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Abstract

A p-group is called powerful if every commutator is a product of pth powers when p is odd and a product
of fourth powers when p = 2. In the group algebra of a group G of p-power order over a finite field of
characteristic p, the group of normalized units is always a p-group. We prove that it is never powerful
except, of course, when G is abelian.
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Throughout this note G is a finite p-group and F is a finite field of characteristic p.
Let

V (FG)=

{∑
g∈G

αgg ∈ FG

∣∣∣∣ ∑
g∈G

αg = 1
}

be the group of normalized units of the group algebra FG. Clearly V (FG) is a finite
p-group of order

|V (FG)| = |F ||G|−1.

A p-group is called powerful if every commutator is a product of pth powers when
p is odd and a product of fourth powers when p = 2. The notion of powerful groups
was introduced in [5] and it plays an important role in the study of finite p-groups
(for example, see [2, 4] and [7]). Our main result is the following.

THEOREM. The group of normalized units V (FG) of the group algebra FG of a
group G of p-power order over a finite field F of characteristic p, is never powerful
except, of course, when G is abelian.

In view of the fact that a pro-p-group is powerful if and only if it is the limit of
finite powerful groups, this has an immediate consequence.
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COROLLARY. The group of normalized units V (F[[G]]) of the completed group
algebra F[[G]] of a pro-p-group G over a finite field F of characteristic p, is never
powerful except, of course, when G is abelian.

We denote by ζ(G) the center of G. We say that G = A Y B is a central product of
its subgroups A and B if A and B commute elementwise and G = 〈A, B〉, provided
also that A ∩ B is the center of (at least) one of A and B. If H is a subgroup
of G, then we denote by I(H) the ideal of FG generated by the elements h − 1
where h ∈ H . Set (a, b)= a−1b−1ab, where a, b ∈ G. Denote by |g| the order
of g ∈ G. Put �k(G)= 〈u ∈ G | u pk

= 1〉 and Ĥ =
∑

g∈H g ∈ FG. If H E G is a
normal subgroup of G, then FG/I(H)∼= F[G/H ] and

V (FG)/(1+ I(H))∼= V (F[G/H ]). (1)

We freely use the fact that every quotient of a powerful group is powerful
[2, Lemma 2.2(i)]).

PROOF. We prove the theorem by assuming that counterexamples exist, considering
one of minimal order, and deducing a contradiction. Suppose then that G is a
counterexample of minimal order. If G had a nonabelian proper factor group
G/H , that would be a smaller counterexample, for, by (1), V (F[G/H ]) would be
a homomorphic image of the powerful group V (FG). Thus all proper factor groups
of G are abelian, that is, G is just nilpotent of class 2 in the sense of Newman [6].
As Newman noted in the lead-up to his Theorem 1, this means that the derived group
has order p and the center is cyclic. Of course it follows that all pth powers are central,
so the Frattini subgroup 8(G) is central and also cyclic.

Suppose p > 2. Then a finite p-group with only one subgroup of order p is
cyclic [3, Theorem 12.5.2], so G must have a noncentral subgroup B = 〈b〉 of order p.
Now (b, a)= c 6= 1 for some a in G and some c in G ′. Of course 〈c〉 = G ′ ≤ ζ(G),
a−1bi a = bi ci

= ci bi and bi B̂ = B̂ for all i , so

(a B̂)2 = a2(1+ a−1ba + · · · + a−1bp−1a)B̂

= a2(1+ cb + · · · + cp−1bp−1)B̂

= a2Ĝ ′ B̂. (2)

Noting that
(Ĝ ′)2 = 0, (3)

we get

(a B̂)3 = a2Ĝ ′ B̂ · a B̂ = a2Ĝ ′a−1
· (a B̂)2

= a2Ĝ ′a−1
· a2Ĝ ′ B̂ = a3(Ĝ ′)2 B̂ = 0. (4)

Therefore |1+ a B̂| = p. We know from 4.12 of [7] that �1(V (FG)) has exponent p,
so it must be that ((1+ a B̂)b)p

= 1 as well. However,

bi ab−i
= a(a, b−i )= aci

= ci a, (5)

https://doi.org/10.1017/S1446788709000214 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788709000214


[3] Powerful group of units 327

which allows one to calculate that

((1+ a B̂)b)p
= (1+ a B̂)(1+ bab−1 B̂) · · · (1+ bp−1ab−(p−1) B̂) · bp

= (1+ a B̂)(1+ ca B̂) · · · (1+ cp−1a B̂) by (5)

= 1+ Ĝ ′(a B̂)+ 1
2 (p − 1)Ĝ ′(a B̂)2 by (4)

= 1+ Ĝ ′(a B̂)+ 1
2 (p − 1)(Ĝ ′)2a2 B̂ by (2)

= 1+ Ĝ ′(a B̂) by (3)

6= 1.

(To see that the third line is equal to the second, it helps to think in terms of
polynomials with a B̂ as the indeterminate and FG ′ as the coefficient ring, the critical
point being that in the third line the coefficients of all positive powers of a B̂ are integer
multiples of Ĝ ′.) This contradiction completes the proof when p > 2.

Next, we turn to the case p = 2. Then G ′ = 〈c | c2
= 1〉 and the ideal I(G ′) is

spanned by the elements of the form Ĝ ′g, while FG is spanned by the elements h
of G. It is clear that Ĝ ′g and h commute, because

Ĝ ′gh = Ĝ ′(ghg−1h−1)hg and Ĝ ′(ghg−1h−1)= Ĝ ′,

so I(G ′) is central in FG and 1+ I(G ′) is central in V (FG). As (Ĝ ′)2 = 0, it also
follows that (I(G ′))2 = 0 and so the square of every element of 1+ I(G ′) is 1.
As V (FG)/(1+ I(G ′))∼= V (F[G/G ′]), the derived group V ′ of V (FG) lies in
1+ I(G ′), a central subgroup of exponent 2. It follows that in V (FG) all squares
are central.

Let w ∈ V ′. By [5, Proposition 4.1.7], this is the fourth power of some element u
of V (FG). Write u as

∑
g∈G αgg with each αg in F . In the commutative quotient

modulo I(G ′), u2
=
∑

g∈G α
2
gg2, hence

u2
= v +

∑
g∈G

α2
gg2

for some v in I(G ′). Of course then v and all the g2 are central in FG and v2
= 0,

so we may conclude that w = u4
=
∑

g∈G α
4
gg4.

In particular, as V (FG) is not abelian, the exponent of G must be larger than 4.
Recall that8(G) is central, the center is cyclic, and |G ′| = 2, so [1, Theorem 2] applies
and for this case gives the structure of G as

G = G0 Y G1 Y · · · Y Gr

where G1, . . . , Gr are dihedral groups of order 8 and G0 is either cyclic of order at
least 8 (and in this case r > 0) or an M(2m+2) with m > 1, where

M(2m+2)= 〈a, b | a2m+1
= b2
= 1, ab

= a1+2m
〉.
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One of the conclusions we need from this is that every fourth power in G is already
a fourth power in G0, thus every element of V ′ is an element of FG4

0. In particular,
when w is the unique nontrivial element of G ′, the linear independence of G as subset
of FG implies that w itself is the fourth power of some element of G0.

It is easy to verify that, in M(2m+2) with m ≥ 1, the inverse of the element
1+ a + b is

(a2m
−3
+ a−3

+ a−2
+ a−1)+ (a2m

−2
+ a2m

−2
+ a−3)b

and so

(1+ a + b, a)= (1+ a2m
−2
+ a−2)+ (a2m

−2
+ a2m

−1
+ a−2

+ a−1)b.

Of course the left-hand side is an element of V ′, but the right-hand side is not an
element of 〈a〉. When G0 ∼= M(2m+2), this shows that there is an element in V ′ which
does not lie in FG4

0. When G0 is cyclic, then G1 ∼= M(2m+2) with m = 1, and we
have an element in V ′ which does not even lie in FG0. In either case, we have reached
the promised contradiction and the proof of the theorem is complete. 2
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