
additive interval functions instead of the K, K, Fand their differences. The use of
finitely superadditive interval functions causes difficulties illustrated in [26].

2. Generalized Perron and TV-variational integration

In this section we go to convergence-factor integration in intervals and rectan-
gles, following the same pattern of definitions and proofs as in Section 1, but with
added complications caused by the convergence-factors. [22] gives necessary
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conditions for integrals of the type using derivatives like (3,4), and [22], page 114,
(27), (28), leads to the following details. Given a < b and each w, v in a =£ u < v
< b let Ns(u, v, t)(u < t < v) be monotone increasing in t with

Ns(u,v,v)-Ns(u,v,u)=l (s=+,~),

^ ' N+(u,v,u+) = N+(u,v,u), N_(u,v,v-) = N_(u,v,v).

Ns is a regular convergence factor for generalized Perron integration in [a, b] using

I(S, Ns, F, u, v)=(S) (VF(t) d,Ns{u, v, t) (v > u),
(25) Ju

l(S,N,,F,u,u) = 0 (s=+,~),

for some Stieltjes integration (5) having all properties proved for (N), if (25)
exists for each bounded Baire function Fin [a, b] and all u, v, s in a < u < v =£ b,
s = +, —, and if the only functions F with

(26) S(t)>0in[a,b] a n d (u,v)c(a,b)

a n d

l{S,N+,F-F(u),u,v)>0 ( « - « < « ( « ) ) ,

I(S, N_ ,F(v) - F, u,v) > 0 , ( » - I I < 8 ( O ) ) ,

are the monotone increasing F.
Requirements (24,27) and the additivity in the integrand of the (S)-integral

give
(28)

I(S, N_,F,t-h,t)< F(t) < I(S, N+ ,F,t,t + h) (0 < h< 8{t)).

By [22], page 114, below (28), (24,25) do not give (26), and it is the most
difficult condition to arrange. A few special cases are the £esaro-Perron result of
W. L. C. Sargent [43] and those produced by the condition v{x, x + h, t) =
v(x + h, x, t) of R. L. Jeffery and D. S. Miller [32], page 128, called reversibility
in [22]. These are generalized in [22], page 116 (35,36). A result I gave in [18],
pages 693-695, Section 1, is corrected and extended in Theorem 4, though the set
B is more restricted.

THEOREM 4. Let B C [a, b] be an intersection of a sequence of open sets (a§s-set)
or in particular a closed set, and let C = [a, b]\B.

For each u,vE.B let Ns be reversible, N+(u,v,t) =
, , Â _ (u, v, t) or, more generally, let F(v) >F(u) when I(S, N+ ,
*- ' F-F(u),u,w)>0, I(S,N_,F(v)-F,w,v)>0 for all

w in u < w < v.
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For each t G C D (a, b) let there be two infinite sequences of h
, tending to 0, one with h > 0 and one with h < 0, such that the
^ ' corresponding I(S, N+ , F, t, t + h)(h > 0) and I(S, N_,F,t

+ h, t) (h < 0) depend only on the values of F in B.

If F satisfies (27) then F is monotone increasing in [a, b].

PROOF. By (24,30), B D C S O that B = [a, b]. Let D be the union of all
intervals [v, w) C [a, b] for which F is monotone increasing in B n (v, w), so that
[a, b]\D = E is a §s-set. If (r, s) is a union of the intervals (u, w) then Borel's
covering theorem on closed subintervals of (r, s) shows that F is monotone
increasing in B n (r, s), and so in [r, 5] on using (28,30). Thus F is monotone
increasing in the component intervals of D. Ua^r<s<t^b and (r, s),
(s, t) C D then [r, t] C D and E has no isolated points. As E, B are §s-sets, so is
E n B. U E n B is empty then every interval (r, s) C (a, b) is a union of the
intervals (t>, w) and so F i s monotone increasing on [a, b]. Thus if E is not empty,
E n B is not empty and for A"n the set in (27) with 8 ( 0 > 1/n,

00

EDB= \J E H B n Xn

and Baire's density theorem shows that for some integer « and some interval
(r, 5) C (a, 6) with s - r < \/n, Q = E n B D (r, s) is not empty and Q H Xn

is everywhere dense in Q. It t, u E £> with / < w then t, u £ 5 . If {t, w) C D with
; < w < M then F(t) < F(w) and we need only prove that F(w) < F(M) . Thus we
can assume t unisolated on the right from E n B and so from Q C\ Xn. Similarly
we can assume u unisolated on the left from Q D Xn, and there are /,, M, G (? D Xn

with

r < /, < M, < M, tx — / < 5(r ) ,

u - M, < 5 ( M ) , F(t) < F(r ,) < F ( M , ) < F ( M ) ,

by (27,29), and F is monotone increasing in E n £ n (r, s). As F is monotone
increasing in the component intervals of D and by (29), F is monotone increasing
in B (~) (r, s) and so in [r, s]. Hence Q is empty, giving a contradiction and
proving the theorem.

(30) is true if Ns is a Lebesgue integral relative to /, with C of measure or
variation zero. It is also true if Ns is a Radon integral relative to a particular
strictly increasing £(?) with B as the union of sets Pj, Px the Cantor set on [a, b],
and PJ+l as P, with Cantor sets on the intervals of the complement of Pj
(j = 1,2,3,...) so that the Lebesgue measure of [a, b]\B is b — a. By Baire's
density theorem, as each P, is nowhere dense in B it cannot be a 95-set, and also
the above proof would fail for this B. Thus B cannot be a union of perfect sets,
unless another proof is used.
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For g strictly increasing in [a, b] we now define an integral (N) J^fdg using

(31)

N+D(F;g;u) =

lim (S) f{F{t) - F(u)) d,N+ (», v, t)/(S)f(g(t) - g(u)) d,N+ («, t;, / ) ,

(32)

lim (S) fV(F(v)-F(t)) d,N_ (u, v, t)/(S)f(g(v) - g(t)) d,N_ {u, v, t),

in place of (3,4), respectively. Upper and lower derivates follow on writing
lim sup and liminf, respectively, for the lim. A reader disliking Stieltjes integra-
tion can use (3,4) instead, but the more general Stieltjes form allows us to use
singular measures, and counting measures that give sums. Extending [23] we use
functions/, M from [a, b] to R. M is an Ns-Perron major function off, g on [a, b],
if and only if

(33) M(a) = 0 andM is Ns-continuous, that is

lim (S) (VM(t) d,N+ (u, v, t) = M(u) (a < u < b),

lim (S)fVM(t)d,N_(u,v,t) = M(v) (a<v^b);
u->v— •'u

the lower derivates N+ D(M; g; x) > f(x), N^ D(M; g; x) 3=
f(x) g-almost everywhere on [a, b];

. . the lower derivates are — oo only on a countable set of points of
continuity of g.

The infimum of M(b) for all A^-Perron major functions M of / , g on [a, b] is
called the upper Ns-Perron integral of f, g on [a, b]. An m: [a, b] -> R is an
Ns-Perron minor function off, g on [a, b] if and only if — m is an A^-Perron major
function of —/, g on [a, b], and the lower N'-Perron integral of f, g on [a, b], is the
supremum of m(b) for all such m. An M: [a, b] -» R is a strong Ns-Perron major
function off, g on [a, b], if and only if

, , N+D(M;g;t)>f(t) (a<t<b),
( ' N_D(M;g;t)>f(t) (a<t<b), M{a) = 0,

and M is A^-continuous, while strong Ns-Perron minor functions are defined using
—/ as before.

https://doi.org/10.1017/S1446788700027087 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027087


[12] A problem in two-dimensional integration 397

THEOREM 5. Let there be a 8(u) > 0, aj(u) in 0 <j{u) < 1 and depending only
on u, and k+(u, h), x+(u, h), continuous and monotone increasing and inverse
functions in h, such that 0 < k+ («, h) < h and

(37) N+ (u,u + h,u + h)- N+ (u,u + h,u + k+ (u, h)) >j(u)

(0<h< S(u), a<u<u + S(u) < b),

and for each integrable M,

(38) j(u)L+{u,h) = sup \(S)fU+"{M(t)-M(u)}dtN+(u,u + H,

is continuous in h for 0 < h =£ S(u), a < u < u + 8(u) ^ b. Similarly for s — — in
(37,38). Then the upper and lower Ns-Perron integrals off, g on [a, b] are unaltered
if the major and minor functions are replaced by strong major and minor functions of
the appropriate kinds, and also if f is replaced by f*:[a, b] -> R equal to f, g-almost
everywhere.

PROOF. AS in Theorem 2 we first remove the finite or infinite sequence (sn) of
exceptional points from (35) using the monotonicity of Ns in t and L+(u, h),
x+ («, h) in h so that the integrals in (39) below exist, and using (37), to get

(39) (S) f+hL+ (u, x+ (u, t - «)) d,N+ (u, v, t)

(S) (U+h L+ (u, x+ («, k+ (u, h)))d,N+ (u, v, t)
Ju + k+(u,h)

(S) fU+h{M(t) - M(u)}d,N+ ( u , u + h,t)
J

As M is A^-continuous, given e > 0, there is an Hn > 0 with

(40) j(sn)L+(sn,Hn)<e-2-"-1 (H = 1,2,...).

Let

[0 ('<0),
(41) Nn+(t + sn) = \L+(sn,x+(sn,t)) (0<t^k+(sn,H,

[L+(sn,Hn) (t>k+(sn,Hn)),

and similarly Nn_ (t) for s = - . Then by (40,41),
00 00

n= \ n = 1

is A^-continuous as by (33,38), L+ (w, /z) is continuous in /i, and

Ar + : D(M i ; g ; 5 n )>0, N_D{Mx;g;sn)^Q.
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As the sn are points of continuity of g they form a set of g-measure zero, and so
can be included in the exceptional set of (34) to give a set X of g-measure zero,
and so containing no jumps of g. By the construction of Theorem 2 with
g-measure, we have a continuousy(g; t). Addingy(g; t) + egc(O to M{, where gc

is the continuous part of g, we have a strong A^-Perron major function of /, g in
[a, b] at most e(2 + g(b)) away from M, proving the theorem.

By (26), if M, m are strong A^-Perron major and minor functions, respectively,
of / , g in [a, b] then M(b) s* m(b), and by Theorem 5 the same is true for
A^-Perron major and minor functions, and also the upper integral is not less than
the lower integral, justifying the names. Further, the difference is monotone
increasing, so that if the two are equal for [a, b], with value called the Ns-Perron
integral P(b) off, g over [a, b], they are equal for all [a, t] C [a, b], while

(42) M{t) ^P(t) >m(t),

and M — P and P — m are monotone increasing.
If, given/, g, there is a P: [a, b] -> R with P(a) = 0 and, given e > 0, there are

a monotone increasing function K{t) with K(b) — K(a) < e and a positive
function 8(t) on [a, b] such that for a < u < v < b and respectively for v < u +

>u - 8{v),

(43) (S) f(K(t)~K(u))d,N+(u,v,t)
J u

^ {S) f{P(t) - P(u) -f(u)(g(t) - g(u))} d,N+ (u, v, t)

(44) (S) f{K{v) - K(t)) d,N_ (u, v, t)

> (S) f{P{v) - P(t) -f(v)(g(v) - g(t))} d,N_ (u, v, t)

we say that P is the Ns-variational integral off, g over [a, b].

THEOREM 6. / / in Theorem 5, /, g are Ns-Perron integrable to P(t) over each
[a, t] C [a, b], then P, with P{a) — 0, is the Ns-variational integral of f, g over
[a, b]; and conversely without using Theorem 5.

PROOF. If / , g is A^-Perron integrable to P, by Theorem 5 we can assume (36)
true, and so

{S) f(M(t)-M{u))d,N+{u,v,t)

> (S) fVf(u)(g(t) ~ g(u)) d,N^ (u, v, t)
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for some 5,(0 > 0 on [a, b] and a < u < v < b, v < u + 8,(M). By (42), M = i>
+ # , where A", is monotone increasing with

(S) / V . ( 0 "*.(«)) d,N+(u,v,t)

f{f(u)(g(t) - g(«)) - P(r) + /»(«)} </,JV+ («, «>, 0-

Similarly, for a strong A^-Perron minor function m we have a monotone increas-
ing K2 and a 82(?) > 0, with

(5) f{p(0 - />(«) -/(«)(g(0 - g(«))} ̂ ,iv+ («,«, 0

ft, U < M + 82(M). Taking 8(r) = min(S,(0, S2(0) > 0 and AT =

A", + A 2̂, by choice of M, m, K is monotone increasing with AT(fe) — A"(a) as
small as we please. The same K can be used for similar inequalities when s = —,
so that P is the A^-variational integral.

Conversely, if P is the iVj-variational integral then by (43,44), P + K and
P — Kare A^-Perron major and minor functions, respectively, and 2K(b) — 2K(a)
is as small as we please. Hence P is the A^-Perron integral of / , g.

For an analogue of Theorem 1 we define two-dimensional integrals in 7 =
[a, b] X [a, y3] using Ns and Na (s,o = + or —), Ns satisfying (24,26) and the
remarks involving (25), and No satisfying similar conditions with a, /?, a replacing
a, b, s, respectively. If, given f:T-*R, g: [a, b] -> R, y: [a, /?] -> R, there is a
P: T -» R with P{t, T) = 0 when t = a or T = a or both, and, given e > 0, there
are a 8(t, r) > 0 on T and a V: T -> R with, for all such differences in T,

A2F(a, 6; «, fi) < e, A2F(«, r; /i, T) > 0,

(5) fA2V(u,t;ti,T)dltTNsNaJu

> ( S ) / {A2i>(«, r; ft, T ) - / ( « , ju)A,g(«, 0

(U= [u,v] X [M, i r] c r , ( U - M ) 2 + ( J ' - M ) 2 < 5 2 ( M , / a ) , 5 = + = f f )

and similar inequalities when ( + , + , « , JU) are replaced by ( + ,—,u,v),

( — ,+, v, ju),( — ,—, v, v), we say that P is the NsNa-variational integral of f, gy
over T.

THEOREM 7. Assuming that the S-integral is finitely additive in the integrand and
obeys the conclusion of Theorem 1 for S, if f, g are Ns-variationally integrable to
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P(t) over each [a, t] C [a, b], if <p, y are Na-variationally integrable to 7T(T) over
each [a, T] C [a, /?], and if g, y are of generalized bounded variation (VBG*) over
their respective ranges, then ftp, gy are NsNa-variationally integrable to P(b)w(fi)
over T.

PROOF. AS in the proofs of A. J. Ward [49], page 581, Lemma 2, and page 592,
Lemma 6, if g, y are VBG* there are gy, yy- (j — 1,2) such that g, > 0, y, > 0, and
g2, y2 are finite and monotone increasing, and for small enough intervals,

(46) lA.g^g.A.gj, |A2y|<y,A2y2.

Given e > 0 and an integer j > 0, there are 5,(0 > 0 and monotone increasing
Kj(t) in [a, b] such that Kj(a) = 0, Kj(b) < £ • 4~J and for x = u or v and
0 < v - u < 8j(x),

(S) f\Kj(t)- Kj{x)\d,N,(utv,t)

f{f(x)(g(t) - g(x)) - P(t) + P(x)} d,Ns(u, v, t)

Also there are 8y*(r) > 0 and K^(T) with similar properties concerning <p, y w, a, /i.
Using K, K from (22), and Zy, 8(t, T) as in the proof of Theorem 1, except that/
and <p are replaced by /g, and <py,, and the analogue of (23) with g and y, and
Theorem 7 for the 5-integral, then for (x, £) in ZJ\ZJ_l and U = [u, v] X [ft, v],

/(x)«p(|)A1gA2y - A,i>A27r = (/(x)A,g -

+/(x)A,g(<pU)A2y - A2^) +(A,

(S) j {/(x)<p(|)A,gA2y - A.PA.TT} d,tTN,Nt

(S) f(f(x)Alg - A,P) J,iV,

(S) f^gdA \{S)

(5) A A . P -/(x)A,g) rf
•'u

{S) (\KjdtN, • 2'(S) J

,N,- {S)

• {S)

(S)

(S) /"(<pU)A2y - A2W) dTi

( 5 )
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using (46) and

Q(t, T) = K(t)y2(r) + g2(t)K(r) + K(t)K(r)

< ey2(P) + g2(b)e + e2 ̂  0

as e -> 0 + while A2g > 0 and is finitely additive. Hence the proofs

A similar pattern of definitions and proofs holds for the r-integral or AfZ-in-
tegral of J. Marcinkiewicz and A. Zygmund [34] and the SCP-integral of J. C.
Burkill [10]. The result of J. J. McGrotty [35] is useful for integrals over [a, b] but
not for integrals over [u, v] C [a, b], and a deeper theory would be necessary to
deal with generalized Riemann integrals over subintervals of [a, b]. For the
SCP-integral [10], pages 47-48, we use the Perron integral

C(M; u, v) = (VM(t) dt/(v - u).

M is C-continuous at u if C(M; u, u + h) -» M(u) as h -* 0, and M is SC-continu-
ous at u if

A{M; u, h) = C(M; u,u + h) - C(M; u- h,u)

= f"+h{M(t) - M(u)} dt/h - f" {M(t) - M(u)} dt/h -» 0

with h. Here, A(M; u, h)/h is the ratio in (5) for this case, the upper and lower
limits of which give the upper and lower SC-derivates. An SCP-major function M
of fin [a, b] involves a B G[a, b], B containing a, b and lying almost everywhere
in [a, b], such that M is C-continuous in B, SC-continuous in (a, b), and follows
the analogues of (34,35) with the given symmetric derivates. The analogue of
Theorem 5 follows on dropping the ± and takingy(w), L(u, H), k(u, h), x(u, h)
as, respectively,

\ , sup 2\A(M; u, h)\, \h, 2h.

For then A(MX; sn, h) > 0 and the constructed M, — M is monotone increasing
and continuous and so SC-continuous and C-continuous. Next, the SCP-integral
P(t) over [a, t] exists for t in a suitable set B, see [10], pages 48, 49. The 5-integral
here is the Perron integral, and as Mis Perron integrableand M — Pis monotone
increasing, P must be Perron integrable. Thus the first part of the analogue of
Theorem 6 goes through. So does the second part if we note that here the
iV-variational integral P can be changed in a set of measure zero without
falsifying the definition, and to make the definition exact we can suppose that P
is C-continuous whenever C(P; u, u + h) has a limit as h -> 0, that is, almost
everywhere. Then the iV-variational integral is the SCP-integral and the analogue
of Theorem 7 is true.
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For the MZ-integral [34], pages 36-37 there is the added complication of the
convergence or divergence of the Perron integral (taken a Lebesgue integral in
most of [34]),

E{M; u, h) = lim f {M(t) - M(u)}/ (2t) dt
e^0+ J

e*s\u-t\'£h

Let M: [a, b] -* R be Perron integrable and C-continuous in a suitable set B, and
at a point u let E(M; u, h) exist or be divergent to +00. In the case of
divergence we write BsM(u) = + 00. Otherwise the Borel derivative BsM(u) is the
limit of E{M; u, h)/h as h -» 0 + . As M is C-continuous in B it is SC-continu-
ous there and we can use the M, — M of the SCiMntegral, and [34], page 35,
(101), and we have

Putting (sn) into the exceptional set Xof measure zero (which is not mentioned in
[34]) we have a function M2 with the required properties, so that the analogue of
Theorem 5 is true. The AfZ-integral is defined almost everywhere but not
necessarily everywhere [34], page 38, Section 46, but as for the SCP-integral the
analogues of Theorems 6, 7 go through.

It may be that a different theory will be necessary to prove the analogue of
Theorem 7 for (say) the integrals of James or Taylor, and I leave this problem to
those interested.
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