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This paper examines thermoacoustic effects on the propagation of non-planar sound in
a circular duct subjected to an axial temperature gradient. Of particular concern are
thermoviscous diffusive effects, which are taken into account by the boundary-layer
approximation in a framework of the linear theory. For disturbances expanded into Fourier
and Fourier–Bessel series in the azimuthal and radial directions, respectively, the pressure
in each mode is described by a one-dimensional, dispersive wave equation, if non-diffusive
propagation is assumed. When the diffusive effects are included, each radial mode is
coupled to the other radial modes through the boundary layer. Focusing on a single
azimuthal and radial mode only, the dispersion relation for the propagation along an
infinite duct of a uniform gas is first derived. Effects of the temperature gradient are
then examined by solving boundary-value problems for a duct of finite length in four
typical cases. Assuming that the wall temperature increases exponentially along the duct,
eigenfrequencies and decay rates in the lowest axial mode are obtained as well as axial
distributions of the sound pressure and the axial velocity in the duct. The frequency and
the decay rate increase as the temperature ratio at both ends becomes higher. It is found
from the acoustic energy equation that the dispersion combined with the diffusion acts
to reduce the damping and that the temperature gradient makes little contribution to the
production of the energy. However, it is unveiled that the non-uniformity in temperature
yields thermoacoustic sound confinement in the vicinity of the cold end.
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1. Introduction

Damping of sound in a duct is caused mainly by wall friction and heat transfer on the duct
wall, not by the diffusivity of sound itself. In the audible frequency range, the acoustic
Reynolds number a2

0/νω associated with a sound speed a0, a kinematic viscosity ν and a
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typical wavelength a0/ω,ω being a typical angular frequency, is so high that the diffusivity
is negligible in a core region in the outside of a boundary layer on the duct wall. As planar
sound propagates down the duct, it appears that the core is coated with the thin boundary
layer, whose thickness varies in response to the sound. Hence, the core region does work
on the boundary layer through a radial velocity at the edge of the boundary layer, which is
related to the shear stress and the heat flux on the duct wall. In consequence of this, usually,
the sound loses its energy in propagation. This may be understood to be a mechanism of
damping of sound in ducts.

Effects of the boundary layer on an arbitrary planar sound were examined first by
Chester (1964) in the context of nonlinear resonant excitation of a gas column in a closed
tube. He derived the velocity at the edge of the boundary layer in the form of a hereditary
integral of the axial velocity in the core region. In usual Newtonian fluids, a boundary layer
can give rise to memory effects, which are commonly expressed in terms of a so-called
fractional derivative of half-order of the velocity or the pressure (Sugimoto 1989, 2017).

When the duct is subjected to a temperature gradient axially, it is possible that the
boundary layer does work on the core region, in an opposite way, to give rise to the
instability of a gas column, and eventually to the emergence of self-excited oscillations.
A typical example of this is Taconis oscillations in a helium filled, quarter-wavelength
tube. Such a thermoacoustic instability is explained by the action of the boundary layer
under a temperature gradient (Sugimoto & Yoshida 2007). Letting the gas temperature in
a quiescent state be Te(x), the velocity vb at the edge of the boundary layer directed normal
to the duct wall into the core region is given by the axial velocity u′(x, t) in the core in the
following form (Sugimoto & Tsujimoto 2002; Sugimoto 2010):

vb = √
νe
∂−1/2

∂t−1/2

(
C
∂u′

∂x
+ CT

Te

dTe

dx
u′
)
, (1.1)

where x and t are the axial coordinate and the time, respectively; νe is a kinematic viscosity
of the gas at Te; the definition of the derivative of minus half-order is given later by (3.24);
C and CT are constants given by (3.36a,b). The term with C is the relation derived by
Chester in the absence of the temperature gradient. Taking account of vb, the propagation
of sound in a duct of radius R is governed by a following wave equation for a sound
pressure p′ uniform over the duct cross-section:

∂2p′

∂t2
− ∂

∂x

(
a2

e
∂p′

∂x

)
+ 2a2

e
√
νe

R
∂−1/2

∂t−1/2

(
C
∂2p′

∂x2 + C + CT

Te

dTe

dx
∂p′

∂x

)
= 0, (1.2)

with ae(x) being a local sound speed at Te. As is obvious physically, the term with C due to
the wall friction and the heat transfer gives rise to the damping of sound. However, when
a temperature gradient dTe/dx is present, the term with CT can input power into the core
region, if the gradient is appropriate, through p′vb to overcome the damping by the first
term. The above is the case with the planar sound.

Besides the planar sound, a non-planar sound can propagate in the duct. This is marked
by the presence of a spanwise standing wave that is uniform in the axial direction at a
particular frequency called the cutoff frequency. By using a 2π-periodic Fourier series
expansion in the azimuthal angle and a Fourier–Bessel series expansion in the radial
coordinate, the non-planar sound is decomposed into the azimuthal and radial modes
designated by the respective mode numbers. The planar sound corresponds to the lowest
(zeroth) mode in both numbers. Except for this mode, each mode has a cutoff frequency,
below which the sound becomes evanescent, decaying exponentially in the axial direction,
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and above which the sound becomes purely dispersive in contrast to the non-dispersive
planar sound. In most cases where the cutoff frequency is higher than a frequency
concerned, it suffices to consider the planar sound only.

In turbomachinery such as axial compressors or turbofan engines, however, the
non-planar sound plays an essential role. Since the pioneering work by Tyler & Sofrin
(1962) just 60 years ago, there are many papers on the generation and transmission of
sound in a duct, which are reviewed by Eversman (1991). From a theoretical point of view,
Morfey (1964) made an analysis of the rotating pressure field and sound transmission,
and later Morfey (1971) and Michalke (1989) examined effects of a mean flow and sound
source on the sound power spectrum. When a mean flow is present, the cutoff frequency
is lowered and a wavenumber is also lowered because the sound is carried with the flow.
Fundamentals of duct acoustics are well documented recently in the von Kármán Institute
(VKI) lecture note by Rienstra (2016).

In the theoretical studies, thermoviscous effects are ignored a priori. Even for the
simplest case of a rigid-wall duct without a flow, to the best of the author’s knowledge,
no information on damping seems to be available. In practical turbofan engines, however,
enhancement of damping is strongly requested for noise reduction. To this end, duct walls
are usually lined with cavities, whose resistance in the acoustic impedance, for instance, by
a mass–spring–damper model, is exploited (Eversman 1991; Rienstra 2016). In addition,
effects of an inviscid vortex layer due to a flow over the lining are also studied by imposing
the Ingard–Myers boundary condition which smears discreteness in the lining (Brambley
2011; Gabard 2016; Masson et al. 2018).

The above motivates to examine thermoviscous effects on a non-planar sound in a
rigid-wall duct without a flow. In doing this, thermoacoustic effects, when a duct is
subjected to an axial temperature gradient, are included. It is anticipated, however, that the
temperature gradient will give rise to no instability, if viewed in the light of an extremely
steep gradient in the Taconis oscillations. Yet, as the sound speed becomes faster with the
temperature and the acoustic impedance changes, it is expected that thermoacoustic effects
by non-uniformity in the temperature will affect the sound field in the duct.

In what follows, the linear theory for the propagation of non-planar sound in a gas
that is non-uniform in temperature is summarised in § 2 by discarding all thermoviscous
diffusions. Introducing azimuthal and radial modes, a one-dimensional, dispersive wave
equation is derived for the pressure in each radial mode, and the acoustic energy equation
is also derived. In § 3, thermoviscous effects are examined by applying a boundary-layer
approximation to incorporate the diffusive effects into the wave equation. Focusing on
a single azimuthal and radial mode only, the diffusive effects are examined in § 4 by
the dispersion relation and by the acoustic energy equation. For a duct of finite length,
boundary-value problems for the equation are solved in § 5 for four typical cases of the
duct ends. Eigenfrequencies and decay rates in the lowest (first) axial mode of oscillations
are sought as well as axial distributions of the sound pressure and the axial velocity in
the duct. The thermoviscous effects under the temperature gradient are discussed from a
viewpoint of acoustic energy. In § 6, finally, an extension to the case of an annular duct is
briefly included.

2. Linear theory for the propagation of non-planar and non-diffusive sound

2.1. Linearised basic equations
Suppose a quiescent gas under a uniform pressure p0 in a circular duct of radius R and of
infinite length, where the duct wall is rigid and smooth. An ideal gas is considered and
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gravity is ignored. The wall temperature Tw is assumed to vary in the axial direction only,
i.e. Tw(x), and so gently that the following inequalities may be satisfied:

R2

Tw

∣∣∣∣d2Tw

dx2

∣∣∣∣ � R
Tw

∣∣∣∣dTw

dx

∣∣∣∣ � 1. (2.1)

In developing a theory, the non-uniformity in Tw is taken up to the first-order derivative
dTw/dx giving rise to a heat flow, and the second-order one, i.e. the curvature effect of Tw,
is neglected. As long as this is assumed, the gas temperature Te is set equal to Tw, and is
uniform over a duct cross-section, i.e. Te(x) (Sugimoto 2010). This is also the case with the
gas density ρe(x), because ρeTe is constant by the ideal-gas law under a constant pressure,
and set to be ρ0T0. Here and hereafter, the subscript 0 is used to designate quantities in the
quiescent reference state. It is assumed that the heat capacity of the solid wall is so large
that the wall temperature does not to change even when the gas is in motion.

Consider infinitesimally small disturbances to such a quiescent state by neglecting
thermoviscous diffusions. Then a gas particle is subjected to adiabatic change even in a
non-uniform gas. The disturbances must satisfy fluid dynamical equations which stipulate
the conservation of mass, momentum and energy together with the equation of state for the
ideal gas. Linearising these equations with respect to the disturbances around the quiescent
state, they are given, respectively, as follows:

1
ρe

(
∂ρ′

∂t
+ v′

x
dρe

dx

)
+ ∇ · v′ = 0, (2.2)

ρe
∂v′

∂t
= −∇p′, (2.3)

ρecp

(
∂T ′

∂t
+ v′

x
dTe

dx

)
= ∂p′

∂t
, (2.4)

p′

p0
= ρ′

ρe
+ T ′

Te
, (2.5)

where the prime designates the disturbance, ρ, p, T and v denote, respectively, the density,
pressure, temperature and velocity vector of the gas, vx being the axial component of v
and cp and also cv below (2.6) the specific heats at constant pressure and constant volume,
respectively.

The quantities in the parentheses in (2.2) and (2.4) represent the linearised Lagrangian
derivatives of the density and the temperature, respectively. In the adiabatic process, the
enthalpy change ρecpT ′ per volume is equal to the pressure change p′. Equation (2.4) is
simply the equality of the rates of both quantities. Using (2.5) in (2.4) to eliminate T ′/Te,
the Lagrangian derivative of the density is written simply as

1
ρe

(
∂ρ′

∂t
+ v′

x
dρe

dx

)
= 1
γ p0

∂p′

∂t
, (2.6)

where γ denotes the ratio of specific heats cp/cv , and use has been made of the equation
of state p0 = RρeTe, R being a gas constant and equal to cp − cv , and ρ−1

e dρe/dx =
−T−1

e dTe/dx.
Noting that

√
γ p0/ρe represents the adiabatic sound speed ae, as will be shown

below, (2.6) indicates the adiabatic relation for a gas particle when the temperature
(density) gradient is present. In the absence of the gradient, in fact, (2.6) is reduced to
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the well-known relation p′ = a2
0ρ

′. Thanks to (2.6), the equation of continuity (2.2) is
rewritten as

1
γ p0

∂p′

∂t
= −∇ · v′, (2.7)

where 1/γ p0 is equal to 1/ρea2
e , which is the adiabatic compressibility of the gas at p0.

As (2.7) holds in a uniform gas, it is simpler than (2.2) because there is no advection in
pressure. Using (2.7), (2.4) is rewritten as

∂T ′

∂t
+ v′

x
dTe

dx
= − γ p0

ρecp
∇ · v′, (2.8)

where γ p0/ρecp = (γ − 1)Te.
Differentiating (2.7) with respect to t, (2.3) is used to eliminate v′. Then p′ is governed

by
∂2p′

∂t2
= ∇ · (a2

e∇p′), (2.9)

where ae(x) denotes the local adiabatic sound speed given by
√
γ p0/ρe [=√

(γ − 1)cpTe]. This is the wave equation for the sound pressure in a gas that is
non-uniform in temperature.

Here, the equation for the acoustic energy is considered. Multiplying (2.7) by p′,
and taking the inner product of (2.3) with v′, addition of both equations leads to the
conservation equation for the acoustic energy

∂E
∂t

+ ∇ · ( p′v′) = 0, (2.10)

where E represents the acoustic energy density given by the sum of the potential energy
density p′2/2ρea2

e and the kinetic one ρev
′ · v′/2, while p′v′ represents the acoustic energy

flux density vector called the intensity vector.
When (2.10) is averaged over the duct cross-section, it follows that

∂E
∂t

+ ∂I
∂x

= 0, (2.11)

with I = p′v′
x where the overbar designates the mean over the cross-section defined by

E ≡ 1
A

∫
A

E dA and I ≡ 1
A

∫
A

I dA, (2.12a,b)

with A (= πR2) and dA being, respectively, the cross-sectional area of the duct and its area
element, and the boundary condition v′ · n = 0 on the duct wall has been used, n being a
normal to the wall surface directed into the gas.

2.2. Dispersion relations for non-diffusive propagation in a uniform gas
At the outset, the simplest case where the temperature is uniform, Te = T0, is recapitulated
(Rienstra 2016). Taking the cylindrical coordinates (r, θ, x)with x along the duct axis, (2.9)
is expressed for p′(r, θ, x, t) as

∂2p′

∂t2
= a2

0

(
∂2p′

∂r2 + 1
r
∂p′

∂r
+ 1

r2
∂2p′

∂θ2 + ∂2p′

∂x2

)
. (2.13)

When a wave travelling along the x axis and spinning about it is considered in the form of
p′ = P(r) cos(kx ± mθ − ωt) (m = 1, 2, 3, . . . ), a bounded solution of P is obtained from
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(2.13) as
P = A Jm(αr/R), (2.14)

with α ≡ (ω2/a2
0 − k2)1/2R for 0 � r < R, where A is an arbitrary constant, and Jm

denotes the Bessel function of the first kind; k and ω denote, respectively, an axial
wavenumber and an angular frequency. The choice of ±mθ allows p′ to spin about the
x axis left or right handedly. By addition of these, non-spinning waves proportional to
cos(mθ) or sin(mθ) are constructed.

Application of the boundary condition dP/dr = 0 on the wall leads to the relation
αJ̇m(α) = 0 for A to be non-trivial. Here and hereafter the dot over Jm designates the
derivative with respect to its argument. A trivial solution α = 0 represents a planar
sound only when m = 0, and this case is excluded. Zeros of J̇m(α), designated by αm,j
(j = 1, 2, 3, . . . ), are ordered as 0 < αm,1 < αm,2 < αm,3 < . . . . For moderate values of
m = 0, 1, 2, . . . , 8, the zeros up to j = 20 are given in table 9.5 in Abramowitz & Stegun
(1972). For other values of m and j, see Tyler & Sofrin (1962), Michalke (1989) and
Rienstra (2016). It is noted that α0,j for j = 1, 2 and 3 are greater than α1,j and α2,j.
For a large value of m, αm,1 is given asymptotically by αm,1 = m + χm1/3 + O(m−1/3),
χ = 0.80861 . . . and αm,1 exceeds m (Abramowitz & Stegun 1972).

The solutions (2.14) with α = αm,j (j = 1, 2, 3, . . . ) constitute eigenfunctions in the
radial direction, where two indices m and j designate the azimuthal and radial mode
numbers, respectively. For the (m, j) mode, the dispersion relation is given by(

ωR
a0

)2

= α2
m,j + (kR)2. (2.15)

The wave is propagated in the axial direction only when ωR/a0 > αm,j. At ωR/a0 = αm,j,
the cutoff occurs, below which kR becomes imaginary and the wave becomes evanescent
in the axial direction, although it is propagated circumferentially. Another characteristic
of the non-planar sound is dispersive propagation in contrast to the planar one. The phase
velocity Vp (≡ ω/k) differs from the group velocity Vg (≡dω/dk) for the energy transfer
given by

Vg = a2
0k
ω
. (2.16)

This relation shows VgVp = a2
0. It is easily found that Vp is always faster than a0, whereas

Vg is slower than a0.
Figure 1 shows how the radial and azimuthal distributions of Jm(αm,1r/R) cos(mθ)

normalised by Jm(αm,1) in the first radial mode j = 1 change with m, as m takes values
of 0, 1, 2, 4, 8 and 16. Blank line(s) through the centre for m /= 0 show the node line(s)
where the pressure vanishes, while the node circle appears for m = 0. For a large value
of m, Jm(αm,1r/R)/Jm(αm,1) tends to vanish rapidly away from the wall (r/R → 0) so
that the sound tends to be confined in a narrow band adjacent to the duct wall, outside
of which silence prevails. This is a so-called whispering gallery mode (Wright 2012).
As m increases, the band width becomes narrower but slowly of the order of m−2/3 (see
Appendix A).

The Bessel function Jm(α) oscillates around zero, while decaying slowly, and it takes
extrema at αm,j (j = 1, 2, 3, . . . ). Because it necessarily vanishes at a point between αm,j
and αm,j+1, Jm(αm,jr/R) makes zero crossings j − 1-times in 0 < r < R except for the
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Figure 1. Contour plots of Jm(αm,1r/R) cos(mθ) normalised by Jm(αm,1) in the (y, z)-plane with y = r cos θ
and z = r sin θ for m = 0, 1, 2, 4, 8 and 16 where α0,1 = 3.8317, α1,1 = 1.8411, α2,1 = 3.0542, α4,1 = 5.3175,
α8,1 = 9.6474 and α16,1 = 18.0632. By periodicity in θ , m node lines (in blank) where p′ = 0 are visible except
for the case with m = 0 where one node circle (in blank) is visible.

case with m = 0 where one more crossing is counted. Thus the j − 1 node circles appear
for m > 0. Figure 2 shows the radial and azimuthal distributions of Jm(αm,2r/R) cos(mθ)
normalised by Jm(αm,1) in the case of the second radial mode j = 2 where m takes the
same values as in figure 1. It is common that the sound is confined in a narrow band as m
increases.

For the (m, j) mode, the disturbances in the density and the temperature are given,
respectively, by ρ′ = p′/a2

0 and T ′ = p′/ρ0cp in the adiabatic process. The velocity vector
is obtained from (2.3) as

v′
r = A

ρ0a0

αm,j

Ω
J̇m(αm,jr/R) sinψ, (2.17a)

v′
θ = ± A

ρ0a0

mR
Ωr

Jm(αm,jr/R) cosψ, (2.17b)

v′
x = A

ρ0a0

K
Ω

Jm(αm,jr/R) cosψ, (2.17c)

with ψ = kx ± mθ − ωt and the sign ± in (2.17b) vertically ordered as the one in ψ ,
where Ω and K represent, respectively, the dimensionless angular frequency ωR/a0 and
axial wavenumber kR. It is noted that only v′

r differs in phase of ψ from the other variables
by π/2.
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Figure 2. Contour plots of Jm(αm,2r/R) cos(mθ) normalised by Jm(αm,1) in the (y, z)-plane with y = r cos θ
and z = r sin θ for m = 0, 1, 2, 4, 8 and 16 where α0,2 = 7.0155, α1,2 = 5.3314, α2,2 = 6.7061, α4,2 = 9.2823,
α8,2 = 14.1155 and α16,2 = 23.2642. Besides m node lines (in blank) where p′ = 0, one node circle is visible
except for the case with m = 0 where two node circles (in blank) are visible.

Using these solutions, the means of the acoustic energy density E and the axial acoustic
energy flux density I (≡ p′v′

x) are calculated. The former is given by

E = 1
πR2

∫ R

0
r dr

∫ 2π

0

(
p′2

2ρ0a2
0

+ ρ0

2
v′ · v′

)
dθ = A2

ρ0a2
0R2

∫ R

0
r J2

m(αm,jr/R) dr,

(2.18)
where the potential and kinetic energies contribute equally to E, while the latter is given
by

I = 1
πR2

∫ R

0
r dr

∫ 2π

0
p′v′

x dθ = A2k
ρ0ωR2

∫ R

0
r J2

m(αm,jr/R) dr, (2.19)

where the integral in common is executed analytically to be R2/cm,j by using (2.23) and
(2.24) below. Note that the dependence on x and t is smeared out on integration with
respect to θ . It is confirmed from (2.18) and (2.19) that the acoustic energy density E is
transferred in the axial direction by the group velocity because I/E = a2

0k/ω = Vg.

2.3. Effects of non-uniform temperature
Consider (2.9) when the temperature Te is non-uniform axially. Using a complex Fourier
series expansion in θ , p′ is decomposed into Pm(r, x, t)eimθ (m = 0, 1, 2, . . . ) where Pm
may be complex, in general, but is taken as real here. In such a complex notation, the real
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Thermoacoustic effects on the propagation of non-planar sound in a circular duct

part is understood to be taken here and hereafter. It follows from (2.9) that Pm satisfies

∂2Pm

∂t2
= a2

e

[
1
r
∂

∂r

(
r
∂Pm

∂r

)
− m2

r2 Pm

]
+ ∂

∂x

(
a2

e
∂Pm

∂x

)
. (2.20)

Making use of a Fourier–Bessel series expansion also known as Dini series, Pm is
expanded into the following series:

Pm(r, x, t) =
∞∑

j=1

cm,jP̄m,j(x, t)Jm(αm,jr/R), (2.21)

where P̄m,j (j = 1, 2, 3, . . . ) are defined by

P̄m,j(x, t) ≡ 1
R2

∫ R

0
Pm(r, x, t)r Jm(αm,jr/R) dr, (2.22)

with cm,j given by (Abramowitz & Stegun 1972)

cm,j =
2α2

m,j

(α2
m,j − m2)J2

m(αm,j)
, (2.23)

and the orthogonality relation holds

1
R2

∫ R

0
r Jm

(αm,ir
R

)
Jm

(αm,jr
R

)
dr =

{
1/cm,j if i = j,
0 if i /= j, (2.24)

for i, j = 1, 2, 3, . . . . Here, P̄m,j are weighted means of Pm by r Jm(αm,jr/R). Although
the overbar ( · ) has already been used to designate the mean over the cross-section, no
confusion would occur with the short bar used here.

Taking the weighted means of (2.20) for j = 1, 2, 3, . . . , this is transformed into

∂2P̄m,j

∂t2
− ∂

∂x

(
a2

e
∂P̄m,j

∂x

)
+
(αm,j

R

)2
a2

eP̄m,j = 0, (2.25)

where the relation J̇m(αm,j) = 0 and the Bessel differential equation have been used. Note
that, when (2.25) holds, each term in the series of (2.21) satisfies (2.20) separately. When
ae is constant, (2.25) are the telegraphic equation or the one-dimensional Klein–Gordon
equation. Thanks to the Fourier–Bessel series expansion, (2.20) is reduced to the
one-dimensional dispersive wave equation for each P̄m,j. As long as the temperature is
non-uniform axially only, the radial structure in any cross-section stipulated by the Bessel
functions in (2.21) is kept unchanged from that in a uniform case, and the non-uniform
effects appear only in P̄m,j. Therefore, the cross-sectional configuration in each mode
displayed in figures 1 and 2 is also unchanged in the non-uniform case.
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N. Sugimoto

2.4. Conservation of acoustic energy
Next, consider the acoustic energy equation in the azimuthal mode m. Being consistent
with p′, v′ is also decomposed into

v′ ≡ (v′
r, v

′
θ , v

′
x) = (Vm, iWm,Um)eimθ . (2.26)

Then, (2.7) and (2.3) are written, respectively, as

1
ρea2

e

∂Pm

∂t
= −1

r
∂

∂r
(rVm)+ m

r
Wm − ∂Um

∂x
, (2.27a)

ρe
∂Vm

∂t
= −∂Pm

∂r
, (2.27b)

ρe
∂Wm

∂t
= −m

r
Pm, (2.27c)

ρe
∂Um

∂t
= −∂Pm

∂x
. (2.27d)

Multiplying (2.27a) with rPm, and also multiplying (2.27b) to (2.27d) with rVm, rWm and
rUm, respectively, and adding them together to integrate from r = 0 to r = R, it follows
that

∂Em

∂t
+ ∂Im

∂x
= 0, (2.28)

where Em and Im are defined, respectively, by

Em = 1
R2

∫ R

0

[
P2

m

2ρea2
e

+ ρe

2

(
V2

m + W2
m + U2

m

)]
r dr, (2.29a)

Im = 1
R2

∫ R

0
PmUmr dr, (2.29b)

where the boundary condition Vm = 0 at r = R has been used, and all variables are
assumed to be real. Here, Em and Im denote, respectively, the acoustic energy density and
the axial acoustic energy flux density averaged over R. Equation (2.28) dictates the local
conservation of the acoustic energy in the azimuthal mode m.

Using (2.21) and setting P̄m,j to be ∂Φm,j/∂t, the potential energy in Em is expressed as

1
R2

∫ R

0

P2
m

2ρea2
e

r dr = 1
2ρea2

e

R∑
j=1

cm,j

(
∂Φm,j

∂t

)2

, (2.30)

where the orthogonality relation (2.24) has been used. In terms of Φm,j, the velocity
components are expressed from (2.27b) to (2.27d) as

Vm = − 1
ρe

∞∑
j=1

cm,j
αm,j

R
Φm,jJ̇m(αm,jr/R), (2.31a)

Wm = − 1
ρe

∞∑
j=1

cm,j
m
r
Φm,jJm(αm,jr/R), (2.31b)

Um = − 1
ρe

∞∑
j=1

cm,j
∂Φm,j

∂x
Jm(αm,jr/R). (2.31c)
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Thermoacoustic effects on the propagation of non-planar sound in a circular duct

Using these expressions, the kinetic energy in Em is expressed as

1
R2

∫ R

0

ρe

2

(
V2

m + W2
m + U2

m

)
r dr = 1

2ρe

∞∑
j=1

cm,j

[(αm,j

R

)2
Φ2

m,j +
(
∂Φm,j

∂x

)2
]
,

(2.32)
where the following relations have been used:∫ R

0

[
αm,i

R
αm,j

R
J̇m

(αm,ir
R

)
J̇m

(αm,jr
R

)
+ m2

r2 Jm

(αm,ir
R

)
Jm

(αm,jr
R

)]
r dr

=
{
α2

m,j/cm,j if i = j,
0 if i /= j,

(2.33)

for i, j = 1, 2, 3, . . . . In (2.32), the kinetic energy due to the radial and azimuthal velocity
is counted simply in (αm,j/R)2Φ2

m,j, which yields the dispersion.
Adding (2.30) and (2.32), Em is given by

Em =
∞∑

j=1

cm,jEm,j, (2.34)

with

Em,j = 1
2ρea2

e

[(
∂Φm,j

∂t

)2

+
(αm,j

R

)2
a2

eΦ
2
m,j + a2

e

(
∂Φm,j

∂x

)2
]
. (2.35)

On the other hand, Im is given by

Im =
∞∑

j=1

cm,jIm,j, (2.36)

with

Im,j = − 1
ρe

∂Φm,j

∂t
∂Φm,j

∂x
. (2.37)

The relation (2.28) with (2.34) and (2.36) shows that the conservation of the acoustic
energy holds for any radial variations, although restricted in the azimuthal mode m. This
also suggests that the conservation holds each of the (m, j) modes independently.

3. Derivation of one-dimensional wave equations with thermoviscous diffusions

Effects of thermoviscous diffusions so far neglected are examined in this section. Viscous
diffusion is measured by the acoustic Reynolds number Re. For propagation in unbounded
space, Re is defined by a2

0/νω, as stated in § 1. For non-planar propagation in the duct, a
typical wavelength may be chosen to be a circumferential one 2πR/m. Then Re is defined
as Re = 2πRa0/mν. When a typical ω is chosen to be αm,ja0/R at the cutoff, and R is
expressed in terms of ω, Re is given by

Re = 2πRa0

mν
= 2παm,j

m
a2

0
νω
, (3.1)

and is proportional to a2
0/νω. In the duct of R = 0.5 m, for example, Re takes a large value

of 0.7 × 108 when m = 1. As m increases, αm,j also increase, and they are greater than m.
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Boundary layer

Core  region

R r
n

O y

z

Duct wall

Duct wall

x

n
Boundary layer

Core region

Edge of the boundary layer

v̌b

ṽ

ũ
w̃
ṽ

q

Te + T̃p′

n → ∞

sx

sηη

θ

η= Rθ

(a) (b)

Figure 3. (a) A cross-sectional configuration of the duct of radius R consisting of the central core region and
the boundary layer (drawn exaggerated) on the duct wall where the cylindrical coordinates (r, θ, x) are taken for
the core region, the x-coordinate normal to the sheet, while the coordinates n (= R − r) and η (= Rθ) are taken
for the boundary layer normal to the duct wall and directed inward, and along its periphery, respectively, with
the x-coordinate in common. (b) Blow-up of the boundary layer in a three-dimensional configuration where the
pressure is unchanged over the thickness from p′ at the edge of the boundary layer; ṽ [= (ṽ, ũ, w̃)] represents
the velocity vector; sx, sη and q represent, respectively, the x- and η-components of the shear stress on the duct
wall and acting on the gas, and the heat flux density flowing into the gas; v̌b represents the defect radial velocity
directed inward at the edge of the boundary layer as n → ∞.

Hence, the viscous effects are found to be negligible. This is also the case with the thermal
diffusion. Because the Prandtl number Pr (= ν/κ), κ , being a thermal diffusivity, is of
order unity, e.g. 0.72 for air, the thermal diffusion is also negligible when Re is large.

The above estimate ignores influences of the duct wall. Because no-slip and isothermal
boundary conditions are imposed on the wall, the thermoviscous diffusions become
enhanced in a thin boundary layer. The boundary layer consists of viscous and thermal
boundary layers. A typical thickness of the viscous boundary layer, denoted by δ, is
estimated to be of order of (ν/ω)1/2, while that of the thermal one is of order (κ/ω)1/2.
Because Pr < 1, the latter is a little thicker. For ω/2π = 103 Hz, for example, δ is of
0.05 mm. Although the thickness is often taken to be

√
2δ due to the factor i−1/2, as will be

seen later, a so-called 99 % thickness is five to six times thicker than δ. Therefore, a factor
taking account of this may be devised. In the following asymptotic analysis, however, it is
sufficient to regard δ as being of the order of (ν/ω)1/2 ∼ (κ/ω)1/2 without any factors.

3.1. Boundary-layer approximation
Figure 3(a) displays a cross-sectional configuration of the duct where the central core
region is surrounded by the boundary layer (drawn exaggerated) on the duct wall, while
figure 3(b) blows up the boundary layer in a three-dimensional configuration. To capture
properly the phenomena occurring in the thin layer, the boundary-layer approximation is
introduced by following the procedure demonstrated in Sugimoto & Tsujimoto (2002). A
radial coordinate n normal to the duct wall is taken to be n = R − r, where n covers a
narrow domain comparable to δ (0 < n ∼ δ � R). A circumferential coordinate η along
the duct wall is taken to be η = Rθ . In the boundary layer, n and η are used instead of r
and θ , while x is used in common.

By the constraints due to the boundary conditions on the duct wall, some physical
variables must vary steeply in the radial direction over the scale of δ, but slowly in the axial
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Thermoacoustic effects on the propagation of non-planar sound in a circular duct

and circumferential directions. This means that ∂/∂x ∼ ∂/∂η ∼ R−1 � ∂/∂n ∼ δ−1. At
the scale of δ, the curvature of the duct wall is invisible so a term with 1/R is ignored in
comparison with ∂/∂n, and r−1∂/∂θ is approximated to be R−1∂/∂θ (= ∂/∂η) by ignoring
n/R (∼δ/R � 1).

Using the boundary-layer approximation, the fluid dynamical equations are linearised
around the quiescent state. Disturbances in the boundary layer are designated by attaching
a tilde. The equation of continuity is then given by

1
ρe

(
∂ρ̃

∂t
+ ũ

dρe

dx

)
+ ∇̃ · ṽ = 0, (3.2)

with

∇̃ · ṽ ≡ ∂ṽ

∂n
+ ∂ ũ
∂x

+ ∂w̃
∂η
, (3.3)

where ṽ has the components ṽ, ũ and w̃ in the n-, x- and η-directions, respectively. Since
the positive n is taken opposite to that of r, note that ṽ corresponds to −vr, and that
∂/∂r is replaced by −∂/∂n. Letting a typical axial length to be L, which is assumed to
be comparable to R, this equation means that ∇̃ · ṽ balances with ωρ̃/ρe or ũ/L, and that
ṽ/δ ∼ ũ/L ∼ w̃/R. Therefore, it follows that ṽ is small of (δ/L)ũ or (δ/R)w̃.

Next, the equation of motion is considered. When viscosities vary with the temperature
and the pressure, the full Navier–Stokes equations for compressible fluids are given in
Appendix B. Noting that R−2 � R−1∂/∂n � δ−2 and ∂/∂x ∼ L−1 ∼ R−1, the Laplacian
Δ may be approximated to be ∂2/∂n2(∼δ−2). After the linearisation, the leading terms in
(B1a) to (B1c) are given, respectively, by

ρe
∂ṽ

∂t
= −∂ p̃

∂n
+ μe

∂2ṽ

∂n2 +
(
μve + μe

3

) ∂

∂n
∇̃ · ṽ + ∂μe

∂x
∂ ũ
∂n
, (3.4a)

ρe
∂ ũ
∂t

= −∂ p̃
∂x

+ μe
∂2ũ
∂n2 , (3.4b)

ρe
∂w̃
∂t

= −∂ p̃
∂η

+ μe
∂2w̃
∂n2 , (3.4c)

where μe and μve denote, respectively, the shear and bulk viscosities at T = Te.
In (3.4a), the terms associated with the velocity are comparable by noting δ ∼

(νe/ω)
1/2. The excess pressure p̃ is estimated by using a typical acoustic impedance ρ0a0

to be ρ0a0ũ or ρ0a0w̃ (see (2.17b) and (2.17c)). Comparing μe∂
2ṽ/∂n2 with ∂ p̃/∂n, it is

found that the former is smaller by (δ/R)2, where the relations ωR ∼ a0 and ṽ/w̃ ∼ δ/R
have been used. Hence it turns out that (3.4a) is substantially given by ∂ p̃/∂n = 0, which
means no pressure gradient in the radial direction. Then, the pressure at the edge of
the boundary layer penetrates into it so that p̃(n, x, η, t) = p′(R − δ, x, η, t). This is the
well-known outcome of the boundary-layer approximation. In (3.4b) and (3.4c), the terms
with ∇̃ · ṽ and ∂μe/∂x in (B1b) and (B1c) have been ignored because they are smaller by
(δ/R)2.

Equation (2.4) is augmented by thermal diffusion as

ρecp

(
∂T̃
∂t

+ ũ
dTe

dx

)
= ∂ p̃
∂t

+ ke
∂2T̃
∂n2 , (3.5)
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where ke denotes a thermal conductivity at Te. The temperature dependence of ke and of
μe and μve is taken into account in a power law of the form (Sugimoto 2010)

μe

μ0
= μve

μv0
= ke

k0
=
(

Te

T0

)β
, (3.6)

where β is a constant between 0.5 and 0.7 for air. Finally the equation of state is given by

p̃
p0

= ρ̃

ρe
+ T̃

Te
. (3.7)

In the boundary layer, it is convenient to introduce defects, designated by a check as ˇ( · ),
from the variables of the core region at the edge of the boundary layer as

(ρ̃, ṽ, ũ, w̃, T̃) = (ρ′ + ρ̌,−v′
r + v̌, v′

x + ǔ, v′
θ + w̌, T ′ + Ť). (3.8)

If p̃ is set to be p′ + p̌, p̌ vanishes throughout the boundary layer. Since the variables with
prime vary little over the thin boundary layer, they may be approximated by those at r = R
to the lowest order. For example, v′

x at r = R − δ is expanded around r = R in terms of n
as v′

x = v′
x|R − ∂v′

x/∂r|Rn + . . . . The second term is small of v′
xδ/R and is of higher order.

This is also the case with the other variables but v′
r. As v′

r vanishes at r = R, it is expanded
into ∂v′

r/∂r|Rn + . . . and is small of v′
rδ/R. This appears to be negligible. However, it will

turn out to be comparable to v̌.
Using the replacements (3.8) in (3.2) and making use of (2.2) at the edge of the boundary

layer where r−1∂v′
θ /∂θ ≈ R−1∂v′

θ /∂θ and v′
r/r is negligible, (3.2) is written as

1
ρe

(
∂ρ̌

∂t
+ ǔ

dρe

dx

)
+ ∂v̌

∂n
+ ∂ ǔ
∂x

+ ∂w̌
∂η

= 0. (3.9)

Substituting (3.8) into (3.4b) and (3.4c) and using (2.3), similarly, ǔ and w̌ are described
by the following equations:

∂ ǔ
∂t

= νe
∂2ǔ
∂n2 , (3.10a)

∂w̌
∂t

= νe
∂2w̌
∂n2 , (3.10b)

where νe is the kinematic viscosity defined by μe/ρe. In (3.4b), ∂2v′
x/∂n2 is negligible

in comparison with ∂2ǔ/∂n2 of order v′
x/δ

2, because ∂2v′
x/∂n2 (= ∂2v′

x/∂r2) is of order
v′

x/R
2. This is also the case with (3.4c).

In a similar fashion, (3.5) is reduced, by using (2.4), to the heat conduction equation for
Ť with advection as

∂Ť
∂t

+ ǔ
dTe

dx
= κe

∂2Ť
∂n2 , (3.11)

where κe is the thermal diffusivity defined by ke/ρecp, and ∂2T ′/∂n2 has been neglected
by the same reason as ∂2v′

x/∂n2 in (3.10a). Equation (3.7) is reduced to

0 = ρ̌

ρe
+ Ť

Te
, (3.12)

because p̌ vanishes in the boundary layer. This means that the defects of the density
and the temperature are subjected to the isobaric change. Making use of (3.12), (3.9) is
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rewritten as
1
Te

(
∂Ť
∂t

+ ǔ
dTe

dx

)
= ∂v̌

∂n
+ ∂ ǔ
∂x

+ ∂w̌
∂η
. (3.13)

This relation is compared with (2.8) for the adiabatic change.
Equations (3.10) and (3.11) are supplemented by the no-slip and isothermal boundary

conditions on the duct wall as

(ũ, w̃, T̃) = (0, 0, 0) at n = 0. (3.14)

On the other hand, the edge of the boundary layer is viewed to be located at n/δ → ∞
in the coordinate n, but n/R = (R − r)/R � 1, even if n is taken to be infinity. Then the
matching conditions with the core region are given by

(ũ, w̃, T̃) → (v′
x, v

′
θ , T ′) as n → ∞, (3.15)

where the right-hand side is evaluated at r = R. In terms of the defects, the boundary
conditions and the matching conditions are given, respectively, by

(ǔ, w̌, Ť) = (−v′
x,−v′

θ ,−T ′) at n = 0, (3.16)

and
(ǔ, w̌, Ť) → (0, 0, 0) as n → ∞. (3.17)

Thus the boundary-value problems for (3.10a), (3.10b) and (3.11) are posed and solved for
ǔ, w̌ and Ť . The defects ρ̌ and v̌ that remain are to be determined after these problems are
solved. The defect ρ̌ is available immediately by (3.12), while v̌ is obtained by integrating
(3.13) with respect to n where the left-hand side is replaced by (3.11).

3.2. Shear stress and heat flux on the wall
Analytical solutions to (3.10a) and (3.10b) are available by following the procedure used
in Sugimoto & Tsujimoto (2002). Applying the method of Fourier transform defined, e.g.
for ǔ, by

F{ǔ} ≡ 1√
2π

∫ ∞

−∞
ǔ(n, x, η, t)eiωt dt ≡ ˆ̌u(n, x, η, ω), (3.18)

and using the boundary conditions (3.16) and the matching conditions (3.17), ˆ̌u and ˆ̌w are
obtained, respectively, as follows:

ˆ̌u = −v̂′
x exp(−(σ/νe)

1/2n), (3.19a)

ˆ̌w = −v̂′
θ exp(−(σ/νe)

1/2n), (3.19b)

with σ = −iω, where the real part of σ 1/2 is taken positive. Using (3.19a) in (3.11), ˆ̌T is
solved as

ˆ̌T =−T̂ ′ exp(−(σ/κe)
1/2n)− Pr

1−Pr
dTe

dx

[
exp(−(σ/νe)

1/2n)−exp(−(σ/κe)
1/2n)

]
σ−1v̂′

x.

(3.20)
Detailed structures of the defects in the boundary layer are obtained by effecting the inverse
Fourier transforms, but they are less interesting now. Rather it is of importance to have the
shear stress and the heat flux on the duct wall.
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The shear stress acting on the gas is decomposed into components sx and sη in the x-
and η-directions, respectively, as follows:

sx = −μe
∂ ũ
∂n

∣∣∣∣
n=0

= −μe
∂ ǔ
∂n

∣∣∣∣
n=0

, (3.21a)

sη = −μe
∂w̃
∂n

∣∣∣∣
n=0

= −μe
∂w̌
∂n

∣∣∣∣
n=0

, (3.21b)

where ∂v′
x/∂n and ∂v′

θ /∂n vanish because of (2.3) in the x- and θ -directions, and ∂p′/∂r =
0 at r = R. Using (3.19a) and (3.19b), ŝx and ŝη transformed are given, respectively, as
follows:

ŝx = −ρe(νeσ)
1/2v̂x, (3.22a)

ŝη = −ρe(νeσ)
1/2v̂θ . (3.22b)

Here, use is made of the formulae of the inverse Fourier transforms of σ±1/2 f̂ (σ ) by

F−1
{
σ±1/2 f̂ (σ )

}
= d±1/2f

dt±1/2 , (3.23)

where the right-hand side represents fractional derivatives of plus and minus half-order of
a function f (t) defined by

d±1/2f
dt±1/2 ≡ 1√

π

∫ t

−∞
1√

t − τ

d1/2±1/2f (τ )
dτ 1/2±1/2 dτ, (3.24)

with the sign ± vertically ordered (Sugimoto 1989, 2017). It is obvious from (3.23) that
the addition law, e.g. d1/2f /dt1/2 = (d−1/2/dt−1/2) df /dt holds. Thanks to the formulae,
sx and sθ are given immediately as follows:

sx = −ρe
√
νe
∂1/2v′

x

∂t1/2
= √

νe
∂−1/2

∂t−1/2

(
∂p′

∂x

)
, (3.25a)

sη = −ρe
√
νe
∂1/2v′

θ

∂t1/2
= √

νe
∂−1/2

∂t−1/2

(
1
R
∂p′

∂θ

)
, (3.25b)

where (2.3) at r = R has been used.
Next, the heat flux q from the duct wall into the gas is considered. This is given in the

transformed form as

q̂ = −ke
∂

ˆ̌T
∂n

∣∣∣∣∣∣
n=0

, (3.26)

where ∂T̂ ′/∂n vanishes because T ′ is proportional to p′. Substituting (3.20) into (3.26), q̂
is obtained as

q̂ = −ρecpTe
√
νeσ

−1/2

(
1√
Pr

σ T̂ ′

Te
+ 1

1 + √
Pr

1
Te

dTe

dx
v̂′

x

)
, (3.27)

where the quantities in the parentheses are evaluated at r = R. Eliminating T̂ ′ by using
(2.8) transformed, and applying the formulae (3.23), q is expressed in terms of v′ at
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Thermoacoustic effects on the propagation of non-planar sound in a circular duct

r = R as

q = ρecpTe
√
νe
∂−1/2

∂t−1/2

[
γ − 1√

Pr

(
∂v′

r

∂r
+ 1

R
∂v′
θ

∂θ
+ ∂v′

x

∂x

)
+ 1√

Pr + Pr

1
Te

dTe

dx
v′

x

]
,

(3.28)
where v′

r/r in ∇ · v′ vanishes at r = R. It is estimated from this that q/ρecpTe is of
order δv′

x/L or δv′
θ /R. The relation (3.28) is the generalisation to the non-planar case

(see (5.19) in Sugimoto 2010). For later use, ∂q/∂t is calculated. Using (2.7) with ρea2
e =

(γ − 1)ρecpTe, and (2.3), it is expressed in terms of p′ as

∂q
∂t

= −
√
νe

γ − 1
∂−1/2

∂t−1/2

(
γ − 1√

Pr

∂2p′

∂t2
+ 1√

Pr + Pr

a2
e

Te

dTe

dx
∂p′

∂x

)
. (3.29)

In case no temperature gradient is present, (3.29) gives simply

q = √
κe
∂−1/2

∂t−1/2

(
−∂p′

∂t

)
. (3.30)

This forms a canonical pair with the shear stress (3.25). The thermoviscous diffusions
appear in the form of the memory integral. The shear stress is expressed in terms of the
minus half-order derivative of the spatial gradient of the pressure, and the heat flux in terms
of that of the temporal gradient of the pressure with sign reversed, with difference of the
diffusivities in the coefficients

√
νe and

√
κe. When the temperature gradient is present,

unfortunately, such a canonical relation is destroyed. The shear stress is determined by the
spatial pressure gradient only and independently of the temperature gradient, whereas the
heat flux depends on the temperature gradient. In the rate of the heat flux (3.29), the second
term in the parentheses is associated with the shear stress by (3.25a). Thus the shear stress
influences the heat flux when the temperature gradient is present, but not vice versa.

3.3. Radial velocity at the edge of the boundary layer
Although the defects decay as the edge of the boundary layer is approached, only the defect
of the radial velocity remains there. This is found by integrating (3.13) over n. Designating
v̌ at the edge by v̌b, it follows from (3.13) with (3.11) that

v̌b =
∫ ∞

0

∂v̌

∂n
dn = −

∫ ∞

0

(
∂ ǔ
∂x

+ ∂w̌
∂η

)
dn − κe

Te

∂Ť
∂n

∣∣∣∣∣
n=0

, (3.31)

where v̌ = 0 at n = 0 because v′
r vanishes on the wall. This velocity at the edge affects

directly the propagation in the core region, while the shear stress and the heat flux on the
wall influence it indirectly through the boundary layer. There is a relation among them.

Integrating (3.10a) and (3.10b) over the thickness to note that

ρe

∫ ∞

0

∂ ǔ
∂t

dn = μe

∫ ∞

0

∂2ǔ
∂n2 dn = sx, (3.32a)

ρe

∫ ∞

0

∂w̌
∂t

dn = μe

∫ ∞

0

∂2w̌
∂n2 dn = sη, (3.32b)

∂v̌b/∂t is expressed in terms of the shear stress and the heat flux as

∂v̌b

∂t
= − ∂

∂x

(
sx

ρe

)
− ∂

∂η

(
sη
ρe

)
+ 1
ρecpTe

∂q
∂t
. (3.33)
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Since ρea2
e is the constant, this is written alternatively as

ρea2
e
∂v̌b

∂t
= − ∂

∂x
(a2

esx)− ∂

∂η
(a2

esη)+ a2
e

cpTe

∂q
∂t
, (3.34)

where a2
e/cpTe = γ − 1. This relates vb to the shear stress and the heat flux on the wall.

It is found that the circumferential shear stress is added simply to the planar case. It is
interesting to note in (3.33) that, if the shear stress is relatively small, i.e. Pr � 1, vb is
proportional to q, which means that the heat flux is linked with vb.

Equation (3.33) is expressed in terms of v′ or p′ at r = R. Substitution of (3.25) and
(3.28) into (3.33) yields

∂v̌b

∂t
= √

νe
∂1/2

∂t1/2

[
C
(
∂v′

r

∂r
+ 1

R
∂v′
θ

∂θ
+ ∂v′

x

∂x

)
− ∂v′

r

∂r
+ CT

Te

dTe

dx
v′

x

]
, (3.35)

where use has been made of the relation
√
νe

−1 d
√
νe/dx = [(1 + β)/2]T−1

e dTe/dx, and
C and CT are constants defined, respectively, by

C = 1 + γ − 1√
Pr

and CT = 1 + β

2
+ 1√

Pr + Pr
. (3.36a,b)

In planar sound, v′
r and v′

θ vanish over the core region. Setting v′
x to be u′, (3.35) is

reduced to (1.1) after integration with respect to t (see (5.17) in Sugimoto 2010). By
(3.35), the magnitude of v̌b is estimated. Noting (d±1/2/dt±1/2) eiωt = (iω)±1/2 eiωt for
a time-harmonic disturbance, it is confirmed that v̌b is of δv′

r/R, δv′
θ /R and δv′

x/L. This is
comparable to v′

r at the edge, as estimated below (3.8).
The relation (3.35) is expressed in terms of p′. Using (2.7) and (2.3) at r = R, (3.35)

multiplied with ρea2
e is expressed in terms of p′ at r = R as

ρea2
e
∂v̌b

∂t
= −√

νe
∂−1/2

∂t−1/2

[
(C − 1)

∂2p′

∂t2
+ ∂

∂x

(
a2

e
∂p′

∂x

)
+ a2

e

R2
∂2p′

∂θ2 + CT
a2

e

Te

dTe

dx
∂p′

∂x

]
,

(3.37)
where (2.9) at r = R has been used. Here, it is remarked that the velocity and the pressure
on the right-hand sides of (3.35) and (3.37), respectively, are those in the core region
substantially at r = R. This is different from the case of the planar sound where they
are uniform in a cross-section of the core region. For a time-harmonic disturbance in a
uniform gas, (3.37) provides the acoustic impedance at the edge of the boundary layer on
a cylindrical rigid wall.

3.4. Matching between the core region and the boundary layer
So far the analysis has been made separately for the core region and the boundary layer.
To incorporate the effects due to the boundary layer into the core region, both regions
are to be matched. This is done through the equation of continuity. To this end, the tilde
used so far to indicate the disturbances in the boundary layer is extended to designate the
disturbances in the whole domain. In the core region, the defects are taken to vanish and
the variables with the tilde are identified with the primed ones.

The Lagrangian derivative of the density is expressed, without any approximations,
in terms of those of the pressure and of the temperature as ρ−1 Dρ/Dt = p−1 Dp/Dt −
945 A26-18
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Thermoacoustic effects on the propagation of non-planar sound in a circular duct

T−1 DT/Dt by using the equation of state p = RρT , where D/Dt = ∂/∂t + v · ∇. Using
the linearised version of this, the equation of continuity is written as

1
p0

∂ p̃
∂t

− 1
Te

(
∂T̃
∂t

+ ṽx
dTe

dx

)
+ ∇ · ṽ = 0. (3.38)

In the core region, the second term on the left-hand side is expressed in terms of p′ by
(2.4) for the adiabatic process as

1
Te

(
∂T̃
∂t

+ ṽx
dTe

dx

)
= 1
ρecpTe

∂p′

∂t
, (3.39)

where use of p′ is retained. In the boundary layer, on the other hand, it is given by (3.5) as

1
Te

(
∂T̃
∂t

+ ṽx
dTe

dx

)
= 1
ρecpTe

∂p′

∂t
+ ke

ρecpTe

∂2T̃
∂n2 , (3.40)

and the right-hand side consists of the adiabatic part as in the core region and the heat
conduction in the boundary layer.

Each variable with a tilde in (3.38) is written as the sum of the one with the prime and
the defect, i.e. (̃ · ) = ( · )′ + ˇ( · ) except for the pressure disturbance (p̌ = 0 so that p̃ = p′
everywhere). Replacing the variables in (3.38) with the sums, and differentiating it with
respect to t, it follows that

1
γ p0

∂2p′

∂t2
− ∇ ·

(
1
ρe

∇p′
)

− ke

ρecpTe

∂

∂t

(
∂2Ť
∂n2

)
+ ∇ · ∂ v̌

∂t
= 0, (3.41)

where the second term stems from ∇ · (∂v′/∂t) by use of (2.3). Note that the thermal
diffusion is ignored in the core region because the acoustic Reynolds number is large. The
last two terms reflect the effects of the boundary layer and vanish in the core region.

The disturbances have so far been assumed to be of arbitrary form. In view of the
periodicity in θ , it is pertinent to consider a Fourier component proportional to eimθ

(m = 1, 2, 3, . . . ). The disturbances in the core region are set in the form of

(v′
r, v

′
θ , v

′
x, p′, T ′) = (Vm, iWm,Um,Pm,Θm)eimθ , (3.42)

where Vm, Wm, Um, Pm and Θm depend on r, x and t. In accordance with this, the defects
are also set in the form of

(v̌, w̌, ǔ, Ť) = (V̌m, iW̌m, Ǔm, Θ̌m) exp(imη/R), (3.43)

with η/R = θ where V̌m, W̌m, Ǔm and Θ̌m depend on n, x and t.
Substituting (2.21) into (3.41), the mean of (3.41) in the sense of (2.22) is taken for

j = 1, 2, 3, . . . . The means of the terms associated with p′ are easily available and given by
(2.25) divided by ρea2

e , while the means of the defects need to be noted. Since the defects
except for v̌ tend to vanish exponentially as n increases, the integral is taken substantially
over the thin boundary layer only. Because r Jm(αm,jr/R) varies little in the boundary layer,
it may be set approximately to R Jm(αm,j). Then, the mean of the defect is evaluated by

1
R2

∫ R

0
ˇ( · )r Jm(αm,jr/R) dr ≈ Jm(αm,j)

R

∫ ∞

0
ˇ( · ) dn. (3.44)

In passing, errors due to the truncation may be of concern. The function r Jm(αm,jr/R)
is expanded around r = R in terms of the power series in n (= R − r). Since the defect
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decays exponentially in the form of e−n/ε for |ε| � 1, ε implying the ratio (νe/σ)
1/2/R

(see, e.g. (3.19)), the integral of nNe−n/ε decays as εN+1�(N + 1) for N = 0, 1, 2, . . . ,
� being the gamma function. Thus the leading error (for which N = 1) is found to be
quadratic in ε, i.e. (δ/R)2. Since this is neglected in the present analysis, the truncation in
(3.44) is justified.

Using (3.44) to evaluate the mean of the defects, the third term in (3.41) is evaluated by
using (3.26) and setting q = Qmeimη/R to be

− ke

ρecpTeR2

∫ R

0

∂

∂t

(
∂2Ť
∂n2

)
r Jm(αm,jr/R) dr ≈ −Jm(αm,j)

ρecpTeR
∂Qm

∂t
, (3.45)

where ∂Qm/∂t is written by using (3.29) in terms of Pm at r = R as

∂Qm

∂t
= −

√
νe

γ − 1
∂−1/2

∂t−1/2

(
γ − 1√

Pr

∂2Pm

∂t2
+ 1√

Pr + Pr

a2
e

Te

dTe

dx
∂Pm

∂x

)
. (3.46)

On the other hand, the mean of the defect velocity on the last term is calculated
term-by-term as follows:

1
R2

∫ R

0

1
r
∂

∂r

(
r
∂V̌m

∂t

)
r Jm(αm,jr/R) dr = −αm,j

R3

∫ R

0

∂V̌m

∂t
r J̇m(αm,jr/R) dr

≈ −αm,jJ̇m(αm,j)

R2

∫ ∞

0

∂V̌m

∂t
dn = 0, (3.47a)

1
R2

∫ R

0

(
−m

r
∂W̌m

∂t

)
r Jm(αm,jr/R) dr ≈ Jm(αm,j)

R

∫ ∞

0

∂

∂t

(
−m

R
W̌m

)
dn, (3.47b)

1
R2

∫ R

0

∂

∂x

(
∂Ǔm

∂t

)
r Jm(αm,jr/R) dr ≈ Jm(αm,j)

R

∫ ∞

0

∂

∂t

(
∂Ǔm

∂x

)
dn, (3.47c)

where the boundary condition V̌m = 0 at r = R and J̇m(αm,j) = 0 have been used in
(3.47a). However, (3.47a) is subtle because ∂V̌m/∂t does not decay exponentially but
remains as n → ∞, where J̇m(αm,jr/R) tends to deviate from zero. It is justified rather
because V̌m is smaller than W̌m and Ǔm by δ/R and δ/L, and the product with J̇m(αm,jr/R)
of δ/R makes the term small, of order (δ/R)2.

Hence, the means of the last two terms in (3.41) are written in view of (3.31) as

1
R2

∫ R

0

[
− ke

ρecpTe

∂

∂t

(
∂2Ť
∂n2

)
+ ∇ · ∂ v̌

∂t

]
r Jm(αm,jr/R) dr = −Jm(αm,j)

R
∂V̌bm

∂t
, (3.48)

with v̌b = V̌bmeimθ where ∂Vbm/∂t is given by

∂V̌bm

∂t
= 1
ρecpTe

∂Qm

∂t
− ∂

∂t

∫ ∞

0

(
−m

R
W̌m + ∂Ǔm

∂x

)
dn. (3.49)

Summing up the mean of each term in (3.41) leads to the one-dimensional wave equations
for P̄m,j taking account of the thermoviscous diffusions as

∂2P̄m,j

∂t2
− ∂

∂x

(
a2

e
∂P̄m,j

∂x

)
+
(αm,j

R

)2
a2

eP̄m,j = Jm(αm,j)

R
ρea2

e
∂V̌bm

∂t
, (3.50)
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for j = 1, 2, 3, . . . where ρea2
e∂V̌bm/∂t is expressed by (3.37) in terms of Pm at r = R as

ρea2
e
∂V̌bm

∂t

= −√
νe
∂−1/2

∂t−1/2

[
(C − 1)

∂2Pm

∂t2
+ ∂

∂x

(
a2

e
∂Pm

∂x

)
− m2

R2 a2
ePm + CT

a2
e

Te

dTe

dx
∂Pm

∂x

]
.

(3.51)

Note again that the diffusive terms on the right-hand side of (3.50) are small, of order δ/R,
in comparison with the non-diffusive terms on the left-hand side.

4. Diffusive effects on the non-planar sound

4.1. Diffusive wave equation for a single mode
Equations (3.50) with (3.51) are the diffusive wave equations for the weighted means P̄m,j.
Since (3.51) is determined by Pm at r = R, which is related to all P̄m,j by (2.21) as

Pm(R, x, t) =
∞∑

j=1

cm,jP̄m,jJm(αm,j), (4.1)

(3.50) are coupled with all P̄m,j through the boundary layer. Hence, (3.50) provide a
system of an infinite number of equations for P̄m,j (j = 1, 2, 3, . . . ). In this sense, the
independence of each mode in the non-diffusive case is lost.

Because (4.1) is difficult to solve, of concern here is a case in which Pm consists of a
single mode only, say the jth mode, and the other modes vanish as

Pm(r, x, t) = cm,j f (x, t)Jm(αm,jr/R), (4.2)

where P̄m,j is set simply to be f without the bar and the subscripts. Then it follows from
(3.50) that

∂2f
∂t2

− ∂

∂x

(
a2

e
∂f
∂x

)
+
(αm,j

R

)2
a2

ef = Jm(αm,j)

R
ρea2

e
∂V̌bm

∂t
, (4.3)

with

ρea2
e
∂V̌bm

∂t

= −cm,jJm(αm,j)
√
νe
∂−1/2

∂t−1/2

[
(C − 1)

∂2f
∂t2

+ ∂

∂x

(
a2

e
∂f
∂x

)
− m2

R2 a2
ef + CT

a2
e

Te

dTe

dx
∂f
∂x

]
,

(4.4)

where Pm(R, x, t) = cm,jJm(αm,j)f . Using the lowest equation of (4.3) with the right-hand
side neglected, (4.4) may alternatively be expressed as

ρea2
e
∂V̌bm

∂t
= −cm,jJm(αm,j)

√
νe
∂−1/2

∂t−1/2

[
C
∂2f
∂t2

+
(α2

m,j − m2)

R2 a2
ef + CT

a2
e

Te

dTe

dx
∂f
∂x

]
.

(4.5)
For the planar sound, it is easily verified that (4.3) with (4.4) or (4.5) is reduced to (1.2) by
setting m = 0 and then αm,j = 0 so that cm,jJ2

m(αm,j)/R becomes 2/R, and using the lowest
relation ∂2f /∂t2 − (∂/∂x)(a2

e∂f /∂x) = 0 and da2
e/dx = a2

eT−1
e dTe/dx.
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4.2. Damping due to thermoviscous diffusions in a uniform gas
To examine the diffusive effects in a uniform gas, a dispersion relation of (4.3) with (4.5)
is sought. Assuming f = X exp(i(ωt − kx)), X being a complex amplitude, ω and k must
satisfy the following dispersion relation for X to be non-trivial:

Ω2 = α2
m,j + K2 − ε(iΩ)−1/2

[
(C − 1)Ω2 + K2 + m2

]
, (4.6)

with ε defined by

ε ≡ cm,jJ2
m(αm,j)

√
ν0

a0R
=

2α2
m,j

(α2
m,j − m2)

√
ν0

a0R
, (4.7)

Ω = ωR/a0 and K = kR, where the real parts of ω and k are taken positive, and i−1/2 is
chosen to be (1 − i)/

√
2. Here, the factor

√
ν0/a0R takes a very small value because this

measures the ratio of the boundary-layer thickness
√
ν0/ω to R, if ω were taken to be a0/R,

i.e.Ω = 1. In an air-filled duct of radius R = 0.5 m, for example,
√
ν0/a0R ≈ 2.92 × 10−4

for a0 = 340 m s−1 and ν0 = 1.45 × 10−5 m2 s−1. Note, however, that, as m becomes
large, the coefficient 2α2

m,j/(α
2
m,j − m2) increases as m2/3/χ in the radial mode j = 1.

Equation (4.6) is difficult to solve for Ω as it is. However, making use of the smallness
of ε, Ω is sought asymptotically to its first order. To the lowest order, Ω is given by
(α2

m,j + K2)1/2, denoted by ΩK . Approximating Ω in the last term of (4.6) by ΩK , Ω is
obtained as Ω ≈ ΩK − ε(1 − i)

√
ΩK/8[C − (α2

m,j − m2)/Ω2
K]. Here, C is greater than

unity, e.g. C = 1.47 for air, and (α2
m,j − m2)/Ω2

K < 1. Hence, the positive imaginary
part suggests damping. Setting ω = ωr + iωi, the decay rate ωi in e−ωit is given in
dimensionless form by

ωiR/a0 ≡ Ωi ≈ ε
√
ΩK/8

[
C − (α2

m,j − m2)/Ω2
K

]
. (4.8)

For K 
 αm,j, ΩK ≈ K so that Ωi ≈ εC
√

K/8. In passing, the decay rate of the planar
sound is given by ε0C

√
K/8, ε0 = 2

√
ν0/a0R (�ε), and is much smaller than (4.8). From

the real part of Ω , on the other hand, Ω −ΩK ≈ −Ωi. Hence, it is found that the cutoff
frequency as K → 0 lowers slightly from αm,j by an amount equal to Ωi.

Given a frequency above the cutoff, on the other hand, a spatial decay rate is
sought. From (4.6), K is obtained as K ≈ KΩ + ε(1 − i)(CΩ2 − α2

m,j + m2)/
√

8ΩKΩ
with KΩ = (Ω2 − α2

m,j)
1/2. Setting k = kr − iki, the spatial decay rate ki in e−kix is given

in dimensionless form by

kiR ≡ Ki ≈ ε
(

CΩ2 − α2
m,j + m2

)
/
√

8ΩKΩ. (4.9)

For Ω 
 αm,j, KΩ ≈ Ω so that Ki ≈ εC
√
Ω/8 and the spatial decay rate is proportional

to
√
Ω . For the planar sound, Ki is given by ε0C

√
Ω/8.

When Ω is close to αm,j such that |Ω − αm,j| � O(ε), the approximation of K is
invalid as KΩ vanishes. It is then found from (4.6) that K is approximated by K ≈√
ε i−1/4bm,jwith bm,j = {[(C − 1)α2

m,j + m2]/√αm,j}1/2, and that the diffusive effects are
enhanced to be of order

√
ε. Hence, the spatial decay rate Ki is given by

√
ε sin(π/8)bm,j.

At the same time, the real part of K is given by
√
ε cos(π/8)bm,j. In the non-diffusive case,

the phase velocity becomes infinite at the cutoff, whereas the diffusive effects suppress it
to be large but finite.
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Thermoacoustic effects on the propagation of non-planar sound in a circular duct

4.3. Acoustic energy equation
When the temperature gradient is present, it is not so easy to have such analytical solutions
and decay rates as obtained in the preceding subsection. So a different strategy is taken to
consider the acoustic energy.

Setting f = ∂Φ/∂t and integrating (4.3) with respect to t, it follows that

1
ρea2

e

∂2Φ

∂t2
− ∂

∂x

(
1
ρe

∂Φ

∂x

)
+
(αm,j

R

)2 Φ

ρe
= Jm(αm,j)

R
V̌bm. (4.10)

Multiplication with ∂Φ/∂t leads to

∂E
∂t

+ ∂I
∂x

= Jm(αm,j)

R
∂Φ

∂t
V̌bm, (4.11)

where E and I are equal to Em,j and Im,j given, respectively, by (2.35) and (2.37) with
Φm,j = Φ, This corresponds to the acoustic energy equation (2.28) for the single mode,
when cm,j is multiplied. Then cm,jJm(αm,j)∂Φ/∂t gives the pressure Pm(R, x, t), and the
product with V̌bm gives the power density done by the edge of the boundary layer on the
core region. The velocity at the edge is given by the sum of V̌bm and −Vm at r = R − δ. It
is obvious physically, however, that the latter does not contribute to this power density.

When the boundary layer is ignored, the right-hand side of (4.11) drops so that the
conservation of the acoustic energy holds locally. To find the global conservation, a finite
duct of length L is considered in a domain 0 < x < L. At a duct end, either the sound
pressure or the axial velocity is usually taken to vanish, if no end effects are considered.
In either case, then, I vanishes at the ends. Integration of (4.11) over the duct leads to

d
dt

∫ L

0
E(x, t) dx = 0. (4.12)

Thus the integral corresponding to the total energy is conserved at any instant.
When the boundary layer is taken into account, it is no longer conserved but is subjected

to change by
d
dt

∫ L

0
E dx =

∫ L

0

Jm(αm,j)

R
f V̌bm dx. (4.13)

As will be shown below, the right-hand side is proportional to the small parameter ε given
by (4.7), and therefore the integral of E changes slowly in time. To see this in detail,
consider oscillations in the form of f = X(x)eiωt and V̌bm = Y(x)eiωt, X and Y being
complex amplitudes, and ω (= ωr + iωi) being complex. Since, as seen in (4.8), ωi is
proportional to ε and is much smaller than ωr, the oscillations are substantially sinusoidal
over a period of oscillations (≈2π/ωr), and the integral of E over the period may be
regarded as a constant. However, this constant contains ωit and changes slowly over a long
time scale of 1/ωi (
2π/ωr). According to the method of two timings ωrt and ωit (Gupta,
Lodato & Scalo 2017), (4.13) is integrated over one period of fast oscillations to yield

d
dt

∫ L

0
〈E〉 dx =

∫ L

0

Jm(αm,j)

R
〈f V̌bm〉 dx, (4.14)

where 〈 · 〉 denotes the mean over the period defined by

〈 · 〉 ≡ ωr

2π

∫ t+2π/ωr

t
( · ) dt. (4.15)
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Here, the integral of 〈E〉 depends on ωit, whose slow change is determined by the mean of
f V̌bm.

This mean is given by

〈f V̌bm〉 = Re{X∗Y}/2, (4.16)

the asterisk denoting the complex conjugate, and Y is given in terms of X by (4.5) as

Y = −cm,jJm(αm,j)
√
νe(iω)1/2

ρea2
e

[
CX −

(
α2

m,j − m2
) a2

e

ω2R2 X − CT

ω2
a2

e

Te

dTe

dx
dX
dx

]
. (4.17)

Here, dX/dx is related to the axial velocity. In accordance with Pm in (4.2), Um in (2.26)
is also set in the form of Um = cm,jg(x, t)Jm(αm,jr/R). Then it follows from (2.27d) that

ρe
∂g
∂t

= −∂f
∂x
. (4.18)

Setting g = Z(x)eiωt, Z being a complex amplitude, Z is related to X by

Z = i
ρeω

dX
dx
. (4.19)

Using this, the integrand in (4.14) is set in the form of

Jm(αm,j)

R
〈f V̌bm〉 = ε

2ρ0a0R
D, (4.20)

with D defined by

D = −Re
{

Ne(iΩ)1/2
[

C|X|2 −
(
α2

m,j − m2
) Te

T0

|X|2
Ω2 + i

Ω

CT

Te

dTe

dx
Rρ0a0X∗Z

]}
,

(4.21)
where Ne(x) designates

√
νe/ν0 = (Te/T0)

(1+β)/2, and Re{ · } means the real part of { · }.
For planar sound in the absence of the temperature gradient where m = 0 and αm,j = 0,

D is obviously negative and the acoustic energy is damped. For non-planar sound, as shown
in § 4.2, the second term due to the dispersion reduces C substantially, in common with
planar sound. A decay rate in energy is defined by the ratio of the left-hand side of (4.14)
to the right-hand side with the sign reversed. This is twice the decay rate ωi (see below
(5.7)).

When the temperature gradient is present, the second term may overcome −C, if
Te/T0 is high enough, and the last term appears to be crucial. Noting that X/ρ0a0Z is
the dimensionless acoustic impedance, and setting its phase angle to be φ, i.e. X/Z =
|X/Z|eiφ , X∗Z is written as X∗Z = |X|−1|Z|(cosφ − i sinφ)|X|2. Taking the factor |X|2
out of the square brackets in (4.21), the sign of the last term in D is determined, the positive
factors aside, by

Re
{
(iΩ)−1/2 R

Te

dTe

dx
(cosφ − i sinφ)

}
≈ (2|Ω|)−1/2 R

Te

dTe

dx
(cosφ − sinφ). (4.22)

Because this may change sign, the last term contributes not only to the dissipation of the
energy but also to the production of it, depending on the phase and on the sign of the
temperature gradient.
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Thermoacoustic effects on the propagation of non-planar sound in a circular duct

5. Eigenvalue problems and decay rates

The effects of the boundary layer have been discussed qualitatively based on the acoustic
energy equation. It has been revealed that the dispersion contributes to the production
of the acoustic energy and acts to reduce the dissipation due to −C|X|2. However, it
is uncertain whether or not the dispersion will exceed the term −C|X|2, and if the
temperature gradient will contribute to the production.

To clarify these, (4.3) is solved for a finite duct of length L. Assuming f = X(x)eiωt,
(4.3) is expressed in the following form:

d
dx

(
a2

e
dX
dx

)
+ ω2X −

(αm,j

R

)2
a2

eX = −Jm(αm,j)

R
ρea2

e iωY, (5.1)

where Y is given by (4.17). Since dX/dx is expressed in terms of Z by (4.19), (5.1) is set in
the form of the simultaneous equations for X and Z.

At the outset, all variables are normalised by the following replacements:

x → Lx, t → (R/a0)t, X → �pF, Z → (�p/ρ0a0)G, (5.2a–d)

where �p being a typical magnitude of the sound pressure. Using Ω , the equations to be
solved are set in the dimensionless form for F and G as

R
L

dF
dx

= −iΩ
(

Te

T0

)−1

G, (5.3a)

R
L

dG
dx

= −iΩF − α2
m,j

Te

T0

F
iΩ

− εH, (5.3b)

for 0 < x < 1, where H is defined by

H = Ne(iΩ)1/2
[

CF −
(
α2

m,j − m2
) Te

T0

F
Ω2 + i

Ω

CT

Te

dTe

dx
R
L

G
]
. (5.4)

Multiplying (5.3a) by G∗, and also multiplying the complex conjugate of (5.3b) by F,
these equations are added together. From the real part of the equation thus obtained, it
follows that

R
L

d
dx

Re{FG∗} = ΩiE − εRe{HF∗}, (5.5)

with E defined by

E = |F|2 + α2
m,j

Te

T0

|F|2
|Ω|2 +

(
Te

T0

)−1

|G|2, (5.6)

and Ω = Ωr + iΩi. Integrating (5.5) over 0 < x < 1, and assuming either one of F or G
vanishes at the ends, the left-hand side of (5.5) vanishes. Thus Ωi is obtained as

Ωi =
ε

∫ L

0
Re{HF∗} dx∫ L

0
E dx

. (5.7)

Here, E corresponds to the mean of 〈E〉 normalised by (�p)2/4ρ0a2
0. Denoting

the right-hand side of (4.20) by −ε 〈S〉, Re{HF∗} corresponds to 〈S〉 normalised by
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Case Type of Boundary conditions
duct ends at x = 0 at x = 1

I open–open F = 0 F = 0
II closed–closed G = 0 G = 0
III open–closed F = 0 G = 0
IV closed–open G = 0 F = 0

Table 1. Four cases for termination of a duct and boundary conditions to be imposed at the duct ends x = 0
and x = 1.

(�p)2/2ρ0a0R. When (5.7) is written in terms of the dimensional quantities, it is found
that 2ωi is determined by the ratio of the integral of ε 〈S〉 over x to the one of 〈E〉.

To solve (5.3) by imposing appropriate boundary conditions at both ends of the duct,
four cases are considered for termination of the duct. Table 1 shows the type of the duct
ends and the boundary conditions to be imposed there. In the case of the open end, the
sound pressure is assumed to vanish simply without any account of end corrections. In
the case of the closed end, the axial velocity is assumed to vanish without taking account
of a boundary layer on the end plate. The duct is assumed to be filled with atmospheric
air, the temperature at x = 0 being set at T0 = 288 K, where a0 = 340 m s−1 and ν0 =
1.45 × 10−5 m2 s−1. The constants C and CT are taken to be 1.47 and 1.39, respectively,
where γ = 1.4, Pr = 0.72 and β = 0.5.

The gas temperature in the quiescent state is assumed to increase monotonically with x
in the form of an exponential function of x given by

Te/T0 = eλx, (5.8)

for 0 < x < 1, where λ is a positive constant. Then, T−1
e dTe/dx takes the constant λ.

Denoting the highest temperature at x = 1 by TH , the temperature ratio TH/T0 is used
below instead of λ [= log(TH/T0)]. As long as Te is assumed monotonic such as in a linear
distribution 1 + λx or a quadratic one (1 + λx)2, it is expected that qualitative features will
not differ significantly from the exponential distribution. When no temperature gradient is
present, Case IV is identical to Case III.

For numerical computations, the duct geometry is specified. The radius and the length
are taken to be R = 0.5 m and L = 1 m, respectively, so that R/L = 0.5. It may be
questioned that the choice of R/L is not so small to guarantee the assumption (2.1). When
TH/T0 = 2, for example, λ ≈ 0.69 so that the middle term on (2.1), i.e. λR/L ≈ 0.35.
Of course, the smaller the temperature ratio taken, the better the approximation becomes.
However, account must be taken of the azimuthal mode. As m becomes large, the sound
tends to be confined in a narrow band adjacent to the duct wall, as shown in figures 1 and
2. Then, a typical radial length is no longer the radius but a radial width of the band �R.
If �R is taken in (2.1) instead of R, the assumption is well satisfied.

Given the temperature ratio TH/T0, the eigenvalue problem for Ω is solved numerically
by the shooting method to seek Ω , F and G. The standard Runge–Kutta method of fourth
order is used to solve (5.3) from x = 0 toward x = 1. The boundary (initial) conditions
at x = 0 are taken, without any loss of generality, to be F = 0 and G = 1 for the open
end, and F = 1 and G = 0 for the closed end. A starting value of Ω is chosen to be
ΩK . Since the duct in Cases I and II is a half-wavelength tube, while the one in Cases
III and IV is a quarter-wavelength tube, K is equal to πR/L for the first axial mode
of non-diffusive oscillations in the former cases, while K is equal to πR/2L in the
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Thermoacoustic effects on the propagation of non-planar sound in a circular duct
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Figure 4. Axial profiles of |F| (a) and |G| (b) in Case I for the azimuthal, radial and axial modes with m = 16,
j = 1 and l = 1, respectively, in the duct of R = 0.5 m and R/L = 1/2 where the temperature ratio TH/T0 is
increased from 1 to 2 by steps of 0.05.

(a) (b)
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Figure 5. Axial profiles of |F| (a) and |G| (b) in Case II for the azimuthal, radial and axial modes with m = 16,
j = 1 and l = 1, respectively, in the duct of R = 0.5 m and R/L = 1/2 where the temperature ratio TH/T0 is
increased from 1 to 2 by steps of 0.05.

latter cases. Given ΩK , the solutions at x = 1 are calculated, but they do not satisfy the
boundary condition there. So Ω is varied slightly and the same procedure is repeated.
To this end, the Newton method is employed to vary Ω until the boundary condition at
x = 1 is satisfied up to the accuracy desired. Absolute and relative errors in the boundary
condition at x = 1 and the frequencyΩ , respectively, are chosen to be 10−9 or less. Having
obtained Ω for TH/T0 = 1, the temperature ratio is increased slightly to seek a new value
of Ω . This procedure is carried out successively up to TH/T0 = 3.

Figures 4 to 7 show the axial profiles of |F| and |G| in Case I to Case IV, respectively,
where the azimuthal and radial modes are chosen to be m = 16 and j = 1, respectively,
and the temperature ratio is varied from TH/T0 = 1 up to 2 by steps of 0.05. In the axial
direction as well, there exist many modes indexed by l (l = 1, 2, 3, . . . ). Drawn here is
the first axial mode with l = 1. As the profiles for TH/T0 /= 1 are obtained as a result of
continuous deformation from the one when TH/T0 = 1, the axial mode is identified as
the first mode. Incidentally, for a smaller value of m such as m = 0, 1 and 2, R/L should
be chosen to be smaller. When R/L = 1/4, profiles are qualitatively similar to those in
figures 4 to 7.
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Figure 6. Axial profiles of |F| (a) and |G| (b) in Case III for the azimuthal, radial and axial modes with m = 16,
j = 1 and l = 1, respectively, in the duct of R = 0.5 m and R/L = 1/2 where the temperature ratio TH/T0 is
increased from 1 to 2 by steps of 0.05.

It is seen in common that, while TH/T0 is close to unity, the profiles change sensitively
to a small increase in TH/T0. This is because of the large value of Ω (≈18), suggested by
the asymptotic analysis as λ→ 0. On the other hand, when TH/T0 is increased beyond 2
further to 3, the respective profiles vary little from those at the ratio 2. As the temperature
ratio is increased, |F| and |G| in all cases decay pronouncedly as the hot end is approached.
Hence, it is unveiled that the temperature gradient acts to confine the sound axially in the
vicinity of x = 0. Owing to this, no difference between the profiles in Case I and Case III
is seen.

It is also seen in common that |F| is much greater than |G|, which vanishes where |F|
takes the maximum. This is confirmed by (5.3a) written as

R
L

d|F|
dx

= −(Ωr sinφ −Ωi cosφ)
(

Te

T0

)−1

|G|, (5.9)

where Ωi � Ωr, and φ denotes the phase angle in F/G (= |F/G|eiφ). Because the
diffusive effects are small, φ is very close to either π/2 or −π/2. From the sign of d|F|/dx
with (5.9), φ in Case I is −π/2 in the left section of the node of G, and π/2 in the right
section. In Case II, the node appears newly in G when the temperature gradient is present.
The nodes in F and G divide the duct into three sections, where φ takes π/2 in the left
and right sections, and −π/2 in the middle. In Case III, the node appears in G. In the left
and right sections of the node, φ is −π/2 and π/2, respectively. In Case IV there are no
nodes, and φ is π/2.

For the eigenfunctions in figures 4 to 7, the eigenvalues Ω in Case I to Case IV are
displayed against TH/T0 in figure 8 where (a) and (b) show, respectively, its real and
imaginary parts. Here, the solid, broken, dotted and chain curves indicate Ω in Cases I,
II, III and IV, respectively. As the profiles in figure 6 resemble the ones in figure 4, Ω in
Case III is almost equal to that in Case I except in the vicinity of TH/T0 = 1 shown in the
inset of figure 8(a). When TH/T0 exceeds 1.05, no difference is visible. In all cases, it is
unveiled that both Ωr and Ωi increase with TH/T0, although the magnitude depends on
the conditions at the duct ends. At any rate, the axial temperature gradient increases the
frequency and also enhances the decay rate.

Here, Ω at TH/T0 = 1 is checked against the one obtained approximately by the
dispersion relation. As was mentioned, K takes πR/L so that ΩK ≈ 18.13 in Cases I and
II, while K = πR/2L so that ΩK ≈ 18.08 in Cases III and IV. In passing, the frequency
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(a) (b)
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x

1.05

m = 16

0.2 0.4 0.6 0.8 1.00

0.04

0.08
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0.16

TH /T0 = 1
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x
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Figure 7. Axial profiles of |F| (a) and |G| (b) in Case IV for the azimuthal, radial and axial modes with m = 16,
j = 1 and l = 1, respectively, in the duct of R = 0.5 m and R/L = 1/2 where the temperature ratio TH/T0 is
increased from 1 to 2 by steps of 0.05.

1.0 1.5 2.0 2.5 3.0
18

19

20

21

22

Ωr

II. Closed-Closed

I. Open-Open

m = 16

IV. Closed-Open

III. Open-Closed

1.00 1.02 1.04 1.06
18.0

18.2

18.4

II. Closed-Closed

IV. Closed-Open

III. Open-Closed

1.0 1.5 2.0 2.5 3.0
5.0

5.5

6.0

6.5

TH /T0TH /T0

(×10–3)

II. Closed-Closed

m = 16

Ωi

IV: Closed-Open

III. Open-Closed

I: Open-Open

(a) (b)

I. Open-Open

Figure 8. Graphs of the eigenvaluesΩ in the azimuthal, radial and axial modes with m = 16, j = 1 and l = 1,
respectively, in the duct of R = 0.5 m with L/R = 2 against TH/T0 in Cases I to IV where (a) and (b) show,
respectively, the real and imaginary parts of Ω . No difference is visible in Cases I and III except in the vicinity
of TH/T0 = 1, which is blown up in the inset of (a).

corresponding toΩK is 1.962 kHz in Cases I and II and 1.957 kHz in Cases III and IV. For
m = 16 and j = 1, ε takes 2.712 × 10−3. From (4.8), Ωi = 5.134 × 10−3 in Cases I and
II, while Ωi = 5.122 × 10−3 in Cases III and IV, and Ωr lowers very slightly below ΩK
by amount of (4.8). The asymptotic results of Ωi and Ωr −ΩK agree with Ω numerically
obtained up to the first two digits.

With the solutions to the boundary-value problems available, discussions are given on
mechanisms of the damping by examining the source term (4.20). This term corresponds,
in dimensionless form, to −εRe{HF∗} in (5.7), which consists of three terms Di (i =
1, 2, 3) defined, respectively, by

D1 = −εRe
{

Ne(iΩ)1/2C|F|2
}
, (5.10a)

D2 = εRe
{

Ne(iΩ)1/2
(
α2

m,j − m2
) Te

T0

|F|2
Ω2

}
, (5.10b)
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Figure 9. Axial distributions of Di (i = 1, 2, 3) given by (5.10) for the azimuthal, radial and axial modes with
m = 16, j = 1 and l = 1, respectively, in Cases I, II, III and IV.

D3 = −εRe
{

Ne(iΩ)1/2
i
Ω

CT

Te

dTe

dx
R
L

G
F

|F|2
}
. (5.10c)

The first term D1 is present in common with planar sound. BecauseΩi � Ωr so (iΩ)1/2 ≈
(1 + i)(Ωr/2)1/2, it always contributes to the dissipation of the acoustic energy. The
second term D2 due to the dispersion contributes to its production and acts to reduce
the dissipation by D1. The last term D3 due to the temperature gradient takes positive or
negative values, depending on the acoustic admittance G/F. As (4.13) dictates, the integral
of the sum of the three terms determines how the total energy changes in the course of time.

Figure 9 shows the axial distributions of Di (i = 1, 2, 3) in Cases I, II, III and IV when
TH/T0 = 2. It is seen immediately that the action of the boundary layer is confined within
the left section of the duct x < 0.5 where Te/T0 is lower than 1.4. This is because the
acoustic pressure and the velocity diminish rapidly in the right section. As Case III is
close to Case I, the distributions in both cases are almost the same.

It is found that the dissipation of the acoustic energy is contributed mainly by D1,
although its production is brought about by D2. Even if the temperature ratio is increased
up to 3, D2 is never greater than −D1. It is also found that, because |G/F| is small and |Ω|
is large, D3 is very small, of the order of one hundredth of D1, and that it changes sign,
depending on location, except for Case IV. With φ available, the sign of D3 is confirmed
to be in agreement with that of (4.22). It is true that the temperature gradient gives rise
to the production of the energy locally. From the profiles of D3, however, the integral of
D3 is seen to be negative, and therefore it contributes to the dissipation in total. For other
radial modes j = 2 and j = 3 as well, it is confirmed that D1 + D2 takes negative values.
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Thermoacoustic effects on the propagation of non-planar sound in a circular duct

Further for other azimuthal modes m = 0, 1 and 2 and radial modes j = 2 and 3, qualitative
features are similar to those shown above.

If the integral of D2 + D3 exceeded that of D1, then the integral of εRe{HF∗} would
become negative so that instability would occur. In the present range of TH/T0, no
instability occurs by the temperature gradient. However, it is an interesting finding that
the sound tends to be confined to a cold section of the duct as the temperature ratio is
increased. This is due to thermoacoustic effects of non-uniformity in temperature. Because
the temperature increases toward the hot end, the sound speed increases as well. If an
acoustic ray in the spinning mode is imagined, it is surmised that the ray would be bent
away from the direction of the temperature gradient so that it would fail to penetrate into
the hot section. Although the ray is in the high-frequency limit, this is conjectured to be
the mechanism of the sound confinement in the cold section.

Finally, a few remarks are added. So far, attention has been paid to the cases where Te
increases toward the end at x = 1. However, when the duct is viewed from this end, the
temperature decreases exponentially and the amplitude grows, in general, toward the end
at x = 0. This implies that, when the duct wall is cooled axially, the sound is enhanced
and confined there. For Te having a maximum or a minimum, |F| and |G| have also been
calculated by taking a parabolic distribution 1 + λx(1 − x) with −2 � λ � 4. They are
found to be similar, in a section of the duct, to those in figures 4 to 7. Because Te is
symmetric with respect to x = 1/2, profiles are also symmetric in Cases I and II, and
profiles in Case III are mirror images of Case IV. When the distribution has the maximum
for which 0 < λ � 4, |F| and |G| in Cases I and II resemble qualitatively, in the left section
of the duct (0 < x < 1/2), the profiles in figures 4 and 7 shrunk axially, respectively. In
Case IV, the profiles in 0 < x < 1 resemble those in figure 7, and the disturbances are
confined between the closed end and the middle of the duct. When the distribution has
the minimum for which −2 � λ < 0, F and G in Cases I and II resemble, in the right
section (1/2 < x < 1), those in figures 7 and 4, respectively. In Cases III and IV, |F| and
|G| resemble those in Case I and tend to be symmetric as the temperature ratio decreases.
In any case, it is common that the disturbances are trapped where the temperature is lower.

6. Case of an annular duct

6.1. Expansion in terms of the radial modes
It has already been seen that, as m becomes large, the sound tends to be confined in a
narrow band so that silence prevails axially in a cylindrical column about the centre. This
means that, even if another duct of radius Ri (<R) were placed coaxially within it, the
sound field would be unaffected. As Ri/R approaches unity, however, the inner duct will
influence the sound field greatly. In this section, extension to the case of the annular duct
is described briefly, as long as the boundary layer is much thinner than a gap.

In the annular duct, the boundary condition dP/dr = 0 is added at r = Ri. In place of
(2.14), then, P is sought in the form of

P = B1Jm(βr/R)+ B2Ym(βr/R), (6.1)

with β ≡ (ω2/a2
0 − k2)1/2R for Ri < r < R, where B1 and B2 are arbitrary constants, and

Ym denotes the Bessel function of the second kind. The constants are determined by the
boundary conditions at r = R and at r = Ri, which are given for non-zero β as follows:

B1J̇m(β)+ B2Ẏm(β) = 0, (6.2a)

B1J̇m(βc)+ B2Ẏm(βc) = 0, (6.2b)
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with c = Ri/R (<1). For B1 and B2 to be non-trivial, the following determinant must
vanish:

J̇m(β)Ẏm(βc)− J̇m(βc)Ẏm(β) = 0. (6.3)

Taking the limit as c → 0, J̇m(β) = 0 is recovered by dividing (6.3) with Ẏm(βc) (→
−∞).

Zeros of (6.3) are designated as βm,j (j = 1, 2, 3, . . . ) and ordered as 0 < βm,1 <
βm,2 < βm,3 < . . . . Here, specific values of βm,j are not given but are available for
c = 0.25, 0.5 and 0.75 in Tyler & Sofrin (1962). For each of βm,j, B1 and B2 are chosen as
follows:

B1 = B and B2 = −B J̇m(βm,j)/Ẏm(βm,j), (6.4a,b)

with B being an arbitrary constant. Hence, the eigenfunctions Jm,j (j = 1, 2, 3, . . . ) are
defined, except for B, by

Jm,j(r) ≡ Jm(βm,jr/R)− J̇m(βm,j)Ym(βm,jr/R)/Ẏm(βm,j). (6.5)

It is straightforward to show that the eigenfunctions satisfy the orthogonality relation as

1
R2

∫ R

0
rJm,iJm,j dr =

{
1/dm,j if i = j,
0 if i /= j, (6.6)

for i, j = 1, 2, 3, . . . , where 1/dm,j is given by

1
dm,j

= 1
2β2

m,j

[(
β2

m,j − m2
)
J 2

m,j(R)−
(
β2

m,jc
2 − m2

)
J 2

m,j(Ri)
]
, (6.7)

with

Jm,j(R) = Jm(βm,j)− J̇m(βm,j)Ym(βm,j)/Ẏm(βm,j), (6.8a)

Jm,j(Ri) = Jm(βm,jc)− J̇m(βm,j)Ym(βm,jc)/Ẏm(βm,j). (6.8b)

In deriving (6.7), use has been made of the following integral:∫ R

Ri

rXm(br)Ym(br) dr = r2

2

[(
1 − m2

b2r2

)
Xm(br)Ym(br)+ Ẋm(br)Ẏm(br)

]∣∣∣∣r=R

r=Ri

,

(6.9)
where Xm and Ym denote any two Bessel functions Jm and Ym, b being a constant.
This formula is easily verified by differentiating both sides with respect to R (see also
Abramowitz & Stegun 1972).

In parallel with the analysis in § 2, Pm is expanded similarly in terms of Jm,j as

Pm(r, x, t) =
∞∑

j=1

dm,jP̄m,j(x, t)Jm,j(r), (6.10)

for Ri < r < R where P̄m,j (j = 1, 2, 3, . . . ) are defined by

P̄m,j ≡ 1
R2

∫ R

Ri

Pm(r, x, t)rJm,j(r) dr. (6.11)
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Thermoacoustic effects on the propagation of non-planar sound in a circular duct

6.2. Effects of the boundary layer
Effects of the boundary layer on the inner duct are also taken into account by following
the same procedures as in § 3. The only difference is in the choice of the coordinates n and
η on the inner duct. Attaching the subscript i, ni and ηi are taken to be r − Ri and −Riθ ,
respectively, if x is taken in common. Because ηi is clockwise, w is taken to be opposite as
−w. The normal velocity at the edge of the boundary layer directed in the same sense as ni
is given in the same form as (3.37), provided R is replaced by Ri and p′ is taken at r = Ri.

The disturbances and the defects are decomposed into the Fourier mode in the azimuthal
direction as (3.42) and (3.43). Using (6.10), the means of (3.41) are taken by multiplying
with rJm,j over the interval Ri < r < R for j = 1, 2, 3, . . . . As in (3.44), the mean of the
defect consists of two parts due to the boundary layers on the outer and inner duct walls as

1
R2

∫ R

Ri

ˇ( · )rJm,j(r) dr ≈ Jm,j(R)
R

∫ ∞

0
ˇ( · )R dn + cJm,j(Ri)

R

∫ ∞

0
ˇ( · )Ri dni, (6.12)

where the subscripts R and Ri denote the quantity pertaining to the boundary layer on the
outer and inner walls, respectively. Each integral of the defect leads to V̌bm at the edge of
the boundary layer. Hence, the equations for P̄m,j (j = 1, 2, 3, . . . ) take the form of

∂2P̄m,j

∂t2
− ∂

∂x

(
a2

e
∂P̄m,j

∂x

)
+
(
βm,j

R

)2

a2
eP̄m,j

= Jm,j(R)
R

(
ρea2

e
∂V̌bm

∂t

)
R

+ cJm,j(Ri)

R

(
ρea2

e
∂V̌bm

∂t

)
Ri

, (6.13)

with ρea2
e∂V̌bm/∂t given by (3.51) in which Pm takes Pm(R) on the outer wall and Pm(Ri)

on the inner wall.

7. Conclusions

Thermoacoustic effects on the propagation of non-planar sound in a circular duct
subjected to an axial temperature gradient have been examined by taking account of the
thermoviscous diffusive effects in the boundary-layer approximation. Using Fourier and
Fourier–Bessel series expansion in the azimuthal and radial directions, respectively, the
pressure in each radial mode is described by the one-dimensional and dispersive wave
equation, which couples weakly to those in the other radial modes through the boundary
layer. It has been found that the thermoviscous effects appear through the parameter ε
given by (4.7), which increases with the azimuthal mode number. Then, the sound tends to
be confined in a narrow band near the duct wall so that the boundary layer becomes thicker
relatively to the width, and the thermoviscous effects appear more strongly than those in
planar sound.

On the basis of the wave equation for a single azimuthal and radial mode, the
thermoviscous effects in a uniform gas have been clarified quantitatively by the dispersion
relation. When the temperature gradient is present, the boundary-value problems have
been solved in a duct of finite length with duct ends as likely occurring in reality. For the
high azimuthal mode j = 16 and the first radial and axial mode j = 1 and l = 1, it has
been shown that the eigenfrequency and the decay rate of the oscillations increase with
the temperature ratio at both ends.

Using the acoustic energy equation, the roles of the diffusion, the dispersion and the
temperature gradient have been clarified in their contribution to the damping. It has
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been revealed that the dispersion combined with the diffusion always contributes to the
production of energy and acts to reduce the damping present in common with planar sound,
while the temperature gradient makes little contribution to it. Although the temperature
gradient can indeed yield production locally, the gradient is so gentle that the production
fails to overcome the overall dissipation. This result is reasonable in light of the very large
temperature ratio in Taconis oscillations. In the present context, the thermoacoustic effects
by the temperature gradient remain small.

However, it is an interesting finding that the non-uniformity in temperature confines
the sound to the vicinity of the cold end. Because the local sound speed becomes faster
toward the hot end, the confinement is considered to be brought about by an evanescent
phenomenon due to total reflection. Noted is that this occurs at a cuton frequency
in contrast to the evanescence below the cutoff frequency. The thermoacoustic sound
confinement may have interesting implications in practice.
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Appendix A. Asymptotic evaluation of the band width as m → ∞
For the radial mode j = 1, the band width is estimated for a large value of m. In the band,
Jm(αm,1r/R)/Jm(αm,1) steps up rapidly toward r/R = 1 where it takes an extremum of
unity. For m 
 1, αm,1 is truncated at (1 + χm−2/3)m (see § 2.2 for χ ), and Jm(αm,1r/R)
is approximated by the Debye expansion: Jm(m sech z) ≈ exp(m(tanh z − z))/

√
2πm tanh z

(Abramowitz & Stegun 1972), where sech z corresponds to (1 + χm−2/3)r/R. Because
sech z � 1, r/R must be less than 1 − χm−2/3.

For a large value of z, sech z is approximated by 2e−z, and Jm(m sech z) by
em−mz/

√
2πm. Substitution of e−z with (1 + χm−2/3)r/2R, denoted by ξ , yields

(eξ)m/
√

2πm, which agrees with the first term in the series expansion of Jm(mξ) around
ξ = 0 by noting Stirling’s formula: 1/m! ≈ emm−m/

√
2πm. As z → 0, on the other hand,

the expansion tends to diverge. Except for its vicinity, however, it provides very good
approximation for a moderate value of r/R even in the case of a small value of m such as
m = 8.

For a small but finite value of z, tanh z ≈ z, and m(tanh z − z) may be set to be −mz3/3.
Approximating Jm(αm,1) by 0.67488 . . .m−1/3 (Abramowitz & Stegun 1972), it follows
that

Jm(αm,1r/R)
Jm(αm,1)

≈ ζ−1/6e−ζ/3

0.67488 . . .
√

2π
, (A1)

with ζ = mz3. For a fixed value of m, (A1) varies with z through ζ , whereas (A1) vanishes
in the limit as m → ∞ for a finite value of z. However, if z is chosen to vanish as (ζ/m)1/3
with ζ fixed, (A1) takes any value, depending on the value of ζ .

If the band width is defined by a point r = r0 at which Jm(αm,1r/R)/Jm(αm,1) decays
from unity to take 1/10, then ζ is 4.5707, denoted by ζ0. When z is small, sech z may
be set to be 1 − z2/2. Then z is related to r/R by

√
2(1 − r/R − χm−2/3) where r/R is

close to unity. Since z = (ζ0/m)1/3, the dimensionless band width 1 − r0/R diminishes as
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(χ + ζ
2/3
0 /2)m−2/3(≈2.1857 m−2/3). For m = 16, for example, this gives 1 − r0/R ≈

0.34, i.e. r0/R ≈ 0.66 where Jm(α16,1r0/R)/Jm(α16,1) ≈ 0.05. The band width is
overestimated, but the Bessel function changes very steeply there to be 1/10 at r/R = 0.70.

Appendix B. Navier–Stokes equations with non-constant viscosities

For compressible Newton fluids with shear and bulk viscosities μ and μv dependent, in
general, on the temperature and the pressure, the full Navier–Stokes equation is given for
the velocity components vr, vθ and vx in cylindrical coordinates as follows:

ρ

(
Dvr

Dt
− v2

θ

r

)
= −∂p

∂r
+ μ

(
�vr − vr

r2 − 2
r2
∂vθ

∂θ

)
+ ∂

∂r

[(
μv + μ

3

)
∇ · v

]
− ∂μ

∂r
∇ · v + 2

(
∂μ

∂r
err + 1

r
∂μ

∂θ
erθ + ∂μ

∂x
erx

)
, (B1a)

ρ

(
Dvθ
Dt

+ vrvθ

r

)
= −1

r
∂p
∂θ

+ μ

(
�vθ − vθ

r2 + 2
r2
∂vr

∂θ

)
+ 1

r
∂

∂θ

[(
μv + μ

3

)
∇ · v

]
− 1

r
∂μ

∂θ
∇ · v + 2

(
∂μ

∂r
eθr + 1

r
∂μ

∂θ
eθθ + ∂μ

∂x
eθx

)
, (B1b)

ρ
Dvx

Dt
= −∂p

∂x
+ μ�vx + ∂

∂x

[(
μv + μ

3

)
∇ · v

]
− ∂μ

∂x
∇ · v + 2

(
∂μ

∂r
exr + 1

r
∂μ

∂θ
exθ + ∂μ

∂x
exx

)
, (B1c)

with D/Dt ≡ ∂/∂t + vr∂/∂r + (vθ/r)∂/∂θ + vx∂/∂x,Δ ≡ ∂2/∂r2 + (1/r)∂/∂r + (1/r2)
∂2/∂θ2 +∂2/∂x2 and ∇ · v = err + eθθ + exx, where the components of the rate of strain
tensor e are given in terms of v by

err = ∂vr

∂r
, erθ = eθr = 1

2

(
1
r
∂vr

∂θ
+ ∂vθ

∂r
− vθ

r

)
, (B2a)

erx = exr = 1
2

(
∂vr

∂x
+ ∂vx

∂r

)
, eθθ = 1

r
∂vθ

∂θ
+ vr

r
, (B2b)

eθx = exθ = 1
2

(
∂vθ

∂x
+ 1

r
∂vx

∂θ

)
, exx = ∂vx

∂x
, (B2c)

and μ and μv are regarded as being dependent on r, θ , and x through the temperature and
the pressure. The viscous stress tensor σ is related to e through σ = 2μ[e − tr(e)I/3] +
μv tr(e)I, with tr(e) and I denoting the trace of e and the unit tensor, respectively. The
divergence of σ in the cylindrical coordinates is given by r−1∂(rσir)/∂r + r−1∂σiθ /∂θ +
∂σix/∂x in the i-direction (i = r, θ, x) plus the extra terms −σθθ/r and σθr/r in the r- and
θ -directions, respectively, σij (i, j = r, θ, x) being the components of σ (Malvern 1969).
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