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ABSTRACT

While the traditional R2 value is useful to evaluate the quality of a fit, it does
not work when it comes to evaluating the predictive power of estimated finan-
cial models in finite samples. In this paper we introduce a validated R 2

V value
useful for prediction. Based on data from the Danish stock market, using this
measure we find that the dividend-price ratio has predictive power. The best
horizon for prediction seems to be four years. On a one year horizon, we find
that while inflation and interest rate do not add to the predictive power of the
dividend-price ratio then last years excess stock return does.
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1. INTRODUCTION

Long term investors have the contradicting aims of minimizing risk and max-
imizing return over the long run. Much financial literature investigates trad-
ing patterns and strategy among long term investors, for example, Barber and
Terrance (2000) argue for a buy-and-hold type of strategy that does not eat
up returns by trading costs and many professional advisers argue that stocks
are better over the long run, see Siegel (1998) and Jagannathan and Kocher-
lakota (1996) for particular easily read accounts on this. Other professional
financial advisers say that expected returns in financial markets vary over
time and contain a significant predictable component. Consequently time
periods exist where the long term investor might choose to sell stocks and buy
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bonds, because the return on stocks in these time periods do not match the
risk involved. The dividend-price ratio and the earning-price ratio, in particu-
lar, has proven to have some predictive power for future stock returns, see
Campbell, Lo, and MacKinlay (1997, Chapter 7) for an up-to-date account
regarding of the dividend yield based predictability of stock returns, and see
Shiller (2000, p.8) for a warning of an overvalued American stock exchange
based on the earning-price ratio. Campbell, Lo, and MacKinlay (1997)
argued that the predictable component of stock returns is increasing with the
time horizon, since the measure of fit, the R2, increases rapidly with the time
horizon. In the actuarial literature Wilkie (1993) gets to a similar conclusion
replicating the linear modeling approach of Fama and French (1988). The fol-
lowing quote is from Wilkie (1993, p.341), who found that predictive power
seems to be strongest for a six and a half year time horizon for British data:
“A 1% difference in the dividend yield at the time of purchase of the stock
makes a difference… equivalent to about 4.1% a year compound for about six
and a half years”. So, there is a considerable financial and actuarial literature
on the predictive power of the dividend yield, see also Richardson and Stock
(1989) and Wilkie (1995). However, most literature uses traditional in-sample
methodology like goodness of fit, the traditional R2 value or parametric esti-
mation procedures combined perhaps with some testing. In this paper we
consider an adjusted measure of predictive power, the RV

2 value, that is an
out-of-sample measure in the sense that it measures how the model actually
predicts into the future, see Eun and Resnick (1988,1994) for financial papers
using a similar type of out-of-sample approach to evaluate their times series
of stocks, bonds and exchange rates as we use in this paper to analyze our
financial time series.

The paper follows its historical development. First we go through an analy-
sis of Danish data from 1922 to 1996 and then we add the analysis of the
updated data set from 1922 to 2001.

Regarding the data set 1922-1996

Based on our out-of-sample measure, it seems that the models have
strongest predictive power for a time horizon of four years for Danish stock
returns, at least with respect to our criterion. Dividend-price does seem to
have predictive power whereas knowledge of inflation and short interest
rates do not seem to add to this predictive power. However, our study shows
that the one year lagged returns do. The best predictive filter on a one year
basis turns out to be a two-dimensional fully nonparametric estimator based
on the dividend-price ratio and last years lagged excess return. Last years
excess return enters with a tendency towards reversal, such that good years
tend to follow bad years and vice versa. The dividend-price ratio is, however,
still the most indicative parameter while estimating the excess returns of the
coming years.

Moreover, based on the current level on the dividend-price ratio in Den-
mark, around 1%, we concluded (in december 2000) that expected excess returns
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on stocks are indeed below zero, for all the considered time horizons with good
prediction power, namely one, two, three, four and five years time horizons.
Based on this finding we then concluded further that the current market and
political situation in Denmark was out of balance, since all institutional
investors heavily increased their percentages of stocks in their portfolios right
then. On average, an increase from around 20% invested in stocks to around
40% invested in stocks have been seen for long term institutional investors in
Denmark over the last seven years. The model of this paper argue that this strat-
egy increases the risk without increasing the average return.3 We believe that
the considerations of this paper can be helpful while developing a modern
information system for the long term investor.

Regarding the updated data set 1922-2001

It turns out that while there still is predictive power in the updated data set,
it is much lower than in the original data set. This remarkable finding can have
two explanations. Either the Danish main index, the KFX index, has had an
exceptional behavior in some of the last five years or the entire world market
has followed exceptional rules during this period. In either case, our findings
show that some care has to be taken regarding predictive power of dividend
yields and that further studies based on international data sets should be added
to the current to get a fuller understanding of the problem. It could for exam-
ple be relevant to consider a regime shift model such as the one of Harris
(1999) to understand this question further. However, while a regime shift model
does add to the understanding of historical facts, it does not help much when
it comes to predictive power. For a deep insight into the nature of uncertainty
in prediction, see Cairns (2000, p 314). In this paper we only consider the first
of the three steps considered by Cairns, namely Method 1 that finds the best
fit to a model according to a certain criterion. However, since our criterion is
a validated measure of error, we implicitly take care of the errors dealt with
in Cairns Method 2 and Method 3, that consider uncertainty due to parame-
ter estimation and model estimation. Another relevant extension would be to
combine the world wide data of Dimson, March and Staunton (2002) with
the predictive methodology of this paper.

We first motivate our choice of regression variables by noting the basic rela-
tionship between stock returns and economic factors in Section 2. In Section 3
we describe our data. Our framework for prediction is given in Section 4
followed by the prediction results based on the data set 1922-1996 in Section 5
when dividend yield alone is used for prediction. In Section 6 we consider the
use of more regression variables for the data set 1922-1996 and in Section 7 we
shortly comment on the updated results for the data set 1922-2001.
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2. THE BASIC RELATIONSHIP BETWEEN STOCK RETURNS AND

ECONOMIC FACTORS

One traditional equation for the value of a stock is

( ) ( ) ,P g D1 1t
j

j

j
t

1

1= + +c
3

-

=

-!

where most of the entering quantities on the right hand side are unknown, g,
discount rate, g, constant growth of dividend yields, i inflation and Dt is the
dividend paid out during the period t. This model was introduced to the finan-
cial theory by Williams (1938) and Gordon and Shapiro (1956). Campbell and
Shiller (1988) referred to the model as the “dividend-ratio” in absence of uncer-
tainty, see also Goetzman and Jorion (1993), Hodrick (1992), and Fama and
French (1988). For simplicity the discount rate and the growth rate do
not depend on time in this model although this is well known to be incorrect.
The point of the above identity is however, that it shows that the price of
stocks depend on quantities such that dividend yield, interest rate and infla-
tion. The two latter being highly correlated with almost any relevant discount
rate. It is also clear from the above identity that a decrease in discount rate,
which is highly correlated with an increase in bond yield, are related to an
increase in the stock return and vice versa.

3. THE DATA AND OUR DEFINITION OF PREDICTION

In this paper we use the annual Danish stock market data from Lund and
Engsted (1996), respectively the extended sample period 1922-1996 from 
Engsted and Tanggård (2000). We have ourselves extended the period to 1922-
2001. We consider the time series

, , , ,W S d I rt t t t t= ^ h

where St is stock return, It is inflation and rt is the short-term interest rate.
The stock index is based on a value weighted portfolio of individual stocks cho-
sen to obtain maximum coverage of the marked index of the Copenhagen Stock
Exchange (CBS). Notice that CBS was open during the second world war. In
constructing the data corrections were made for stock splits and new equity
issues below market prices. Further, dt = Dt /Pt denotes (nominal) dividends
Dt paid during year t divided by the (nominal) stock price Pt at the end of year t.
The appendix in Lund and Engsted (1996) contains a detailed description of the
data from where we have taken the following quote: “A nominal stock index and
accompanying dividend series was constructed from the original price quotation
sheets from the Copenhagen Stock Exchange. In order to avoid a possible tax-
induced distortion due to the well known January effect, the stock index at the
end of the year t is defined as the value in (mid) February of year t + 1. Similarly,
dividends for year t are defined as dividends paid out between February of year
t and February of year t + 1. However, no Danish companies pay dividends in
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January, so the dividend series is effectively the dividends paid during the year t.
Corrections are made for stock splits and new equity issues below the market
price using techniques similar to those described in Shiller (1981). The stock
index is a value-weighted portfolio consisting of approximately 16 individual
stocks (companies), which are generally chosen in order to obtain the maximum
coverage of the ‘market’ index of the Copenhagen Stock Exchange. The com-
position of the stock index is changed about every 10 years, and the weights for
the individual stocks are only adjusted in connection with changes in the com-
position of the stock index.”

We have updated the data set of Lund and Engsted (1996) following their
original approach. The leading Danish stock index, the KFX, index has been
used for this purpose. As a measure of the short-term interest rate, Rt, the dis-
count rate of the Danish Central Bank’s is used up to 1975, spliced together
with a short-term zero-coupon yield for the period thereafter. In computing
real values, we deflate nominal values by the consumption deflator4. The real
excess stock return is defined as

logS P D P rt t t t t1 1= + -- -^ h$ . ,

where

logr R1 100t t= +` j.

The resulting average of these excess stock returns are 2.5% for the period
1922-2001 (2.1% for 1922-1996) and 3.4% for the after war period 1948-2001
(3.2% for 1948-1996).

4. OUR FRAMEWORK FOR PREDICTION

The problem of prediction is considered as follows: Let Y St t ii

T

0

1
= +=

-! be the
excess stock return at time t over the next T years. We base our prediction on
the assumption that Yt can be approximated by a model of the form:

, , , ,Y g W t K Kt t t1 1 2fe != +-^ h " , (1)

where the error variable te are mean zero stochastic variables given the past,
W1, …, Wt – 1 and S1, …, St – 1

5. Ideally we would like to be able to predict Yt.
We do, however, only have information of Wt–1 and no information with
respect to the error term te . Therefore, estimating g :] g and using it for our 
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5 Note that in our implementation Wt–1 does not contain time lagged information as is the case e.g in
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of our approach to prediction.
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prediction is the best we can do. Due to the definition of Yt the time period
,K K1 2^ h depends on T and is first ,T T T 1last - +_ i with Tfirst = 1923 or 1949 and

Tlast = 1996 or 2001.
Let

, , , , .X W S W SK K K K1 11 1 2 2
f= - -` `j j% /

For t’s where K1 ≤ (t –T) ≤ K2 we wish to be able to consider data points which
exclude direct information about St. We therefore introduce

, , , , , , , , , .X W S W S W S W S( )t
K K t T t T t T t T K K1 1 11 1 2 1 2

f f= - - - - + - + -
` ^ ^ `j h h j$ .

Now let the set H represent different estimation principles and let for gh, h ∈ H,
be some estimator based on X and let g(t)

h be the (equivalent) estimator based
on X(t).

For a given time horizon T, we define the loss of the estimator gh as

( )Q g W Wg gh t h t
t K

K

1 1
2

1

2

= -- -
=

! ^ ^h h# - (2)

which can be estimated by

( ) ,Y WQ g g( )
h t h

t
t

t K

K

1

2

1

2

= - -
=

! ^ h$ . (3)

i.e. we predict g(Wt–1) without the information contained in Yt, compare also
with Appendix 3. Notice that Q(gh) is not estimated well by the goodness of fit
measure

,Q Y Wg gh t h t
t K

K

1
2

1

2

= - -
=

!^ ^h h# -

since this measure always will be in favor of the most complex model. Such
complicated models are often in contradiction to the aim of predicting well.

While predicting, we find our optimal prediction scheme by minimizing
Q(gh) over all principles h. This gives us the best predictor within H.

Now let h0 correspond to the trivial prediction strategy based on the para-
metric model

,Yt te= +n (4)

where m is estimated by K K Y1 tt K

K

2 1
1

1

2
= - +n -

=
!t ^ h . For a given modeling and

estimation principle h, we define our new R2 value, that we call R 2
V, h , where V

stands for validated, as

( )
( )

.R
Q g
Q g

1,V h
h

h2

0

= - (5)

404 JENS PERCH NIELSEN AND STEFAN SPERLICH

https://doi.org/10.2143/AST.33.2.503700 Published online by Cambridge University Press

https://doi.org/10.2143/AST.33.2.503700


Notice that R 2
V, h measures how well a given model and estimation principle h

predicts compared to the simple estimation principle h0. If R 2
V, h is positive then

we say that the modeling and estimation principle h predicts otherwise we say
that the principle h does not predict. In the following we suppress h in the
notation and rewrite R 2

V, h as R 2
V. No confusion can occur since it will always

be clear what h is under consideration. Note that R 2
V ∈ (–∞,1] and R 2

V > 0. The
interpretation of R 2

V is similar to the one of the classical R2 that can be defined
in a similar way as

( )
( )

,R
Q
Q

g
g

1
h

h2

0

= -

for a strategy h.
We illustrate the difference between our prediction procedure and tra-

ditional goodness of fit by considering two different estimators of stock
returns. In particular, we consider nonparametric estimators based on the full
data

, , ,W S d I rt t t t t= ^ h (6)

and on the simple subset

W d D Pt t t t= = . (7)

See Appendix 1 for the mathematical definition of the local linear kernel
estimators used. The quality of fit of these two models are given in Figure 1,
where the estimators of the regression function g :] g are used to fit next years
stock return. We talk about fitting rather than predicting, because the graphs
are based on an in-sample approach, where g :] g is estimated from the same
stock returns as we fit. From the graphs it is quite clear that one can fit our
data set pretty well from the full four dimensional time series, whereas the
one dimensional time series consisting of the dividend yield alone fits the data
much less. Based on a traditional goodness of fit measures as the R2 value,
see for example Kvålseth (1985), one would clearly prefer the four dimensional
covariate to predict stock returns to the simpler one dimensional time series
based on dividend yield alone. As a matter of fact, a goodness of fit type of
procedure will always have a tendency to chose the most complicated model.
Kvålseth (1985) is aware that goodness of fit has this problem and suggests
a correction using degrees of freedom. In nonparametric regression, it is,
however, unclear what degrees of freedom is. Hastie and Tibshirani (1990)
give ad hoc suggestions that seemed to work in their simulations for testing
using splines but did not work well in other contexts, see e.g. Sperlich, Lin-
ton and Härdle (1999) or Müller (1998). There are certainly other selection
criteria for (usually particular) nonparametric models as e.g. the improved
Akaike criterion of Hurvich, Simonoff and Tsai (1998). Inside their formu-
lae appear also expressions we might interpret as approximations of the
degrees of freedom but it is neither clear whether this criterion can be applied
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to all the smoothers we use here nor how to interpret the value the criterion
takes. We therefore prefer our more straightforward prediction criterion. We
will see later that, if we base our conclusions on R 2

V values, then sometimes
we end up with the opposite conclusion of that one we arrived at using the
traditional goodness of fit R2. Namely, we will see that the dividend yield can
indeed help a bit to predict stock returns, while the nonparametric estima-
tor of the full data set is too noisy to be useful for prediction and giving a
strongly negative R 2

V value.
We conclude by pointing out, that even when allowing for any kind of

flexible model, it takes a selective choice of the most important explanatory
variables to beat even the simple cross validated mean Q(gh0

) in practical
prediction. Indeed, complexity is one of the worst enemies of a good predic-
tion.

5. ESTIMATING AND EVALUATING THE POWER OF PREDICTION

In this section we enter the methodological question of finding a good estimator
of prediction power, first we follow Campbell, Lo and Mackinlay (1997,
p. 269) and calculate R2 for different prediction horizons. As mentioned above
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FIGURE 1: Fit of St using nonparametric regression (local linear) estimators. Upper curve: based on lagged
stock excess, dividend, inflation and short term interest rate, i.e. Wt from (6).

Lower curve: based on dividend by price ration, i.e.Wt from (7).
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we will first concentrate on the period up to 1996. In the first table, Table 1,
we consider two versions of the regression 

... ,Y S St t t T t t T1 e= + + = + +a bd+ + + (8)

where dt t=d (left-hand columns) or ( )ln dt t=d (right-hand columns).

TABLE 1

CLASSICAL R2 VALUES FOR T-YEAR EXCESS STOCK RETURNS ON dt, MODEL (8)

horizon dt t=d ln dt t=d ^ h

T 1923-1996 1949-1996 1923-1996 1949-1996 

1 3.8% 7.3% 3.2% 5.9% 
2 8.8% 14.9% 6.6% 11.5% 
3 13.0% 21.1% 10.5% 17.1% 
4 17.5% 25.8% 14.2% 21.0% 
5 18.7% 24.2% 15.7% 20.6% 

We see that for the linear model the R2 values are increasing with the time
horizon, the same conclusion as Campbell, Lo and Mackinlay (1997, p. 269)
arrived at for their American data set. This might imply that prediction over
longer horizons is more easy than prediction over short horizons. In the next
table, Table 2, we investigate this using our validated criterion for the linear
model based on the dividend yield.

TABLE 2

R2
V VALUES FOR T-YEAR EXCESS STOCK RETURNS ON dt, MODEL (8)

horizon dt t=d ln dt t=d ^ h

T 1923-1996 1949-1996 1923-1996 1949-1996 

1 –0.2% 1.4% –1.1% –0.3%
2 4.9% 8.2% 2.2% 3.0%
3 7.8% 14.2% 4.6% 7.7%
4 10.3% 16.0% 7.4% 9.4%
5 10.3% 9.5% 6.5% 0.5%
6 6.9% –4.6% 5.2% –19.5%

We see that, while the quality of prediction is smaller than the R2 values con-
sidered above might suggest, the validated R 2

V does indeed indicate predictive
power of the dividend yield. The period with strongest predictive power seems
to be a four year time period with an improved quality of prediction of around
10%. This corresponds to a 10% decrease of the variance of the error term
involved in the prediction.
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In Table 1 and 2 we see, that a linear regression based on the dividend yield
itself instead of the logarithm to the dividend yield gives a better power of pre-
diction. Notice that negative values do not occur in Table 1, but they are pre-
sent in Table 2. Negative values can not occur with the classical R2 measure.
The classical R2 measure always favors a more complicated model than the
trivial one with a constant mean. The R 2

V gives negative values in those cases
where the prediction model is estimated to perform worse than the trivial
model. Since it is indeed very difficult to predict stock markets, the R 2

V mea-
sure will be negative for most attempted prediction models. The surprise here
is perhaps that it actually does seem that the dividend yield has predictive
power for most of the considered horizons.

Before we get to the nonparametric estimation, we first consider the
period 1948-1996 once again, but this time estimation is performed using all
the data from 1922 to 1996. However, only the time interval 1948-1996 is used
while evaluating the predictive power of the filter. The results are presented in
Table 3.

TABLE 3

PREDICTABILITY FOR 1948-1996 OF T-YEAR EXCESS STOCK RETURNS ON dt,
RESPECTIVELY ON ln(dt), SIMPLE MODEL (8), EVALUATED WITH

THE R2
V WHEN USING ALL DATA FROM 1922-1996 FOR PREDICTION

T dt ln dt^ h

1 3.3% 1.8%
2 10.8% 7.3%
3 16.7% 12.4%
4 19.8% 15.6%
5 18.0% 13.2%
6 17.8% 14.9%

The conclusion is that using the entire data set is better while predicting the
post war period than just using the post war data itself. It seems that the
increased estimation accuracy obtained by using more data outweigh the advan-
tage of only using post war data while estimating the post war period. The argu-
ment for the latter methodology is off course that the post war period might
be different in nature from the pre war period.

Finally we consider the power of prediction by choosing the functional
relationship between the dividend-price ratio and the return by a nonpara-
metric kernel estimator. Specifically, we use local linear kernel estimation what
means that in the limit (with bandwidth h "3) the function is linear, and thus,
in the limit, coincides with the linear regression, see Appendix 1 and Appen-
dix 2 for details. The bandwidth or smoothing parameter has been chosen such
that it maximizes the R 2

V. Since this functional relationship can be arbitrary,
the above discussion on using the raw dividend price ratio or taking the loga-
rithm is irrelevant. We get the results drawn in Table 4.
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TABLE 4

PREDICTABILITY OF T-YEAR EXCESS STOCK RETURNS

ON USING NONPARAMETRIC MODELS AND MEASURED IN R2
V.

EXPLANATORY VARIABLE WAS DIVIDEND YIELD, dt

T 1923-1996 1949-1996

1 –0.2% 3.3%
2 6.1% 11.5%
3 9.0% 20.7%
4 12.9% 24.5%
5 11.6% 21.7%
6 6.9% 17.8%

Again, when considering the post war period, then data from the entire period
is used to fit the nonparametric functional relationship, and the evaluation of
the quality of the fit is, however, based on the data in the post war period.
While the nonparametric power of prediction for the period 1922-1996 is
already slightly better than the strictly linear power of prediction, we see a
clear improvement of prediction power for the nonparametric method when
considering the period 1948-1996.

For a graphical visualization of the impact of the dividend-price ratio at
excess stock returns, see Figure 2 and Figure 3 for respectively the one-year
horizon and the four year horizon versions of the prediction of excess stock
returns based on the dividend-price ratio. Both the parametric and non-
parametric versions are shown. The graphs clearly indicate the impact of the
dividend yield on future returns and we also see, that the Danish level of the
dividend-price ratio around 1.5% (in 2000) was so low, that according our pre-
dictive filter it was a dangerous time to invest in stocks and we did not expect
the average excess return on stocks to match this danger. As a matter of fact
our model predicted excess returns in the year 2001 to have an average value
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below zero. So, at that time the extra risk inherent in investments in stocks
was not followed by a corresponding extra return on stocks. As a consequence
our advice to Danish long term investors was (and is) not to increase their
percentage of stocks in their portfolio right now.6

6. LOOKING FOR THE BEST PREDICTION MODEL

In this section we investigate the potential advantages that we can obtain by
including other variables than just dividend divided by price in our prediction.
Due to the complexity of the study of the section, we have chosen to restrict
our investigation to a time horizon of one year. Based on the considerations
given in Section 2, we have chosen to consider a time series regression problem
of the following form:

( , , , )S g S d I rt t t t t t1 1 1 1 e= +- - - - (9)

using the data described in Section 3. The full four-dimensional model corre-
sponds to estimate the function g :] g without any parametric assumptions
nor assumptions of structure such as additivity or multiplicativity. This model
is most often too complex for both to visualize and/or to predict well. The
lack of prediction is due to the error of estimation rather than that the model
is insufficient. Therefore we suggest some structure on g :] g to predict well.
We have chosen to consider additive models such as 

, , , ,g S d I r c g S g d g I g r1 2 3 4= + + + +] ] ] ] ]g g g g g (10)
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FIGURE 3: Optimal parametric (dashed) and nonparametric (solid) regression fit of stock excess on D/P
and real data points.
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compare also Appendix 2, especially for estimation.
Furthermore we consider both the situation where the entering gi’s are

nonparametric and the situation where all the entering gi’s are parametric and
follow a linear model. In our study we consider three types of models with all
combinations of subsets of (St–1, dt–1, It–1, rt–1), namely

• Linear models
• Nonparametric additive models
• Fully nonparametric models

Note that we always applied local linear kernel smoothers applying the band-
width h that maximizes the R 2

V, see Appendix 3. The more complex the model
is, the bigger the estimation error will be but the smaller the modeling error
will be. To be able to choose among the entering models, we use the validated
R 2

V defined in Section 5. All in all, we have 26 models to consider, namely
15 full models (that include automatically the 15 linear models) and 11 non-
parametric additive models (leaving out the one-dimensional models that we
counted among the full ones). As mentioned and explained in the appendices
we always looked for the optimal bandwidths in the nonparametric procedures
using Cross Validation, i.e. maximizing our R 2

V.
Some findings of the estimation respective model structure are the follow-

ing.
Though the multidimensional nonparametric additive model reaches a

positive R 2
V for some of the considered models, the corresponding full

model always did better. This is a clear indicator for having here a more com-
plex structure than additivity. This is not surprising when we consider the
complicated relationship between these variables as described in Section 2.
From our calculated R 2

V values we also concluded that the only linear model
that does better than the simple constant is the linear model based on the
dividend divided by price for the period 1948-2001 as described in the sections
before. However, best among all estimators is the fully nonparametric two-
dimensional model based on dividend divided by price and lagged excess stock
return. This two-dimensional model has a R 2

V value of 5.5% for the period
1923-1996 and 9.1% for the period 1948-1996. This is much better than the
(negative) values of the R 2

V obtained in Section 5.
Once again have a look on the relation excess returns to dividend by price.

In Figure 5 we see the 3-D plot of the two-dimensional predictive filter based
on the dividend-price ratio and the lagged excess return of stocks. Further,
in Figure 4 we see three slices from this filter plotting the dependency on the
dividend yield for three fixed values of excess returns: –25%, 0.7% and 29.5%
corresponding to the lower 5% quantile, the median and the upper 95% quan-
tile. We see a clear tendency of the excess stock return to be increasing with
the dividend-price ratio. For small dividend yields (below the historical mean
of about 4%) the stock return is decreasing with last years excess return.
For higher dividend yields (above the historical mean of about 4%) the stock
return is increasing with last years excess return. While the intuition of the
dependency on the dividend yield is straightforward, it is less straightforward
to understand the relationship between last years stock return and current
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stock return. However, this graph does show that Danish investors should have
kept away for new investments in stocks in 2001, since they were just about to
finish a magnificent year with a general Danish excess return on stocks above
30% resulting in a historical low dividend-price ratio of around 1.5%. A more
detailed picture leading to the same type of conclusions can be found in the
three dimensional plot in Figure 5.

7. EMPIRICAL RESULTS FOR 1922-2001

The statistical evidence based on the updated data set does not change the
estimated curves and variables very much. However, the estimated predictive
power of the updated data set leaves a much less optimistic impression of the
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FIGURE 4: Nonparametric regression fits of stock excess on D/P and stock excess lagged fixed at
–25% (dotted, starting above zero), at 1% (solid), and at 30% (dashed) for the period 1923-1996.

FIGURE 5: Two different views on the nonparametric regression fit of stock excess on D/P and
stock excess lagged for the period 1923-1996.
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possibility of predicting stock returns than the corresponding results based
on the original data set. It is perhaps not surprising for followers of the stock
market that the last five years, 1997-2001, have been unusual. Based on the
updated data all considered linear models break down – they simply do not
predict. This is in contradiction to classical studies like Fama and French
(1988), Wilkie (1993) and others and need serious consideration in further
work.

However, our main statements still hold when we extend the data set up
to 2001. The relationship between the classical R2 and the validated version,
R 2

V, still play the same role and the full, not additive, nonparametric models
still have predictive power.

The optimal R 2
V is reached for T = 4 (time horizon) when only including

d = D /P. Looking at T = 1, the best model for the period 1922-2001 now only
uses last year stock return. The model based on both last years stock return
and the dividend yield does, however, predicts almost as well. Their predictive
powers are respectively, 1.0% and 0.9%. For the time period 1948-2001, we get
a relatively impressive R 2

V of 3.1% while including dividend yield and last
years stock return. Optimal bandwidths are between 4sW and 4.8sW, so the
models are by far not linear. Here, sW is the vector of the standard deviations
of the different regressors.

Let us first consider Table 5, the corresponding one to Table 1 in Section
5 where we looked at the classical R2 values for T-year excess stock returns on

td , model (8). As one can see clearly, the model fits terribly bad compared to
the results obtained for the time period 1922-1996. All R 2

V values are negative
for the linear and log-linear models. We therefore skip here the analogs for
Tables 2 and 3 from Section 5.

TABLE 5

CLASSICAL R2 VALUES FOR T-YEAR EXCESS STOCK RETURNS ON dt, MODEL (8)

horizon dt t=d ln dt t=d ^ h

T 1923-2001 1949-2001 1923-2001 1949-2001

1 1.6% 3.3% 0.8% 1.8% 
2 1.8% 3.3% 0.3% 0.9% 
3 1.8% 2.9% 0.2% 0.6% 
4 2.6% 3.0% 0.2% 0.2% 
5 1.8% 1.2% 0.1% 0.0% 
5 1.2% 1.1% 0.0% 0.0% 

Table 6 is the corresponding one to Table 4 in Section 5, i.e. we have drawn
for the different time horizons T the R 2

V obtained for the nonparametric model
with dt being the only regressor. The highest R 2

V is given for T = 4 years,
but now only with 6.7% for the whole, respectively 12.5% for the post war
period.
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TABLE 6

PREDICTABILITY OF T-YEAR EXCESS STOCK RETURNS

USING NONPARAMETRIC MODELS AND MEASURED IN R2
V.

EXPLANATORY VARIABLE WAS DIVIDEND YIELD, dt

T 1923-2001 1949-2001

1 –1.9% –0.3%
2 0.0% 2.1%
3 –1.6% 3.5%
4 6.7% 12.5%
5 –10.7% –5.9%
6 –20.4% –11.9%

Finally, the Figures 2 to 4 showing the impact of dividend by price ratio dt =
Dt /Pt on the real excess stock returns, stay quite the same when we include the
years 1997-2001 into the estimation.

8. CONCLUSIONS

There are mainly three points we make. We first look for a reasonable measure
for prediction power (the R 2

V). Second, we use this measure to evaluate the
power of prediction of classical as well as more flexible methods. It turns out
that the use of nonparametrics methodology and the inclusion of last years
stock return significantly improve the level of prediction. Third, fixing the time
horizon (T = 1) and using flexible methods, we ask for the best prediction model.
Finally we illustrate how this can help us for a better understanding of the
considered process (discussion of the Figures).

9. APPENDIX

Appendix 1. Local linear kernel regression

In this appendix we give a brief insight into the algorithms of nonparametric flex-
ible function regression. In particular we explain the local linear smoothing. The
basic idea is to construct an estimator that lays a smooth surface (or hyperplane),
e.g. in the one dimensional case a smooth line, into the point cloud that presents
its functional form. The smoothness of that surface can be (pre-) determined by
choosing a respectively large smoothing parameter h, called bandwidth. Actually,
often this parameter can also be data driven, see Appendix 3.

First, it is important to understand that this estimator works locally,
e.g. we estimate the wanted function, the hyperplane, at each point we
are interested in separately. This is, using the notation ( )E Y W g w=6 @ ,

, , :R R R RY W w gwithd d ":! ! ] g , an unknown smooth function we estimate
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g(w0) for some point w0 ∈ �d. Having (Wi ,Yi )
n
i=1 observed, this is done by local

least squares:

, ,
argminx

g x a a Y a a W w K W w
g

i
T

i h i
i

n
0

0 0 1
0 1 0
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0
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= - - - -
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,a aR Rd
0 1! ! and g :d ] g being the gradient of g :] g. Further, K vh =] g

h
K

h

v1 j

j

d

1=
% e o is a R Rd " weight function. In our calculations we chose K(v) = 

u u
16
15

1 1ll2 2
#-_ i " ,. So we used a weighted least squares estimator for linear 

regression that becomes a local estimator due to the weights Kh giving a lot of
weight to points (Wi, Yi) where Wi is close to w0 but zero weights to points far
from w0.

Here, in the weighting function comes the smoothing parameter h in:
the larger h and consequently the environment with positive weighting,
the smoother gets the resulting hyperplane, i.e. h " 3 gives a linear function
whereas h = 0 yields interpolation of the Yi’s. Consistency, asymptotic 
theory and properties are well known and studied for the multivariate case in
Ruppert and Wand (1994), for a general introduction see Fan and Gijbels
(1996).

An often discussed question is how to choose bandwidth h in practice.
As we are concerned about prediction, we take that bandwidth that is minimi-
zing the “out of sample” prediction error using the Cross Validation measure,
see Appendix 3.

Appendix 2. Local linear additive regression

We speak of a nonparametric additive model if g(w), Rw d! is of the form

( ) ( ) ( ) ( ), ,withg w c g w g w g w c E Yd d1 1 2 2 g= + + + + = 6 @ (12)

and : R Rg ":] g unknown smooth functions with E [gj(Wj)] = 0 for identifi-
cation. This is the natural extension of the classical linear regression model
relaxing the restriction of linear impacts to arbitrary (but smooth) ones. Sev-
eral procedures are known in the literature, see Sperlich (1998). In this article
we focus only on the backfitting by Hastie, Tibshirani (1990). If g(w) is really
of additive form, then, under some regularity conditions, this gives us consis-
tent estimators; if not, it tries to estimate the additive model that fits our data 

best. This is done by iteration: start with some initials g
j
0

:] g and n Yc 1
ii

n

1
=

=
! .

Then regress Y Wc g r
jj k

d 1- -
!

-! ` j5 ? on Wk to get g
k
r5 ? until convergence.

For the regression we applied the local linear kernel estimator. Again, band-
widths can be chosen using Cross Validation, presented in Appendix 3.
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Appendix 3. Cross Validation

A typical question of interest, not only in prediction problems, is how to eval-
uate the different models. This concerns the model or variable selection as well
as the bandwidth choice. In general, a natural way to evaluate an estimator is
to look on the mean squared error or the expected squared difference between
estimate and observation Y: E [{Y – g(W)}2]. This certainly has to be estimated.
Additionally, as we speak about prediction, we would like to know how well the
estimator works outside the considered sample. Both aspects are taken into
account in the so called Cross Validation (CV) values, defined as

,value n y wg1
CV ( )

l
l

l
l

n
2

1

- = -
=

! ^ h# - (13)

where wg( )l
l^ h is the considered estimator evaluated at point wl but determined

without observation ( , )w yl l . This CV-value is an approximation for the mean
squared error (also for prediction) and a quite common used validation mea-
sure in nonparametric regression. For time series context and more references
see e.g. Gyöfri, Härdle, Sarda, and Vieu (1990).

Remark: It is important to eliminate always all information that is aimed to
predict from the estimation of g :] g. So, if we predict the increase of assets over
a period of 4 years, the estimator g( )l is calculated not only without the l th obser-
vation but also without the three years before and after year l.

How can it be used for bandwidth or model selection?
We give an example for bandwidth selection: write g as a function of the

bandwidth (gh) and look for that h that minimizes 

( ) ( ) .h n y wg1
CV ( )

l h
l

l
l

n 2

1

= -
=

! $ .

This has been shown to give the optimal bandwidth in nonparametric regres-
sion, we again refer to Gyöfri et al. (1990).

Note finally, that minimizing the CV-value is equivalent to maximizing the
R 2

V. So CV is directly used to find both: the optimal h for prediction and the
optimal model for prediction.
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