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MATRIX SPECTRAL PROBLEM WITH MULTIPLE-ORDER JUMPS
AND POLES
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Abstract

The inverse spectral method for a general N x N spectral problem for solving nonlinear
evolution equations in one spacial and one temporal dimension is extended to include
multi-boundary jumps and high-order poles and their explicit representations. It therefore
provides a formalism to generate soliton solutions that correspond to higher-order poles of
the spectral data.

1. Introduction

Spectral problems in one space dimension have already been extensively studied, see
for example [2,3,6,7]; the main structure has a solid foundation. A general case of the
form [7,8]

i,x=WW + u(x,k)f, (1)

where X = diag(Ai,... , kN) and u are N x N matrices, u -*• 0 for |*| —>• oo and
X(k) is analytic in the complex plane C, was studied under essentially a restriction of
simple boundary jumps and simple poles on the spectral data. In fact, the apparently
more general form in [7,8] is basically reducible to (1). For simplicity we assume
A./ ^ Xm W ^ m. Recently high-order poles [12] were introduced algebraically to
the ZS-AKNS spectral equation [2] without imposing analyticity upon the reflection
coefficients; these poles give rise to explicit solitons [18] beyond the normal simple-
pole formalism. However, for the spectral equation (1), there still remain questions
of the forms and effects of multi-boundary jumps of the continuum spectral data, and
of the explicit representations for such jumps and for high-order poles. Apart from
answering these questions we shall in this work consider also the effect of the general
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[2] Matrix spectral problem with multiple-order jumps and poles 321

mathematical scattering and the deviation on the calculation of the time evolution of
the spectral data, largely due to (and particular to) the Fredholm formalism for the
eigenfunction equations. In contrast to the higher-space dimensional cases where the
Inverse Spectral Methods (ISMs) are typically a 3- problem [1,3,4,9-11,14,16,17], the
ISMs in one space dimension are almost always a Riemann-Hilbert problem.

In Section 2, we shall formulate an ISM for (1) with our newly-added solution
for multi-boundary jumps and high-order poles for the spectral data, along with the
corresponding explicit representations. We then consider in Section 3 the relationship
between the inverse data and the scattering data, and the time evolution of spectral
data within our new scheme. Examples are given and certain Levitan equations are
also derived. We remark that NEEs related to Lax pairs (or solvable via ISMs) are in
general good candidates for complete integrability which is even more so in the case
of dynamical systems [15].

To conclude this section, we remark that we shall always assume, whenever the need
for more rigour arises, that the magnitude of the potential u(x) decreases sufficiently
quickly as \x | -> oo, as is assumed routinely in the literature.

2. Multi-boundary jumps and high-order poles.

Let \jr = </>(*, k) exp(k(k)x). It is easy to verify that ^ is a solution of (1) if 0 satisfies

<P(x,k) = e + g(x,k)*[u(x',k)<j>(x',k)], keC. (2)

Here e = (eu ..., eN) is the TV x N unity matrix, the convolution * is defined
element-wise for matrices via

(p * q)(x) = p(x) * q(x') = I p(x- x') o q(x') dx',

P\nQ\n(
Pm\<im\ • • • PmnQn,

where K is the field of real numbers and the matrix Green's function g = (gim)NxN is
given byglm(x, k; r,) = e(X'(t)-x"<*»* {#(*) - # (Re(A, - km)) - r,lm • P (Re(X, - km))) (3)

in which i?(x) = 1 if x > 0 and = 0 otherwise, p(x) = 1 if x = 0 and = 0 otherwise
and r]im e {0,1} are constants. For notational simplicity, we shall for any matrix w
always denote by io, the j-th column and by t/;,y the (/, j)-th element. We may now
rewrite (3) in a simpler form as

gin, = G]m(x, k) = e<*<(*>-*".<*»* {#(*) _ €lm(k)@ (Re(X, - km))}, (4)
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where 0 (0 ) = 1 and ®(x) = ft(x) for x ^ 0. The index matrix e(k) we are
interested in is therefore characterised by the following three conditions for / ^ m:
(i) cmm{k) = 1 Vk € C or emm(k) = 0 Vk e C; (ii) elm(k) = 1 if k ? y,m\
(Hi) eim(k) = t)im= constant Wk e ylm (up to any negligible finite points). Such choice
of € in (4) or r) in (3) reflects the nonuniqueness of the solutions of (1) on a boundary
y (see definition below). The solution <p will be denoted by <p(.

Let Y = U£=1ym, Ym = UJliMm, Yu = 0 (empty set) and

Ylm = {k e C : Re (\,(k) - Xm(k)) = 0} , / ^ m.

We define the two sides y* of the boundary y such that they enclose any bounded
region in C along with a sufficiently large anti-clockwise circle. On the boundary y,
we are particularly interested in the three matrix eigenfunctions <p and <p^ determined
by(cf(2))

, (5)

where Gfm = Iim2<_>z(i),± G(x, z') (that is, limiting values at the sides) and

G,m(x, z) = exp{(M*) - K(k))x] {*(*) - # (Re(A.,(*) - Xm(k)))}.

These eigenfunctions can be cast into the form of (2) with (4) because <j> = <f>e° and
** = *•* if e l = «£,=<> and for/ # m

y/m
(6)

otherwise.

For any index matrix e, we can show for k e ym that

- km)x}e, + Gm* [«(0« -

(7)
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(that is, rlre = r/r(e + Re o (e° - e)))> where

I e{kM-k'mx • [u(x, k)tf(x, *)] dx
J05

*/»(*) = / e^k)~x'mx • [u(x, k)<pe(x, *)] dx (8)

and [ • ] / ( n denotes the (/, m)-th element of the matrix. If we take € = e* and 5/m to be
the Kronecker symbol, then (7) gives

15/m otherwise,

where ^?± = R(±. Suppose we order Xm{k) near y by

Re A.,, > • • • > Re A.,-w (k near y + ) ,

Re kj, > > Re A.;A, (it near y " ) (10)

and define PT for any permutation t by

r , [ l if ( / , ; ) e {(1,/ni), . . . , ( N , m n ) }
7 0 otherwise

y/?ii . . . /72/vy

withr+ = ' " ^ ). If

we regard 0 as a matrix representation of a linear operator in CN, then />±(0) are the
new representations over the same basis set but of different orders. In terms of the
new coordinates, relation (9) becomes

P± (^(x, k)) = P± (</>(*, k)) ep±Wx • P± (THk)) x e~p±(X)x,

in which P± (T±(k)) are, due to (10), either upper- or lower- triangular matrices with
all diagonal elements equal to 1. Hence det(7±) = 1 and (9) gives

<j>+(x, k) = <p~(x, k)ek{k)xS(k)e-k{k)x, S(k) = (adj T~(k)) T+(k), k e y( l l )

If the boundary y is simple in the sense that no proportion of y,m falls into yVm for
another /', then 0 itself as a base on y is simpler than either <f>+ or (f>~ and may even
contain more Volterra-type integral equations. Notice that, in contrast to the case of
(nonsimple) multi-boundary, Gm will be either G+ or G~ on the whole of y/m. Hence
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we can fix a g = Ga for (j>a via (2) such that for k e y,m, Ga
m = G* if Gm =

G" = G for other k eC. Then we have instead of (11)

(pa(x, k) = 0 ( J C , k ) e m x T ( k ) e - X i k ) x , k e y ,

w h e r e Tlm{k) = S,m Wk # y l m , a n d

and

(12)

Tlm(k) = Slm- [U(X, dx, k € Ylm

We note that in a true multi-boundary case, one can not simply take <f> alone as a
base because <pm may be neither <p^ nor 0~ on yim, but a measurement of <p+ — <j>~ is
necessary for the final inverse from spectral data. Form (12) is similar to the case of
[7,8] but the formalism is simpler.

We now proceed to define the discrete spectral data for high-order poles, stress
laying on the explicit representations in terms of the eigenfunctions. Let Tm be the
set of poles of irm in €\y (with non-presence of other singularities assumed). We
denote by km[s the s-th pole of \lrm (k) of order nm-s. For simplicity we assume as usual
Tm D fm- = 0 for m ^ m' and we shall often denote km.s by ka through an index pair
a = (jn\s). For any ka e Fm, there exists a A.m-(m' ^ m) such that ReA.m- > ReA.m,
for otherwise </> would be of Volterra type equation and thus analytic near k = ka. We
denote by XCT(a) (> Xm(ka)) the one which attains the smallest value of such ReXm.
Then the discrete spectral data b^ for 0 < I < na — 1, associated with the pole at
k = ka of order na with a = (m; s), are given by

b®=- [eT(exp{-Xa(k)x}xl,m(x, k) x (jfc - *„)"")"., <**, a = a ( a ) e { l , . . . , N),
U v ' \k~k° ( 1 4

where r denotes matrix or vector transposition. This establishes the important
expansion

. *) = - kay) (15)

in which

;=o
(16)

where [ . ) = / ! / (y!(/ — j)\), (/) denotes the /-th derivative with respect to k and the

algebraic operator (/> is defined by
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We note that the above operator (/> plays a somewhat algebraic role for the differential
operator d'k and satisfies ( / | (g + h)){l) = ( / | g){l) + (f | /i)(/> whenever (g+h)U) =

gU) + hU) for 0 < j < I, and ( / \g | A)« = ( ( / | g) \ h){l) = ( / | (g | A))w. This
operator is used here because the analyticity of b{l) is not assumed. We now prove
(15). First from (5), we have at k = ka that

, ka) = Fa,,(x, k^* -ea + T (l) x / D<P(X, x\ ka)f^\x', ka) dx',
y=o \Jy J& (17)

- d i a g (0(Re(A, - X m ) ) , . . . , *(Re(Xw - Xm)))} «(*', A),

where

Dm(x, x', k) =

Since <pa satisfies the integral equation

cpa(x, k) = ex°>mx(k - ka)"° • em + f Dm(x, x', k) x <pa(x', k)dx'

and the kernel Dm(x, x', k) near k = ka can be represented by

Dm(x, x', k) = Da(x, x', k) - e
k°Wx-x"> • eae

T
a • u(x', k),

we h a v e for 0 < / < « „ — 1 that

Vfix, ka) = T (l) f D</\X, X', kM^ix', ka) dx'
j=0 \J/ J&

-12(l) F°>j(x< K)eKx-eae
T

a • d[-\ . x [e^'u(x', k)tpa(x', k)dx'

j=o

+ J D(j\x, x', ka)<p«-j\x', ka) dx' J . (18)

The solution of (18) is obviously that in (16) due to (17). An alternative way of
constructing discrete spectral data without the explicit expression (14) and (15) is to
prove inductively a more general form

<p«\x,ka)= j r £
i=\,i£m j=0
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via ^ i{x, k) =

\x, ka)

det(<pa, fa...,\

N 1hl>~ E E ( '

Zhuhan Jiang

ftm-\, T^m+l, . . . , V'A') a n d

[7]

" 7 , ^

This algebraic method, however, tends to induce more discrete inverse data [13] than
those given explicitly here in (14) and (15).

To summarise, the complete set of inverse data is given by

s = l,...,Nm;j=0,...,nm.,,-l}. (19)

We note that only half of the Rfm are actually needed to construct the jump measurement
S(£) from (11). Also in the case of a different but simpler procedure for simple
boundary jumps (12), a different half set Rfm may be used to construct T( |) in (13).

For the inverse, one needs to find the eigenfunction (j)(x,t,k) from the inverse
(spectral) data:- the expansion of eigenfunction in terms of k, depending upon the
specific spectral problems, will then be required to derive potential u. Let (pm(x, k) =
£;=i vaiJ(x)/ ((/!„ - j)\(k - kay) + ff{\). Then (15) implies

- E (*' 7j) [ w4-**] "E' (na 7" 0 4w-°(*. w
i=o \ / ° ;=o ^ '

n a - j , (/) „ „ , /

= {ba\ira(a)(x, k^e-^'f*-'1, (20)

where a = (m; A:), h(l)(ka) = 3^ /i(^) is defined for h = x//aM(x,k) and h =
|K—K a

)jr if w e r e w r j t e (11-13) as

^ + - V f " = Vf±G±, S + = 5 - e , Q- = e - 5 - ' ; f-iJ/ = fQ, Q = T-e,

then the integral equations for the eigenfunctions are given (via (20) and the Cauchy
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residue formula) by

1711 i=\,i^mJyi^ K K

E ,„ _ mk _ k v
^°< ' M ' C ACa) (21)

(where K;m = 1) and their derivatives with respect to k. In the case of only simple
boundary jumps (and so Ra

m = R* and Qm = -Ra
m ), we may solve them from a

simpler set of equations which is (21) with ^r* replaced by yj/a, Qp by Q, ij/P by \fr,
and Kim(k) = 1 if Gm = G~ for & e y/m and = — 1 otherwise.

3. Scattering and other auxiliaries

Although the inverse data are essentially the scattering data in the classical ZS-
AKNS spectral problem [2], inverse data are in general not scattering data. This is
particularly true in many dimensions [9]. First let us link up (7) and (8) by the relation

= I e~XxurJ/ • (e + R( o (e° - e)) dx

= R(k) (e + R( o (e° - e)) . (22)

From (2) and (4), the space asymptotic (scattering) gives us

x/rf(x, k) % emxS(
±(k), as x -> ±oo,

where

Se
±(k) = e + ( p M ^ - clm(k)e (Re(X; - km))] Rl(k)) . (23)

Hence we can represent our inverse data (9) and (11) via the above scattering data

S(k) = (S:0t)r'S±0t), or R< = S% - 51.

In fact, we may construct S directly from the elements of S± (and so the RJm obtained
there) so as to avoid the inverse of the matrix SZ- Fredholm theory gives the solution
for <p in (5) as

<t>m(x, k) = em + —— f &m(x, x', k)em dx',
fm(k) yR
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where fm and &m are both analytic in k (see for example Appendix of [7] for explicit
details) and fm -+ 1 and <f>m -+ em for \k\ -»• oo. Therefore we have

<i>±m(x, k) « S± (*) = h*(k)/fm(k) + 1, ke Yim, x -* oo,

±
+BIBT

and the poles of <f> are determined by zeros of fm in C\y and hence the poles of S.
Thus the scattering data (23) also determine in principle our inverse data (19) as in
the classical case [2,3].

As for the time evolution of the spectral data, one requires the time part of a Lax
pair M = d, — A(u, dx, k) which gives NEE via for example [L, Ml] = 0. One of
the standard procedures is to find Ee(k, t) such that M(\/rfa() = 0 (for € = ± in
particular) as x ->• oo or x -*• —oo, and then, by applying Ml to (11) and (15), for
instance \jr+a+ = {\jr~a~) • ((S~)"15S+), one gets the time evolution

dt((E-(k,t))-lS(k,t)E+(k,t))=O.

However, it is not obvious in general what such 3e(k, t) are unless some of the
scattering matrices S± are very simple, such as Se

+ or SI = e which are exactly the case
in ZS-AKNS scheme. Therefore we shall instead give here a more universal procedure.
Let Si(k) = A(M, A.(it), k\ =Q. Then as x - • ±oo we have (3, - fi(*)) (S±3€) = 0,
that is,

S£(*. /)Se(*. 0 = eaw'Sf
±(k, 0)&(k, 0), (24)

and hence the 3c-free relation

5;Ofc, 0 (Sl(k, 0 ) " ' = e™' [s<+(k, 0) x (St(k, 0))"1] e-nw' (25)

for the 'reflection coefficients'. These are however not yet of the form of our inverse
data. Later we shall show that if the eigenfunctions of the ZS-AKNS spectral prob-
lem are given by Fredholm integral equations, we have to use the above procedure
(including (22)) to obtain the time evolution because none of S± = e. This seems to
be the tradeoff for the neat Fredholm formalism. A similar situation is present also
for the ISMs related to the DS-I equations, for which one can either have neater time
evolution with a penalty of a more involved inverse scattering transform (1ST) [5] or
a simpler 1ST with a more complicated time evolution [10].

As an example, we consider the spectral equation

\j/x = ik • diag(a>i, . . . , <oN)ifr + u(x)\/r, (26)

where (N > 2), w, 6 (R, «,-,- = 0, and without loss of generality co\ < 0, a>\ <
u>2 < ... < coN, com ^ 0 Vm. Its 1ST has been studied in detail [3, 19] in terms
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of pure mathematical language. However, our purpose here is to give explicitly
the eigenfunctions and the related scattering data. It thus provides means for the
calculation of the general time evolution. We will, furthermore, give the related
Levitan equations.

The index matrices of (6) are defined bye* = e° = 1 Vk e C\Randfor£ e y = l ,

€+ =

(0 1 .
0 1

. 1\

0 1

\

1 • .1 <V

\

(27)

Hence from the kernel form G± we have via (27) that all i/r* as solutions of (5) are
meromorphic in C*, with ^j*" and xj/^ being holomorphic there due to their Volterra-
type integral kernels.

In order to cast the integral equations (21) into Levitan equations, we rewrite Vr±

via the Fourier transform (notice that Xm (k) = i<omk)

c, k) = f K*{x, x')eM' dx', te». (28)

In fact, (5), (27) and (28) imply Kf{x, x') = K^(x, x') = 0 for x < x'. Let us recall
some useful formulas below for a, x e R\{0}.

/ exp {iak(x ~ x')}dk = 2TIS(X - x')/\a\,

-iakx
• dk = ak'x, k € R,

iakx

Multiplying (21) by ± /R c/A: • e-"*-*-1', we have for x / x' and ^ = ± that

1
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Hence we have the Levitan equations

[11]

+ E
s=\,u=(m,s)

-x'))\e, • F,pm(x, x') + [ K?{x, x")F?m{x", x')dx")

\ea(a) • Fa(x, x') + f K*(x, x")Fa(x", x') dx"\,
(29)

where S = ± if ka e €± and

p (x x'\ —

\coj
2n

f ± k x',(k)x-km(k)x' dk.

We note that (29) should be regarded as two sets of equations, for x > x' and for
x < x'.

As for the time evolution, we have from (22) and (27) that

<+.=-' », 0 , . . . , 0) • R+ +R (30)

Equation (27) implies that only the strict upper and lower half of R+ and R respect-
ively are required for the completion of our continuum spectral data S(k). Hence we
can solve for them from a subset of (30)

\

1 + RmJ

'/?1 | \

\Rm,m+l/

(31)

and its counterpart for R . But the time evolution of R is always simple to calculate
because Sf° = e, which gives immediate solution of 5 °̂and hence R from (24) or (25).
Thus the evolution of S(k, t) can be obtained from (31) and its counterpart for R~.
As for the discrete spectral data (ka, bf), we can easily derive a*(k, t) = exp(£2 (k)t)
for k near ka, then multiply it by (15) and finally, by applying M to (15), obtain the
time evolution of the discrete spectral data for high-order poles.

In the ZS-AKNS spectral equation, that is, (26) with o^ = —<Wi = 1, *i,, = ks e
<C~,k2,s = ks € C+,hs = nhs,ns = n2,s,bXs = bs and b2-s = bs, equation (29)
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becomes

K+{x, x') + fi\ F(x + x')+ I K~(x, x")F(x" + x') dx" = 0,

K~(x, x') + Q F(x + x')+ I K+(x, x")F{x" + x') dx" = 0,

and

- 1 ^4i)7 (*. i •*•)*"" - h L""me'"

and the solution M = I I is given by ^ = 2AT ,̂(x, x) and r = 2A",^(x, x). We

remark that this formalism is different from but is (neater and) equivalent to that in
[12].

Notice that the scatterings are given by

S--{0 1 J ' S+-{ R* 1+R+J'

\ S( \ (32)

l)' S+-{ 0 l + /?-J' (32)

none of which is a unity matrix. Nevertheless (25) with (32) will still enable us to
obtain the time evolution Rf2 = R?2(k, 0)e~w, R2X = R^ik, 0)e^', where Q(k) =
diag(—^, | ) . For the discrete spectral data, we use the procedure outlined in the earlier
part of this section. The data can be solved recursively from

/=o

This way the explicit soliton solutions of the related nonlinear evolutions equations
such as the NLS equation id,q + d\q + 2q*q2 = 0 can be obtained algebraically [12].

4. Conclusion

We have analysed the multi-boundary jumps and high-order poles in the spectral data
which are a phenomenon specific to the eigenfunctions solved from general Fredholm-
type integral equations. Such formalism makes it tractable to represent all the spectral
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data in terms of eigenfunctions. However, multi-boundary jumps can exist in the
simplest spectral equations and solutions due to high-order poles are observed by,
for example, the Hirota method [18]; they all justify our newly-added efforts. Other
features such as the mathematically-oriented scatterings, time evolution and Levitan
equations are considered concisely for our specific frame.
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