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Obtaining low-order models for unstable flows in a systematic and computationally
tractable manner has been a long-standing challenge. In this study, we show that
the Eigensystem Realisation Algorithm (ERA) can be applied directly to unstable
flows, and that the resulting models can be used to design robust stabilising feedback
controllers. We consider the unstable flow around a D-shaped body, equipped with
body-mounted actuators, and sensors located either in the wake or on the base of
the body. A linear model is first obtained using approximate balanced truncation. It
is then shown that it is straightforward and justified to obtain models for unstable
flows by directly applying the ERA to the open-loop impulse response. We show that
such models can also be obtained from the response of the nonlinear flow to a small
impulse. Using robust control tools, the models are used to design and implement
both proportional and H∞ loop-shaping controllers. The designed controllers were
found to be robust enough to stabilise the wake, even from the nonlinear vortex
shedding state and in some cases at off-design Reynolds numbers.
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1. Introduction
1.1. The need for low-order models

Over the last few decades, the aerospace and automotive industries among others
have developed a keen interest in flow control. Indeed, great promise lies in the
modification of the dynamics of fluid flows for drag reduction, stabilisation of
fluctuations, lift enhancement, mixing optimisation, etc. A plethora of both passive
strategies (with no energy input) and active strategies (with an external source of
energy) have been applied with great success in a large spectrum of applications. The
reader is referred to reviews such as Gad-el Hak (2000), Kim & Bewley (2007) and
Choi, Jeon & Kim (2008) for a more detailed account of some of these attempts.

Closed-loop control is a type of active control whereby information is measured
in real time in the flow field, in order to automate the response of the actuation. In
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some cases, feedback control can be applied without a model for the input–output
dynamics. For instance, it is possible to optimise parameters of an open-loop control
strategy, by using methods like extremum or slope seeking control (e.g. Beaudoin
et al. 2006a,b; Becker et al. 2007; Henning et al. 2007, 2008; Pastoor et al. 2008).
This allows the controller to track reference output values across a range of operating
conditions. However, these quasi-steady controllers respond slowly by design and are
therefore intrinsically unable to directly interact with the flow dynamics. Alternatively,
a deep understanding of the flow structure and control objective sometimes makes
it possible to design controllers based on ‘intuition’. These usually target specific
flow features and can thus be very powerful (e.g. Pastoor et al. 2008; Joe, Colonius
& MacMynowski 2010). Unfortunately, for most flows of interest, even a good
understanding of the flow physics is not sufficient to guide the design of effective
controllers. Another approach is to take advantage of machine learning techniques.
These methods have also been used to control flow fields and have provided promising
results in several studies (e.g. Milano & Koumoutsakos 2002; Sengupta, Deb &
Talla 2007; Gautier et al. 2015). However, a large number of simulations and/or
experiments is typically required for the algorithms to converge, making these methods
prohibitive for many flows.

An issue with model-free control methods is that they are often either too specific
or too general to provide an efficient means of designing reliable controllers across
a broad range of fluid flows. The availability of a model can make a large set of
powerful and mature control design tools available. These tools are not in general
directly applicable to the Navier–Stokes equations, which are infinite-dimensional,
nonlinear, partial differential equations. If a low-order linear approximation of the
input–output dynamics of the flow is available, however, linear feedback control
methods can directly be applied.

Optimal control is one of the most popular techniques in flow control. For instance,
the linear–quadratic–Gaussian (LQG) framework has been successfully used in
numerous studies (e.g. Åkervik et al. 2007; Huang & Kim 2008; Bagheri et al.
2009a,c; Bagheri, Brandt & Henningson 2009b; Barbagallo, Sipp & Schmid 2009,
2011; Semeraro et al. 2011; Illingworth, Morgans & Rowley 2011, 2012; Barbagallo
et al. 2012; Dadfar et al. 2013; Juillet, Schmid & Huerre 2013; Fabbiane et al. 2014,
2015). It is appealing for its theoretical optimality and intuitive structure, based on
the design of a dynamic observer (Kalman filter), which optimally estimates the state
of the system, and a linear–quadratic regulator (LQR), which minimises a chosen
cost function. However, LQG control does not have any stability margin guarantees
(Doyle 1978) and requires detailed information about the noise and uncertainty in the
system, which may not be available.

Another common optimal control approach is model predictive control (MPC),
whereby the control waveform that minimises a cost function over a chosen
horizon is evaluated at every time step (e.g. Goldin et al. 2013; Fabbiane et al.
2014; Ghiglieri & Ulbrich 2014). This approach can also be used as an off-line
adjoint-based optimisation technique if applied to the full (potentially nonlinear)
Navier–Stokes equations (e.g. Bewley, Moin & Temam 2001; Protas & Styczek 2002;
Joe et al. 2010; Flinois & Colonius 2015). In this case, the results are useful for
revealing effective control mechanisms, which can for instance be exploited using
intuition-based controllers (e.g. Joe et al. 2010).

Robust or H∞ control tools have also been successfully implemented in several
studies. Having the ability to optimise the robustness of the controller to model
uncertainties and disturbances is particularly appealing when its design is based on a
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linear low-order model that neglects a large part of the flow dynamics and does not
account for nonlinearities. As with optimal control, it is possible to identify either the
waveform (Bewley, Temam & Ziane 2000) or the observer–controller pair (Bewley &
Liu 1998; Lauga & Bewley 2004) that minimises a chosen cost function. Unlike with
optimal control, however, robustness is improved by assuming that the worst-case
disturbances are present in the flow.

The model-based methods introduced above mainly rely on the minimisation of a
cost function so the design procedure does not allow much user intervention. Instead,
some authors have turned to classical loop-shaping to control fluid flows. With this
approach, lead–lag compensators and the like can be used to modify the Nyquist/Bode
diagram and manually shape the dynamics of the controller (e.g. Kwong & Dowling
1994; Dowling & Morgans 2005; Morgans & Dowling 2007; Morgans & Stow 2007;
Dahan, Morgans & Lardeau 2012).

Approaches that combine the flexibility of classical control with the optimality
and robustness of modern control have also been applied in fluid mechanics. For
example, in the mixed-sensitivity approach, the designer is able to specify closed-loop
performance specifications by constructing weights that influence the robust controller
being synthesised (e.g. Becker et al. 2005; Henning & King 2007; Henning et al.
2007; Williams et al. 2010). The H∞ loop-shaping framework introduced by
McFarlane & Glover (1992) provides even more control over the closed-loop system’s
dynamics. In this case, the gain of the transfer function (for single-input–single-output
(SISO) systems) is first shaped as in classical loop-shaping before the robustness of
the controllers is optimised. In this article, we use this procedure and show that it is
particularly well suited to the robust stabilisation of fluid flows using projection-free
models based on the Eigensystem Realisation Algorithm (ERA).

1.2. Model reduction
In the previous section, we have given a brief overview of the large spectrum of tools
that can be used once a linear low-order model of the relationship between the inputs
and the outputs of the system has been obtained. In order to construct such a model,
two dominant approaches can be identified from previous studies. The first approach
is based on the Galerkin projection of known (linearised) flow equations onto a set
of modes, in order to reduce the dimension of the system. These modes can hold
valuable information, which can help both to understand the flow structure and to
design the controller, for instance by guiding actuator–sensor placement. Additionally,
they provide a way to reconstruct the full flow field from the reduced-order model
(ROM) state. This in turn facilitates the interpretation of the effect of the controller
on the flow and enables the use of full-state feedback algorithms (e.g. LQR).

Choosing the nature of the modes onto which the dynamics are projected is the first
crucial step of this approach. ‘Global modes’ (e.g. Åkervik et al. 2007; Henningson
& Åkervik 2008; Barbagallo et al. 2011; Ehrenstein, Passaggia & Gallaire 2011) and
‘proper orthogonal modes’ (e.g. Aubry et al. 1988; Podvin & Lumley 1998; Graham,
Peraire & Tang 1999; Ravindran 2000a,b, 2002, 2006; Prabhu, Collis & Chang 2001;
Ma & Karniadakis 2002; Noack et al. 2003; Gloerfelt 2008; Siegel et al. 2008;
Barbagallo et al. 2009, 2012; Tadmor et al. 2010) can yield successful ROMs, but
‘balanced modes’ have been shown to lead to superior performance in terms of
robustness and required model order in a number of studies (e.g. Willcox & Peraire
2002; Ilak & Rowley 2008; Bagheri et al. 2009c; Barbagallo et al. 2009; Dergham
et al. 2011). If the system is stable, such modes can be approximately identified
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at a low computational cost, by using a method (Willcox & Peraire 2002; Rowley
2005) referred to as approximate balanced truncation or balanced proper orthogonal
decomposition (BPOD), which relies on snapshots from a set of impulse responses
of the forward and associated adjoint system (one of each for SISO systems). This
technique assumes the flow is evolving around a stable equilibrium point (base flow)
and that the impulse response of the (linearised) forward and adjoint systems can
be computed. It has been successful in modelling the dynamics of a large range of
flows (e.g. Willcox & Peraire 2002; Rowley 2005; Bagheri et al. 2009a,b; Ahuja &
Rowley 2010; Dergham et al. 2011; Semeraro et al. 2011; Tu & Rowley 2012).

One drastic limitation of BPOD is the fact that it is restricted to stable flows.
Extensions have therefore been designed to circumvent this issue, but these require
either the evaluation of all the unstable global modes of the flow field (Barbagallo
et al. 2009; Ahuja & Rowley 2010) or the inversion of large matrices (Dergham
et al. 2011), making them often computationally intractable. These restrictions have
recently been lifted, as it was shown by Flinois, Morgans & Schmid (2015) that the
snapshot-based approach can in fact be used directly to obtain ROMs of unstable
flows, as long as the snapshots are chosen appropriately. This is therefore one of
the approaches that is considered in this study. An outline of the BPOD method is
provided in § A.1.

1.3. System identification
The second main approach for obtaining low-order linear models is system identifi-
cation (for an overview, see Ljung 1987). In this case, only information collected
by sensors and chosen actuator inputs is used to obtain the model. These methods
are therefore more readily applicable in experiments than the projection approach
introduced in § 1.2. Indeed, they do not rely on full-state information or knowledge
of the governing equations, and hence do not require a linearised or an adjoint solver.
Although no modal or sensitivity information is readily available, input–output models
are sufficient for the purposes of controller design.

In a limited number of cases, it is possible to first model each physical phenomenon
affecting the system independently. The resulting submodels can then be combined
in order to create the full input–output model. For instance, Illingworth et al. (2012)
considered the behaviour of the shear layer, the acoustics, the scattering and the
receptivity of a cavity flow separately in order to construct an overall model. For
most flow set-ups, however, this is not practical, and more general approaches are
required. To this end, the relationship between the actuators and the sensors is often
assumed to have a general mathematical description with unknown parameters. These
parameters are then calibrated by minimising the error between a representative set of
input–output data and the model predictions. This can be done either in the frequency
domain or in the time domain. In the former case, the data is fitted directly to a
chosen transfer function structure (e.g. Kwong & Dowling 1994; Zhu, Dowling &
Bray 2005; Dahan et al. 2012). In the latter case, ‘prediction–error methods’ are
often used, whereby the output is considered to be a linear combination of earlier
inputs, outputs and a moving average of an error term. In flow control, only some of
these components are typically necessary to obtain an accurate model, as for instance
in Morgans & Dowling (2004), Zhu et al. (2005), Huang & Kim (2008), Hervé et al.
(2012), Juillet, McKeon & Schmid (2014), Roca et al. (2014) and Gautier et al.
(2015).

System identification can also be performed using ‘subspace identification’ methods,
which result in an approximation for the system in state-space form directly. Subspace
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identification has been successfully implemented in some flow control studies (for
instance Huang & Kim 2008; Juillet et al. 2013; Guzman Inigo, Sipp & Schmid 2014)
and a review of these methods can be found in Qin (2006). Despite the more advanced
mathematical framework, one of the advantages of this approach is that it yields noise
covariance matrices that can be used in an LQG framework.

Finally, a method that has attracted an increasing amount of attention in recent
years is the ‘Eigensystem Realisation Algorithm’ (ERA) introduced by Juang & Pappa
(1985) and subsequently used in numerous flow control studies (e.g. Ma, Ahuja &
Rowley 2011; Illingworth et al. 2011, 2012; Dahan et al. 2012; Belson et al. 2013;
Brunton, Rowley & Williams 2013; Dadfar et al. 2013; Brunton, Dawson & Rowley
2014; Illingworth, Naito & Fukagata 2014). It is straightforward to implement and
results in state-space models that have recently been shown to be theoretically
equivalent to those obtained with BPOD for stable systems (Ma et al. 2011). The
focus of this article is the ERA, and an outline of the method is thus included in
§ A.2.

As with most system identification techniques (and BPOD), the ERA was originally
only designed for stable systems. One solution is to first stabilise the system with
an ad hoc controller, then identify the (stable) closed-loop dynamics, from which
the plant’s open-loop (unstable) dynamics can finally be extracted. This approach has
been successful in some studies (e.g. Morgans & Dowling 2007; Illingworth et al.
2011, 2012), but is not always practical, as it can be challenging to find a stabilising
controller without a model. Here, we instead use the theoretical equivalence of the
ERA and BPOD and the fact that BPOD can be applied to unstable systems to build
ERA models directly from the impulse response of unstable systems.

1.4. Article structure
In this paper, we build on the findings of Ma et al. (2011) and Flinois et al. (2015)
to show that the ERA is a practical and computationally cheap approach to obtain
low-order models of unstable flows that are useful for feedback control. We confirm
that such models are in practice very similar to the ones obtained with BPOD and also
show that they can be obtained directly from the nonlinear system dynamics, without
the need for a linearised or an adjoint solver. As a result, the method may even be
applicable in some experimental set-ups.

After introducing the numerical approach and set-up in § 2, we consider the unstable
flow over a D-shaped body and compare three different ROMs in § 3: the first is
obtained with BPOD (§ 3.2), the second with the ERA (§ 3.3), and the third also with
the ERA but based on the flow’s nonlinear dynamics (§ 3.4). We show that the three
models are very similar, as expected, and then design controllers based on the last
set of models using proportional control and H∞ loop-shaping in § 4. We show that
the controllers are able to stabilise the nonlinear flow, even from the vortex shedding
limit cycle and in some cases at off-design Reynolds numbers. We compare two sensor
configurations, where in one case the sensor is located in the wake and in the other
the sensor is body-mounted. Concluding remarks are included in § 5.

2. Numerical set-up
The work presented in this article is based on the fast multi-grid immersed-boundary

fractional step (IBFS) algorithm introduced in Taira & Colonius (2007) and Colonius
& Taira (2008) for two-dimensional direct numerical simulations of incompressible
flows. Various versions of the IBFS finite-volume code have been rigorously tested
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2H

0.15H

2H

H

0.1H

FIGURE 1. Input/output and flow set-up for the simulations. The actuators (dark grey)
are disk-shaped body forces with a diameter of 10 % of the body height, acting in
opposite horizontal directions as shown by the arrows. The first sensor measures the
vertical velocity of the flow along the symmetry plane, two body heights downstream of
the trailing edge (black triangle). The second sensor (light grey) is a distributed sensor,
which measures the antisymmetric component of the force acting on the base of the body.

and used in many studies (e.g. Taira & Colonius 2007; Colonius & Taira 2008; Ahuja
& Rowley 2010; Joe et al. 2010; Joe, Colonius & MacMynowski 2011; Ma et al.
2011; Tu & Rowley 2012; Brunton et al. 2013, 2014; Choi, Colonius & Williams
2015; Flinois & Colonius 2015) so only an overview of the formulation of this code
is given here. The reader is referred to the cited studies and the references therein for
further details.

The incompressible Navier–Stokes equations in vorticity form are considered and
discretised on a uniform Cartesian grid. A set of discrete immersed-boundary forces
is defined along the surface of the body and regularised onto the Cartesian grid in
order to enforce the no-slip boundary condition on the surface. The flow equations
are solved sequentially on a number of nested grids at each time step. Each grid is
identical to the one it is nested into, but has half the physical extent and hence is twice
as fine. The flow state on the next grid level is used to obtain boundary conditions
at the edges of each grid. For the largest grid, a far-field boundary condition is used
(zero vorticity). In order to solve for the linearised and adjoint dynamics of the flow,
the unstable steady state is identified using selective frequency damping (Åkervik et al.
2006; Jordi, Cotter & Sherwin 2014), and the equations are linearised about this state.
We emphasise that no time-averaged flow is used in this study: all linearised and
adjoint simulations evolve about an unstable steady base flow, which is a solution of
the Navier–Stokes equations. The time-continuous adjoint equations are then derived
from the spatially discretised vorticity equations. The linearised and associated adjoint
equation solvers are based on the same unstable base flow and both use the same
discretisation and time-marching schemes as the nonlinear equations.

The flow around a D-shaped body is used as a test problem in this article. The
body is in the shape of a half-ellipse with a blunt vertical base. The length of the
body is twice as long as its height (see figure 1). The Reynolds number Re=U∞H/ν
(where U∞ is the incoming flow velocity, H is the body height and ν is the kinematic
viscosity) is 80, corresponding to an unstable flow. A time step of 0.005 convective
time units was used; the finest grid is of dimensions 30H× 10H and contains 1500×
500 grid points. Three nested grids were used in total. The trailing edge of the body
is located at the centre of the finest grid since the ‘flow’ is advected upstream in the
adjoint simulations. Note that, although the body shape is different, the grid used is
the same as in Tu & Rowley (2012) and Flinois et al. (2015), where the flow over a
cylinder was considered in both cases.

In order to measure the fluctuations in the wake, two sensor configurations are
considered. The first measures the vertical velocity at a point located along the
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symmetry plane, two body heights downstream of the trailing edge. The second is
a body-mounted, distributed sensor that measures the antisymmetric component of
the force on the base, as illustrated in figure 1. The first sensor is used in § 3 to
demonstrate the modelling procedure, and both sensors are used in § 4, in order to
compare the performance of the resulting closed-loop systems. The flow is actuated
using two disk-shaped horizontal body forces of diameter 0.1H and centred 0.15H
above and below the trailing edge corners, directly in line with the base. The two
forces are of equal magnitude but opposite sign – thus this is a SISO system. The
input forces are acting purely in the x direction and the total force on the flow is
always zero but with a non-zero antisymmetric component.

3. Comparison between modelling approaches
In this section, three different approaches are used to obtain ROMs for the

input–output dynamics between the actuator and the wake velocity sensor described
above. First, the linearised forward and adjoint impulse responses are computed and
the projection-free snapshot-based balanced truncation (BPOD) approach is used to
obtain a ROM. We use this as our starting point, as this method has been shown
(Flinois et al. 2015) to yield balanced ROMs for unstable systems. Second, the ERA
is applied to the linearised impulse response and we show that we obtain a very
similar model to the BPOD-based ROM. Finally, we show that another effectively
identical model can be obtained for the linearised dynamics about this steady state,
simply by considering the early response of the nonlinear system to a small impulsive
input. This is a key point, as it shows that it is possible to obtain ERA models for
unstable systems with standard (nonlinear) computational fluid dynamics codes and
even potentially with experiments.

3.1. Unstable steady state and unforced flow
The flow over the D-shaped body considered in this article was also studied
computationally by Palei & Seifert (2007), who identified the critical Reynolds
number of the unforced flow to be Rec ≈ 63. As the simulations in the present work
focus on Re = 80, only one complex conjugate pair of eigenvalues is expected to
be unstable, since this is only slightly higher than the critical value (it will become
apparent that this is indeed the case in later sections of this article). In order to
validate the mesh used for our simulations, the vortex shedding Strouhal number
(St= fH/U∞, where f is the dimensional frequency) and the root mean square (r.m.s.)
value of the lift coefficient fluctuations C′L were compared to those found in Palei &
Seifert (2007) for several Reynolds numbers. The results are summarised in table 1.
The agreement is very good, and this provides a good indication that our grid is
sufficiently well resolved at all the considered Reynolds numbers.

The unstable base flow at Re = 80, obtained using selective frequency damping
(Åkervik et al. 2006; Jordi et al. 2014), is compared to the unforced fully developed
vortex shedding flow field (also at Re= 80) in figure 2. The length of the recirculation
bubble in the base flow was found to be xrec = 3.58H and the drag coefficient was
found to be CD = 1.138. The mean drag coefficient of the unforced vortex shedding
flow was found to be CD = 1.234.

3.2. The BPOD model
In order to compute the balanced truncation ROM, the impulse response of the
linearised forward and adjoint systems were computed (with the wake velocity
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(a) (b)

FIGURE 2. (Colour online) (a) Unstable base flow, obtained using selective frequency
damping. (b) Snapshot of the unforced, fully developed limit-cycling flow. Vorticity
contours are shown; negative contours are bounded by a line. Contour levels are from
−1.8 to 1.8 in increments of 0.4.

0 1 2 3–1–2 0 1 2 3–1–2

–1

0
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–1

0

1
(a) (b)

FIGURE 3. (Colour online) (a) First stored snapshot of the forward impulse response:
horizontal velocity contours are shown as well as actuator locations as circles. (b) First
stored snapshot of the adjoint impulse response: adjoint ‘vertical velocity’ contours are
shown as well as the sensor location as a triangle in the wake. Negative contours are
bounded by a line. Contour levels are from −0.09 to 0.09 in increments of 0.02 for
panel (a) and from −0.9 to 0.9 in increments of 0.2 for panel (b).

Reynolds number (Re) 80 90 100 150

Lift coefficient r.m.s. (C′L) 0.084 0.109 0.131 0.240 Present study
0.082 0.107 0.130 0.236 Palei & Seifert (2007)

Strouhal number (St) 0.142 0.150 0.156 0.180 Present study
0.144 0.151 0.158 0.182 Palei & Seifert (2007)

TABLE 1. R.m.s. of lift fluctuations and vortex shedding Strouhal number obtained in the
present study and by Palei & Seifert (2007) for the considered D-body geometry at a range
of Reynolds numbers.

sensor). State snapshots were stored every 0.2 convective time units (40 time steps)
and the corresponding ROM was computed (see § A.1 for more details). The first
stored snapshot of each simulation is shown in figure 3.

3.2.1. Actuator and sensor placement
As discussed for instance in Bagheri et al. (2009c) and Chen & Rowley (2011),

a feedback controller can only stabilise an unstable flow if all unstable modes are
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controllable and observable using the chosen actuators and sensors, respectively. In
other words, the spatial location of the actuators and sensors must overlap with the
spatial distribution of the adjoint and forward global modes, respectively. Furthermore,
the flow structures that are generated with the least amount of input energy by the
actuators are given by the leading eigenmodes of the controllability Gramian. It
is therefore important to ensure that sensors can measure the state of the system
where the magnitude of these modes is large. Conversely, the flow structures that
lead to the most energetic output signal correspond to the leading eigenmodes of the
observability Gramian. It is therefore important to ensure that actuators can influence
the state of the system where the magnitude of these modes is large. Finally, the
leading balanced modes inform us about the states that contribute the most to the
input–output dynamics of the flow.

In the case of unstable systems, it was shown in Flinois et al. (2015) that,
using projection-free BPOD (and assuming the unstable modes are observable and
controllable), the direction of the unstable balanced modes tends to the direction of
the unstable eigenmodes of the Gramians as t∞ → ∞. Additionally, the subspace
spanned by these modes converges to the subspace spanned by the unstable global
modes (note that the modes themselves are not identical in general in this case).
Physically, this corresponds to the fact that the behaviour of unstable modes is
eventually dominant for an uncontrolled linear system, as the influence of any
initial transient growth becomes negligible as t∞ → ∞. In figure 4, we therefore
show the first two primal and adjoint balanced modes, identified with a large final
simulation time of t∞= 100 convective time units. Note that the ERA and most other
system identification methods do not usually provide this type of full-state or adjoint
information.

Figure 4(c,d) confirms that there is an overlap between the chosen actuators and
the unstable modes and figure 4(a,b) confirms that the location of the vertical velocity
sensor in the near wake will allow it to measure the growth of the unstable modes.
Figure 4(a,b) also shows that, qualitatively, the unstable modes are dominant in the
wake, downstream of the body. This suggests that the base (rear face) of the body is
a justified location for a body-mounted sensor.

However, the leading global modes and Gramian eigenmodes do not provide
sufficient information to select actuators and sensors that guarantee good robustness
and performance in a closed-loop setting, especially in the presence of disturbances
(Chen & Rowley 2011). On the one hand, considering global modes individually (even
unstable ones) is not adequate for highly non-normal systems since the input–output
dynamics may be strongly dependent on the interaction between several modes
(Sipp et al. 2010). On the other hand, Gramian eigenmodes decouple the effect of
actuators and sensors: the controllability Gramian is computed without any knowledge
of the sensor matrix C, while the observability Gramian is computed without any
knowledge of the actuator matrix B. Gramian eigenmodes thus cannot take into
account the effect of time delays between actuation and sensing, which can have
a large impact on the performance of feedback control (Chen & Rowley 2011). In
the case we are considering here, placing the velocity sensor further downstream
of the body than x = 2 would provide a better observability of the unstable modes,
as indicated by figure 4(a,b). However, in practice, it was found that the design of
robust stabilising controllers became increasingly difficult as the sensor was shifted
further downstream.

In order to find a compromise between these conflicting requirements, Chen &
Rowley (2011) suggested that a ‘structural sensitivity’ analysis, resulting in the
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FIGURE 4. (Colour online) Balanced modes associated with unstable dynamics. (a,b)
Primal modes, shown as vertical velocity contours. The vertical velocity sensor in the
wake is shown as a triangle and the body-mounted force sensor is shown as a line along
the base. (c,d) Adjoint modes, shown as adjoint ‘vorticity’ contours. The actuators are
shown as circles. Negative contours are bounded by a line. Contour levels are from −0.09
to 0.09 in increments of 0.02 for panels (a,b) and from −9 to 9 in increments of 2 for
panels (c,d).

‘wavemaker’ region introduced by Giannetti & Luchini (2007), might provide a
promising starting point for actuator–sensor placement in a closed-loop setting. This
region is identified by taking the pointwise product of the forward and adjoint global
modes. Using projection-free BPOD, however, the unstable balanced modes only
converge to a subspace spanned by the global modes. We therefore show the average
of the two wavemaker regions predicted by the unstable modes in order to estimate
the actual wavemaker of the system in figure 5. It is encouraging that the identified
region is in good qualitative agreement with the one resulting from the structural
sensitivity analysis performed by Giannetti & Luchini (2007) for the circular cylinder
at similar Reynolds numbers. Figure 5 shows that the wake sensor is at the centre of
the wavemaker region and also predicts that sensors located further downstream than
x≈ 4–5 may not perform well. Figure 5 also shows that the actuators and the force
sensor are located as close as possible to the region where the structural sensitivity
is high, while remaining ‘body-mounted’.

3.2.2. Reduced-order model
As explained in Flinois et al. (2015), it is necessary to select an adequate final

simulation time t∞ in order to strike a balance between the convergence of the
model and the exponential growth of the unstable modes. Four final simulation times
were tested of 12.4, 25, 50 and 100 convective time units. Hankel singular values
(HSVs) are a measure of how significant different states are in the BPOD ROM
(see § A.1 for further details) and can be used to choose the required order for the
model. HSV distributions for the first 20 singular values are shown in figure 6. As
expected, the singular values of the two unstable modes grow as the final simulation
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FIGURE 5. (Colour online) Approximation of the wavemaker region in the D-shaped body
wake, constructed by averaging the product of the velocity magnitudes of the forward and
adjoint unstable balanced modes for the two unstable modes. Contour levels are from 0.01
to 0.06 in increments of 0.01.
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FIGURE 6. Hankel singular values corresponding to ROMs created using BPOD with
different final simulation times t∞ (given in convective time units).

time t∞ increases, while the other singular values converge. HSVs of low dynamical
importance are also affected by t∞, as described in Flinois et al. (2015): as the
unstable modes start to dominate the response, information related to these less
significant modes is lost. The corresponding singular values then increase as a whole
with t∞ as opposed to converging.

For stable systems, there exists an upper bound on the H∞ norm of the difference
between the full-order model Gn (where n is the full system order) and the reduced-
order model Gr (of order r) obtained with balanced truncation (e.g. Rowley 2005):
‖Gn −Gr‖∞ < 2

∑n
j=r+1 σj, where σj is the jth HSV of the system. This bound holds

for exact balancing procedures but can in practice be observed by using a sufficient
number of snapshots in the BPOD approach. In the case of unstable systems, the
H∞ error norm is infinite by definition. An upper bound on the H∞ error of the
system’s stable subspace can nevertheless be recovered if a projection approach is used
to first identify and project out the unstable subspace. This can be done either by first
identifying the unstable modes as in Barbagallo et al. (2009) and Ahuja & Rowley
(2010), or by using the extension to the projection-free BPOD approach suggested in
Flinois et al. (2015), whereby a first set of impulse responses is computed to identify
the unstable balanced modes only. This is not performed in the present work.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

11
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.111


52 T. L. B. Flinois and A. S. Morgans

0 5 10 15 20 25 30 35 40 45 50
–0.15

–0.10

–0.05

0

 0.05

0.10

0.15

Full system BPOD ERA ERA (nonlinear dynamics)

Se
ns

or
 s

ig
na

l

t

FIGURE 7. (Colour online) Impulse response of the full system and the ROMs obtained
with BPOD, with the ERA based on the linearised dynamics, and with the ERA based
on the nonlinear dynamics. Note that all four lines overlap almost perfectly.
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FIGURE 8. (Colour online) Bode diagram showing the transfer functions of the ROMs
obtained with BPOD, with the ERA based on the linearised dynamics, and with the
ERA based on the nonlinear dynamics. Note that the curves corresponding to the two
ERA models overlap almost perfectly. The locations corresponding to frequencies of ω=
0.6 rad s−1 (A), 0.7 rad s−1 (@), 0.8 rad s−1 (?) and 0.9 rad s−1 (E) are also shown to
enable comparisons with the Nyquist diagrams in figure 12.

In the present case, it was found by trial and error that an accurate 10th-order
ROM could be obtained with only t∞ = 25 convective time units. In figure 7, we
show the impulse response of the model as a thin solid line, superimposed on the
full impulse response (thick dashed line). Clearly, the long-term response is well very
predicted, even for much longer times than the final simulation time used to identify
the model. The transients are also well approximated by the model. Figure 8 is a
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Bode plot showing the transfer function of the ROM as a thin solid line. It can be
used to design controllers using classical or H∞ loop-shaping methods. This plot is
also useful to compare this model with the ROMs obtained in §§ 3.3 and 3.4 in the
frequency domain.

3.3. The ERA model
The construction of ERA models is computationally very efficient as it relies only on
the sensor measurement of the impulse response of the forward linearised equations.
The procedure for obtaining such models is described in § A.2. As with BPOD,
this method was originally designed exclusively for stable systems since the output
becomes unbounded as t∞ →∞ if the system is unstable. However, as shown by
Ma et al. (2011) and summarised in § A.2, the ERA and BPOD are essentially the
same algorithm and can thus theoretically yield exactly identical models. Furthermore,
as shown in Flinois et al. (2015), the snapshot-based BPOD method also leads to
balanced ROMs for unstable systems. As a result, the ERA must also lead to balanced
ROMs, even for unstable systems.

In order to construct a ROM that is comparable to the BPOD ROM of § 3.2, every
40th sensor measurement and a final simulation time of t∞= 50 convective time units
were used (this matches the size of the Hankel matrices on which the two models
are based, as shown in §§ A.1 and A.2). The computational cost for obtaining the
ROM is negligible, since we are simply stacking the output signal from the sensor into
two matrices and performing a singular value decomposition of a (125× 125) matrix.
Much larger Hankel matrices could thus be used at virtually no additional expense if
required.

Using again a 10th-order model, the ERA ROM impulse response and transfer
function are compared with the BPOD ones in figures 7 and 8, respectively (dashed
lines). Clearly there is a good match between the two models, in both the time and
frequency domains. We provide a quantitative measure of how similar the two models
are in § 4.

The models are not exactly identical, mainly due to small numerical and algorithmic
differences in their implementation. The adjoint simulations are not the exact
discrete adjoint of the forward simulations due to the multi-grid solver, which is
not self-adjoint despite being used in both solvers, as noted by Ahuja & Rowley
(2010). Additionally, the continuous version of BPOD was used in the present work
and the forward and adjoint responses were not computed exactly in the same
manner: in the adjoint simulation, the initial state was set to z(1) = C† and this
state is shown in figure 3(b). On the other hand, in the forward simulation, the B
matrix was approximated by a one-step pulse at the first time step of the forward
simulation. This was done partly for convenience and partly because the same
simulation was used for the BPOD and ERA models, where we attempt to keep the
procedure pseudo-experimental. The flow state, just as the pulse is applied, is shown
in figure 3(a) in this case.

3.4. ERA model based on nonlinear dynamics
3.4.1. Obtaining the reference model

Using the ERA with unstable systems as above allows balanced ROMs to be
obtained for unstable systems, without the need for an adjoint solver. However, in
many relevant flow control scenarios, the linearised impulse response cannot be
computed directly either. This is the case if a linear solver is not available or in
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experimental set-ups. As a third approach, therefore, we show that ERA models can
be readily obtained directly from the nonlinear code: if the impulse is sufficiently
small, the early response of the system is approximately linear until disturbances
grow enough for nonlinear effects to become significant. It is therefore theoretically
possible to obtain an arbitrarily long (approximately) linear response by imposing
a correspondingly small impulse. Of course, in any realistic situation, having an
excessively small impulse will result in significant issues due to the associated
low signal-to-noise ratio of the output signal. In practice, an excessively long
impulse response is not desirable anyway for unstable flows, as t∞ is limited by
the exponential growth of the unstable modes.

Nevertheless, if a sensor measurement can be recorded with a large enough portion
in the linear regime and an acceptable signal-to-noise ratio, it is straightforward to
scale the response back to recover the output that would result from a full impulse
applied to the linearised system. The results are shown again in figures 7 and 8 as
dot-dashed lines for a ROM obtained with exactly the same procedure as in § 3.3,
but scaled by a factor of 400 to retrieve the full-sized signal from the small impulse
response of the nonlinear flow. The two ERA models are indistinguishable in both the
time domain and the frequency domain. The model obtained in this section was thus
used as the nominal or reference model for controller design in § 4.

3.4.2. Effect of nonlinearity
In a linear setting, the effect of letting t∞→∞ on the quality of balanced models

was investigated in Flinois et al. (2015). In a nonlinear setting, the appearance of a
limit cycle (or other nonlinear effects) may impose a more stringent upper bound on
t∞ than the exponential growth of unstable global modes if the applied impulse is
large. It is therefore relevant to examine how nonlinearity affects the ERA models. To
this end, the system is subjected to a large impulse (200 times greater than the one
used to obtain the model above) in order to promote the saturation of the unstable
modes. Figure 9(a) shows the evolution of the sensor signal in both the linear and
nonlinear simulations.

The main purpose of obtaining reduced-order models in this study is to use them
to design stabilising feedback controllers for the flow. The models we obtain are
therefore only useful if they are able to accurately represent the behaviour of the
unstable subspace of the actual system (this is a necessary but not always a sufficient
condition). The influence of the final simulation time on the extent to which this
requirement is satisfied is shown in figure 9(b,c): recalling that the considered
linearised system has two unstable modes, we analyse how the real and imaginary
parts of the poles of the second-order ERA model obtained from the nonlinear
system’s response (to the large impulse) are affected by t∞. For approximately the
first 50 convective time units, both the real and imaginary parts of the poles converge
to the values obtained with the linearised impulse response. For larger values of t∞,
the growth rate of the poles tends to zero and the frequencies tend to the limit-cycle
frequency. Note that the maximum acceptable t∞ value depends on the size of the
impulse applied to the system.

In figure 10, we compare the transfer function gain of the ERA models from
figure 9(b,c) for several t∞ values to the ‘reference’ transfer function gain, correspond-
ing to the 10th-order model described above (obtained with a small impulse) and
used in § 4 for controller design. At t∞ = 20 convective time units the model is not
yet fully converged. The approximately converged second-order model at t∞ = 45
convective time units and the reference model are in reasonable agreement in the
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FIGURE 9. (Colour online) Effect of nonlinearity on the quality of ERA models. (a) The
impulse response of the linearised system (red dashed line) and response of the nonlinear
system, subject to a large impulse (black solid line). (b) Real part/growth rate and
(c) imaginary part/frequency of the poles of the second-order ERA model identified from
the nonlinear impulse response with a range of final simulation time t∞. In panels (b)
and (c), the growth rate and frequency of the converged linearised system poles (dashed
line) and of the saturated limit cycle (dot-dashed line) are also shown. Note that the two
poles are a complex conjugate pair, so they have opposite frequencies and identical growth
rates.

frequency range of the unstable modes. As t∞ is further increased, the frequency of
the peak tends to the limit-cycle frequency and it becomes increasingly sharp as the
growth rate tends to zero.

As mentioned above, if the system’s unstable poles are not accurately identified by
the model, it cannot be expected to be of satisfactory quality for controller design.
Figure 9 shows that the poles move away from their ‘converged’ values shortly after
the linear and nonlinear responses begin to differ. Unlike in the linear setting, the
saturation of unstable modes affects the (dominant) unstable modes first as opposed
to the least significant modes, so the loss of accuracy of the models can be expected
to be more sudden in this case, even if a higher-order model is used. This therefore
suggests that the ERA should only be applied in the approximately linear portion of
the impulse response in order to obtain a useful model for controller design purposes.
As the maximum acceptable t∞ value for a given impulse response can be identified
directly from figure 9, it is relatively straightforward to enforce this condition.
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FIGURE 10. (Colour online) Gain of the transfer function of the second-order ERA
models identified from the response of the nonlinear system, subject to a large impulse,
with t∞ = 20 (red thin dashed line), t∞ = 45 (red thin solid line), t∞ = 100 (red thick
dashed line) and t∞ = 200 (red thick solid line) convective time units. The gain of
the ‘reference’ 10th-order model (black thin solid line), the frequency of the converged
linearised system poles (black vertical dashed line) and the frequency of the saturated limit
cycle (black vertical solid line) are also shown.

4. Feedback control

In this section, we use the (linear) model obtained from the nonlinear impulse
response in § 3.4 (converted to continuous time) to design linear controllers using
H∞ loop-shaping (§ 4.1) and proportional control (§ 4.2). We also show how robust
control tools can be used to analyse model uncertainty and controller robustness
in § 4.3. Although convenient numerically, velocity sensors in the middle of the
wake are not always realistic. In § 4.4, we therefore also design controllers using
the body-mounted force sensor on the base of the body (as described in § 2) and
compare the results obtained with the two sensor configurations in § 4.5.

The block diagram for the control set-up is shown in figure 11. It consists of a
linear system, whose input signals u(s) (s is the Laplace variable) and output signals
y(s) are related by the model G(s), the system’s open-loop transfer function: y(s)=
G(s) u(s). In closed loop, the measurements y(s) are used to automate the actuation
u(s) using a mathematical law K(s). This controller can be designed for instance to
improve the system’s tracking performance or disturbance rejection capabilities. In the
case of an unstable G(s), the controller can be used to robustly stabilise the system.
The full closed-loop transfer function from r(s) to y(s) is

GCL(s)= y(s)
r(s)
= G(s)

1−G(s)K(s)
. (4.1)

The modelling procedure from the previous sections makes it possible to design
controllers for unstable systems in a systematic way, without prior flow stabilisation.
Note also that the entire procedure only requires a standard nonlinear solver: the linear
model is obtained from an approximately linear impulse response, the controller is
designed using this model, and it is applied directly to the nonlinear flow. Although
the controllers are also applied to the linearised Navier–Stokes equations in § 4.5.1,
this is only done to compare their response with theoretical predictions obtained with
the ROM, and hence this step is not strictly necessary.
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FIGURE 11. Block diagram of the input–output arrangement. Note that a positive feedback
sign convention is used here.
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FIGURE 12. (Colour online) Controller design for the wake velocity sensor, showing the
Nyquist diagram of the (linear) ERA ROM, based on the nonlinear dynamics G (scaled by
a factor of −21), the manually shaped model (−WG), the robust model (−K0G) and the
reduced robust model (−KG). The point with coordinates (−1,0) is shown by a cross. The
locations corresponding to frequencies of ω=0.6 rad s−1 (A), 0.7 rad s−1 (@), 0.8 rad s−1

(?) and 0.9 rad s−1 (E) are also shown. Note that the minus signs are due to the positive
feedback sign convention.

4.1. H∞ loop-shaping
As mentioned in § 1.1, the method chosen here is a two-step procedure. The end
goal is to obtain a robust controller that stabilises the system despite noise and/or
disturbances, nonlinearities and model inaccuracies. Ideally, we would like to be able
to stabilise the system from an off-design state like the unforced vortex shedding
wake or at increased Reynolds numbers. H∞ loop-shaping provides a framework for
obtaining this type of robust controller (McFarlane & Glover 1992).

The H∞ loop-shaping methodology requires the user to first manually ‘shape’ the
gain of the open-loop frequency response or transfer function using dynamic weights
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W(s) that ensure the resulting response gain has the desired properties. In the second
step, an optimisation problem is solved (using MATLAB), which generates a controller
K∞(s) that modifies mainly the phase of the shaped plant in order to make the closed-
loop system robust to a large class of disturbances. Finally, the two components are
joined together to form the final controller: K(s) = K∞(s)W(s). Further details are
included in appendix B.

4.1.1. Manual loop-shaping step
For this system, the first iterative step was used to improve the robustness of the

final controller as much as possible and to ensure the shaped model was stabilised in
a desired manner. Without this step, it was found that H∞ optimisation often returned
stabilising controllers that were themselves unstable. Although this is not necessarily
an issue, it should be avoided if possible for practical reasons.

The result of this procedure is shown in figure 12 (where the minus signs are due to
the positive feedback sign convention used in figure 11). The thick solid line shows
the Nyquist diagram of the open-loop model G(s), scaled by a factor of −21 (for
reasons explained below and in § 4.2). The Nyquist diagram is the locus of a transfer
function in the complex plane for values of s= iω and for all real frequencies ω. The
thin dashed line is the Nyquist diagram of the shaped plant −WG. In this case, W(s)
is a first-order lag compensator.

The standard stability criterion for a system with two unstable poles is that,
following the Nyquist curve from ω = −∞ to ω = +∞ rad s−1, the point with
coordinates (−1, 0) should be ‘encircled’ twice in the anticlockwise direction for the
controller to stabilise the plant. Figure 12 shows that this is the case for the scaled
open-loop system, which shows that there exists a so-called ‘gain window’, where
proportional control stabilises the ROM. We therefore also implement a proportional
controller and compare its performance with the robust controller. The design of
the proportional controller is discussed in § 4.2. The shaped system also stabilises
the ROM in this case, although we emphasise that this is only an intermediate step
and that the aim of this initial procedure is to improve the robustness of the final
controller iteratively and not to obtain the best possible controller using only classical
loop-shaping.

4.1.2. Robustness optimisation step
The aim of the second step is to optimise the shaped system’s robustness, as

quantified by the generalised stability margin b, defined formally in appendix B. If
the controller does not stabilise the plant, then b= 0, and as the robustness increases,
b→ 1. A minimum value of 0.2 6 b 6 0.3 is usually considered to be acceptable. As
implied by its name, b is a generalisation of the standard gain and phase margins
used in classical control. It gives a measure of both the robust performance and
robust stability characteristics of a given (shaped) model and is also applicable to
multiple-input–multiple-output systems.

The shaped plant WG was therefore used as an initial condition for the H∞ loop-
shaping algorithm. This resulted in a robust 11th-order controller K0(s)=K∞(s)W(s).
High-order controllers are less easily implemented in practice and also less reliable,
so it is desirable to keep the order of the controller as low as possible without
excessively compromising the closed-loop performance. The K∞ part of the controller
was thus subsequently reduced using MATLAB’s balreal and modred commands,
resulting in a final eighth-order controller K(s)=K∞,r(s)W(s). The generalised
stability margins for the optimised and reduced controllers are b(WG, K∞) = 0.427
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and b(WG, K∞,r) = 0.422, respectively, which shows first that the robustness of
the H∞ controller is satisfactory, and second that the order reduction process only
deteriorated this robustness very marginally.

4.2. Proportional control
In order to compare the H∞ loop-shaping approach to the proportional control
approach used in several classical studies such as Roussopoulos (1993) and Park,
Ladd & Hendricks (1994), we also design a proportional controller: u(s)=KP y(s) if
r(s)= 0, where KP is simply a constant. As mentioned above, it was found that there
exists a ‘gain window’, where proportional control can be expected to stabilise the
ROM. In a similar manner to Illingworth et al. (2014), we use our ERA model to
select an adequate KP value. Here, we choose to maximise robustness, as quantified
by b(KPG, 1), in order to show that this stability and performance parameter is useful
even for very simple controller design strategies. The optimal value was found to
correspond to KP ≈ 21, for which b(KPG, 1) = 0.180. This value is smaller than
b(WG,K∞r)= 0.422, indicating that the H∞ loop-shaping controller can be expected
to be more robust than the proportional controller. This is further discussed in the
next section.

4.3. Controller robustness and model uncertainty
In order to obtain the reference model that was used for controller design in §§ 4.1
and 4.2, we selected one of three modelling algorithms, a final simulation time of t∞=
50 convective time units and a model order of r= 10. In this section, we show that
robust control tools can quantify the model uncertainty associated with these choices.
A related approach was used by Jones et al. (2015) in a grid refinement study.

A useful tool that naturally fits in the H∞ loop-shaping framework is the ν-gap
metric introduced by Vinnicombe (1993) and denoted by δν . It provides a measure
of how differently two systems shaped with the same weights W(s) can be expected
to behave in closed loop. The ν-gap takes a value between 0 and 1 (δν = 0
between identical models) and it is formally defined in appendix B. This metric
can be used to provide stability guarantees for uncertain systems. Specifically, if
b(WG,K∞) > δν(WG,WGi) for given W and K∞, and for a ‘perturbed’ model Gi,
then the controller K0 =K∞W also stabilises Gi. For any perturbed model where
b(WG,K∞) < δν(WG,WGi), the stability of the perturbed closed-loop model can be
checked by calculating b(WGi,K∞).

As summarised in table 2, several ‘perturbed’ open-loop models Gi were constructed
by varying the model order, final simulation time and modelling method used. For
all models, the ν-gap metric corresponding both to the H∞ loop-shaping weights
δν(WG, WGi) and to the proportional controller δν(KPG, KPGi) were calculated and
are shown in table 2.

The ν-gap values in table 2 demonstrate the advantage of using H∞ loop-shaping:
although the ν-gap associated with all models is similar for both controllers,
b(WG,K∞) > δν(WG,WGi) for all i, whereas this is not the case with the proportional
controller. The robust controller is thus guaranteed to stabilise all the models
considered here. On the other hand, it was necessary to verify that the proportional
controller in fact does stabilise GBPOD by checking that b(KPGBPOD, 1) > 0 since
b(KPG, 1) < δν(KPG,KPGBPOD). It was found that b(KPGBPOD, 1)= 0.144.

Table 2 also shows that models obtained with a larger final simulation time or order
have a very small ν-gap so they can be expected to behave in a similar manner to the
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Name Modelling method t∞ r δν(WG,WGi) δν(KPG,KPGi)

G (ref.) ERA (nonlinear) 50 10 0 0

GBPOD BPOD 50 (equiv.) 10 0.179 0.195
GERA,lin ERA (linear) 50 10 6.54× 10−6 7.18× 10−6

Gt∞=25 ERA (nonlinear) 25 10 0.0280 0.0291
Gt∞=75 ERA (nonlinear) 75 10 2.11× 10−4 2.20× 10−4

Gr=6 ERA (nonlinear) 50 6 0.343 0.138
Gr=14 ERA (nonlinear) 50 14 1.82× 10−3 1.30× 10−3

TABLE 2. Parameters used to generate the considered family of ‘perturbed’ models Gi for
the wake velocity sensor, and values of the corresponding ν-gap metric, calculated for both
the robust controller weights and the proportional controller.

reference model, whereas larger differences appear with lower t∞ and r values. This
suggests that our chosen t∞ and r values are allowing us to obtain a converged model
and resolve most of the important dynamics of the input–output system. Similarly, the
distance between the two ERA models is negligible, which confirms that the early
impulse response of the nonlinear flow provides adequate information to obtain a
useful ERA model. Finally, a non-negligible value of δν is obtained with GBPOD. This
indicates that the ROMs may be sensitive to the modelling approach in this case and
that, with the chosen weights W and KP, some differences can be expected between
the responses of the two models in closed loop. Nevertheless, the model GBPOD is still
stabilised by both controllers.

We emphasise that these tests are all performed a priori, in the sense that no
closed-loop simulation is required. They suggest that the full-order flow and the
ROMs are likely to behave in a similar manner since the stability and performance of
the closed loop are suitably robust to the modelling technique and model parameters.
This analysis is equally instructive for controllers designed explicitly using robust
control methods such as K(s) and for much simpler controllers such as KP.

4.4. Body-mounted force sensor: modelling and controller design
The same procedure was then followed using the body-mounted force sensor
introduced in § 2: first a 10th-order ERA model was obtained by scaling the response
of the full nonlinear flow field to a small impulse. Note that the two sensor signals
were recorded at the same time so it was not necessary to run a new simulation to
obtain this model. In fact, the measurements from an arbitrary number of candidate
sensors can be stored simultaneously for a given actuator configuration. As a result,
there is effectively no added cost associated with the construction and comparison of
models obtained with a large number of sensors. An ERA model was therefore also
obtained from the fully linear response using this sensor.

A robust stabilising controller was then designed by shaping the Nyquist diagram
with a first-order lag filter and a first-order low-pass filter. In this case, we note
that, at this intermediate stage in the robust controller design process, the chosen
weights W(s) in fact do not stabilise the open-loop model. The robustness of
the shaped system WG was then improved using H∞ loop-shaping. The stability
margins corresponding to the resulting 14th-order controller and the eighth-order
reduced controller are b(WG,K∞)= 0.535 and b(WG,K∞,r)= 0.526, respectively.
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FIGURE 13. (Colour online) Controller design for the body-mounted force sensor, showing
the Nyquist diagram of the (linear) ERA ROM in series with the proportional controller
(−KPG), the manually shaped model (−WG), the robust model (−K0G) and the reduced
robust model (−KG). The point with coordinates (−1, 0) is shown by a cross. The
locations corresponding to frequencies of ω=0.6 rad s−1 (A), 0.7 rad s−1 (@), 0.8 rad s−1

(?), and 0.9 rad s−1 (E) are also shown. Note that the minus signs are due to the positive
feedback sign convention.

The corresponding Nyquist diagrams are shown in figure 13. Note that the robust
shaped systems K0G and KG have a peak at ω ≈ 0.78 rad s−1 so their Nyquist
diagrams have a large magnitude close to this frequency.

Using the force sensor configuration, it was noticed that the range of stabilising
proportional gains was greatly reduced due to the fact that proportional control
triggered instabilities at frequencies close to the time-stepping frequency. In order
to circumvent this numerical issue, the proportional controller was first coupled
with a simple second-order low-pass filter. The filter has a cutoff frequency of
ω = 200 rad s−1, and hence has no effect on the frequencies where physical
phenomena take place in the flow. The final controller can therefore still be considered
to be effectively a proportional controller. With this added filter, it was possible to
identify a ‘gain window’ where a stability margin of b(KPG, 1)= 0.182 was obtained
by using a scaling factor of 555. The model shaped with this controller KP is also
shown in figure 13.

Table 3 shows the ν-gap corresponding to the robust controller weights W and
the proportional controller KP for all considered models for the force sensor.
The results are similar to those in table 2, although the ν-gap values are overall
slightly higher. As with the velocity sensor, b(WG,K∞,r) > δν(WG,WGi) for all
Gi with the robust controller. With the proportional controller, on the other hand,
b(KPG, 1) < δν(KPG,KPGt∞=25). The stability of the perturbed closed-loop model was
thus checked and it was found that b(KPGt∞=25, 1)= 0.202> 0.

This analysis again confirms that the closed loop is not excessively sensitive to
the chosen modelling technique and model parameters. We can therefore confidently
proceed to implement the controllers in the full-order flow.
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FIGURE 14. (Colour online) Control using the wake velocity sensor connected in closed
loop with the two considered controllers: (a) output and (b) input corresponding to the
closed-loop impulse response predicted by the ROM from § 3.4 and compared with the
full linearised impulse response at Re=80. In all cases the system is subject to an impulse
at t= 0 and the controller is switched on after t= 50 convective time units.

Name Modelling method t∞ r δν(WG,WGi) δν(KPG,KPGi)

G (ref.) ERA (nonlinear) 50 10 0 0

GERA,lin ERA (linear) 50 10 3.89× 10−3 4.23× 10−3

Gt∞=25 ERA (nonlinear) 25 10 0.233 0.238
Gt∞=75 ERA (nonlinear) 75 10 2.27× 10−3 2.45× 10−3

Gr=6 ERA (nonlinear) 50 6 0.158 0.165
Gr=14 ERA (nonlinear) 50 14 0.0832 0.0755

TABLE 3. Parameters used to generate the considered family of ‘perturbed’ models Gi for
the body-mounted force sensor, and values of the corresponding ν-gap metric, calculated
for both the robust controller weights and the proportional controller.

4.5. Controller performance
Equipped with robust stabilising controllers, three increasingly demanding tests were
performed for the four considered control configurations. The results are presented in
this section.

4.5.1. Closed-loop response predictions
First, the closed-loop response predicted by each ROM was compared to that of

the full linearised system: the flow was forced with an impulse and allowed to evolve
for 50 convective time units, thus allowing the unstable modes to develop before the
controllers are switched on. In figure 14 the response predicted by the ROM (velocity
sensor) is compared to the full linearised system’s response in closed loop. With both
controllers, the two responses match very closely, even after the controller is switched
on. Note also that the proportional controller leads to a slower stabilisation of the flow
in this case.
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FIGURE 15. (Colour online) Control using the body-mounted force sensor connected in
closed loop with the two considered controllers: (a) output and (b) input corresponding to
the closed-loop impulse response predicted by the ROM (identified with the ERA based
on nonlinear dynamics and with the body-mounted force sensor) and compared with the
full linearised impulse response at Re=80. In all cases the system is subject to an impulse
at t= 0 and the controller is switched on after t= 50 convective time units.

Similar conclusions can be drawn from the results obtained with the body-mounted
force sensor, shown in figure 15. In this case, the convergence rate of the output signal
is lower and it therefore takes longer for the flow to return to its unstable equilibrium
state. On the other hand, the initial response of the controller is less aggressive than
with the wake velocity sensor. Again, the stabilisation of the flow is faster with K
than with KP.

4.5.2. Robustness to nonlinear initial conditions
The robustness of the controllers to nonlinear effects was then tested. After

triggering the instability with an impulse, the nonlinear flow was left to evolve
to its limit-cycling (vortex shedding) state. The controllers were only switched on
when vortex shedding was fully established (after 200 convective time units). We
emphasise that neither the models nor the controllers incorporate any information
about the limit-cycle dynamics, which do not even necessarily evolve about the same
state as the base flow.

However, as shown in figures 16 and 17, the two proportional controllers and the
two H∞ controllers are robust enough to stabilise the flow. Figure 18 shows the
evolution of the forces on the body in all four configurations: starting from their base
flow values, the instability is triggered and the forces evolve as the flow reaches the
limit cycle. Once the controllers have been switched on, the forces quickly return to
the base flow values.

In fact, the entire closed-loop flow returns to a state that is close to the low-drag
unstable steady state in all cases. Figure 19 shows snapshots of the flow field
(controlled using the robust controller associated with the body-mounted force sensor)
at the moment when the control is switched on (after t = 200 convective time
units), and then as the flow is gradually stabilised. After 500 convective time units
(figure 19d), the vortex shedding is effectively fully suppressed and the flow is similar
to the base state in figure 2.
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FIGURE 16. (Colour online) (a) Output and (b) input corresponding to the closed-loop
response of the full nonlinear system at Re = 80, using the wake velocity sensor and
the two corresponding controllers. The system is subject to an impulse at t = 0 and the
controllers are switched on after t= 200 convective time units.
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FIGURE 17. (Colour online) (a) Output and (b) input corresponding to the closed-loop
response of the full nonlinear system at Re = 80, using the body-mounted force sensor
and the two corresponding controllers. The system is subject to an impulse at t= 0 and
the controllers are switched on after t= 200 convective time units.

For the wake velocity sensor, the convergence of the forces takes place at a
similar rate with both controllers. As in the linear framework in § 4.5.1, the flow
takes longer to converge to its steady state with the body-mounted force sensor
configuration. However, in this case, the proportional controller leads to a faster flow
stabilisation than the robust controller.

Overall, these results thus show that the designed controllers are robust to significant
nonlinear effects for all four configurations.

4.5.3. Robustness to changes in the Reynolds number
The controllers were then challenged further by repeating the test from § 4.5.2 but

with larger (and hence off-design) Reynolds number values of Re= 90 and 100. This
introduces additional modifications in the dynamics of the flows that the controllers
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FIGURE 18. (Colour online) (a) Lift and (b) drag force coefficients corresponding to the
closed-loop response of the full nonlinear system at Re= 80. The drag coefficient of the
base flow is also shown in panel (b). The system is subject to an impulse at t = 0 and
the controllers are switched on at t= 200 convective time units. The results obtained with
all four sensor–controller configurations are shown.

are attempting to stabilise. In particular, the flow becomes more unstable at higher Re
values and is hence harder to control.

It was found that, using the body-mounted force sensor, neither controller was able
to fully stabilise the flow at Re = 90 or 100. With the velocity sensor configuration
(and with both of the associated controllers), the flow was fully stabilised from the
limit cycle at Re=90 and 100. Further simulations were run at Re=110, 130 and 150:
the flow was found to be stabilised from the limit cycle at Re= 110 with the robust
controller and almost fully with the proportionally controller. At Re = 130, neither
controller fully stabilised the flow.

Even in cases where the flow was not fully stabilised, the control was found to
result in a positive net energy gain, as measured by the total average power required
to drive the body through the fluid (after transients). The instantaneous total power
can be expressed as the sum of the power required to overcome the drag D(t) and
the power supplied to the fluid by the actuators (see e.g. Frohnapfel, Hasegawa &
Quadrio 2012). In non-dimensional form, this can be written as

Ptotal(t)
1
2ρU3∞H

= D(t)U∞
1
2ρU3∞H

+ Pcontrol(t)
1
2ρU3∞H

= CD +
∫

AF

[
f (t)

1
2ρU2∞H

·
u(t)
U∞

]
dAF, (4.2)
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FIGURE 19. (Colour online) Snapshots of the controlled flow field (using the
body-mounted force sensor and the robust controller) after (a) t = 200 convective time
units when the control is turned on, and then at (b) t= 300, (c) t= 400, and (d) t= 500
convective time units. Vorticity contours are shown; negative contours are bounded by a
line. Contour levels are from −1.8 to 1.8 in increments of 0.4.

where Ptotal(t) and Pcontrol(t) are the dimensional total and control power per unit width,
respectively, ρ is the fluid density, AF is the area where the forcing is applied, f is the
local dimensional force per unit area and u is the local dimensional velocity. Note that,
in practice, an actuator model would be desirable in order to obtain a more realistic
estimate of the required input power.

In our case, the control power (second term) tends to zero when the flow is fully
stabilised. Moreover, in all cases where the control input converges to a finite value,
it was found that the time-averaged value of Pcontrol after transients was at most of
the order of a hundredth of a per cent of Ptotal and usually much less. This negligible
value is due to the fact that the flow is almost symmetric at the actuation location
while the forcing is purely antisymmetric. As a result, changes in the converged drag
coefficient can be directly linked to changes in the total required power. The results
are shown in figure 20: clearly in all cases, the required time-averaged converged
power is reduced significantly. For the wake velocity sensor, the robust controller leads
to a great power reduction than the proportional controller. This general trend seems
to be inverted for the body-mounted force sensor.

The results from this test suggest that the velocity sensor configuration is in general
more robust to an increase in the Reynolds number than the force sensor configuration,
despite the fact that the stability margin is larger with the body-mounted sensor. This
implies that the dynamics of the shaped system experience larger changes with the
force sensor than with the velocity sensor. As the Reynolds number is increased,
Giannetti & Luchini (2007) have shown that the wavemaker region in a cylinder
wake at low Reynolds numbers becomes elongated and shifts further downstream.
Since the body-mounted sensor is located in a less observable region of the flow (see
figure 4) and is already on the upstream edge of the wavemaker region at the design
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FIGURE 20. Comparison of the total power required to drive the body through the fluid in
the unstable equilibrium flow state, the unforced vortex shedding state and with the two
controllers, for cases where the flow is not fully stabilised with (a) the body-mounted
force sensor and (b) the wake velocity sensor.

Reynolds number (see figure 5), this could explain why the associated input–output
dynamics are more strongly affected by an increase in the Reynolds number.

4.5.4. Further comments
In § 4.3, it was found that H∞ loop-shaping yields controllers that are expected

to be considerably more robust than proportional controllers (as quantified by b).
Additionally, the window of stabilising proportional gains eventually disappears for
sufficiently large Re and in this case a dynamic controller is necessary to stabilise
the flow (e.g. Illingworth et al. 2014). Nevertheless, the results from this section
indicate that, in cases where a gain window does exist, choosing the proportional
control gain that maximises the generalised stability margin can result in controllers
whose robustness and performance are in practice similar to that of H∞ loop-shaping
controllers. The generalised stability margin b therefore appears to be a useful
parameter to guide the design of stabilising controllers for fluid flows in general.
We note however that b should not be used blindly: although the force sensor robust
controller provided in the largest stability margin, this system was not the most robust
to an increase in the Reynolds number.

Compared to other studies where proportional and/or classical control was used (e.g.
Roussopoulos 1993; Park et al. 1994), the availability of an accurate input–output
model enables the use of b to select a proportional controller gain value that provides
good robustness. This information is not available when tuning a controller manually.

It is also important to note that the controllers used in this study were designed
in part manually. This iterative procedure is different for each actuator–sensor
configuration and may be better optimised in this case with one of the sensor
configurations than the other. As a result, the comparison between the two sensors
cannot be made quantitatively.
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Additionally, recall that the purpose of the simulations performed here was to test
the robustness of fixed controllers as the Reynolds number takes on larger off-design
values. The aim was therefore not to identify the highest value of the Reynolds
number for which flow stabilisation is possible, as optimal control techniques would
be better suited for such a study (see for instance Lauga & Bewley 2003).

5. Conclusions
This paper has shown that it is straightforward and justified to obtain linear low-

order models for the dynamics of fluid flows about an unstable equilibrium state, by
directly applying the ERA to the system’s impulse response. The resulting models
were shown to be capable of predicting the transient and long-term flow dynamics
in open loop and in closed loop. They were also found to be sufficiently accurate to
design robust stabilising controllers.

The method was applied to the unstable flow over a D-shaped body, with body-
mounted actuators, and two sensor configurations. We first showed that, if projection-
free BPOD is used to obtain the model as in Flinois et al. (2015), then the analysis of
actuator–sensor placement can be facilitated by extracting relevant information from
the balanced modes. We then confirmed that the ERA can also be used at a much
reduced cost and without the need for an adjoint solver, in order to obtain theoretically
identical models, directly from the unstable system’s impulse response. In experiments
or if a linearised solver is not available, it was shown that accurate models can also
be obtained using the ERA, from the early, approximately linear, part of the impulse
response of the full nonlinear flow. Such ERA ROMs, based on the nonlinear flow
dynamics, were then used to design stabilising feedback controllers for two sensor
configurations: one located in the wake and one mounted on the body surface.

Both proportional controllers and robust controllers based on the H∞ loop-shaping
procedure of McFarlane & Glover (1992) were designed. In both cases, it was found
that robust control tools such as the generalised stability margin and the ν-gap metric
are particularly well suited to the design of robust stabilising controllers for unstable
flows. These enable the analysis of the sensitivity of the closed-loop behaviour to the
chosen modelling method and to model parameters such as the model order. They
are central to the H∞ loop-shaping framework and were also found to provide an
effective means to optimise the robustness of proportional controllers using the ERA
models.

Comparing the closed-loop response of the full-order linearised flow to the
predictions made by the models showed that the ERA ROMs were sufficiently
accurate to design stabilising controllers for the actual flow and also capable of
predicting its closed-loop behaviour accurately. Furthermore, all controllers led to the
full stabilisation of the nonlinear flow from the (unmodelled) vortex shedding limit
cycle. Finally, it was found that the wake sensor was more robust to an increase in
the Reynolds number than the body-mounted sensor.

All the key steps followed throughout this study can be performed with a standard
nonlinear flow solver. This is a crucial point, as linearised and adjoint solvers are not
available in a large number of relevant flow control scenarios. It also suggests that
some experimental set-ups may benefit from this approach. In order to obtain models
for unstable systems, previous studies have relied either on expensive computational
techniques or on the difficult task of finding a stabilising controller for the flow,
without a model for the dynamics. In contrast, the ERA is straightforward to
implement and has a low computational cost. Here, we have shown that it can
be used directly to construct models of high enough quality to design and implement
robust stabilising controllers for unstable flows.
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Appendix A. Eigensystem Realisation Algorithm for unstable flows
A.1. Projection-free approximate balanced truncation for unstable flows

This method assumes that the evolution of the system is linear-time-invariant (LTI)
and can hence be described in state-space form. We will assume the system is discrete
to make the comparison between this method and the ERA more straightforward in
§ A.2, but the problem can equivalently be formulated in continuous form. In fact, the
continuous approach is the one implemented in the present work.

We thus assume the system is governed by:

x(k+ 1)= Ax(k)+ Bu(k),
y(k)= Cx(k).

}
(A 1)

Here x∈Cnx is the state vector, u∈Cnu is the input vector, y∈Cny is the output vector
and the realisation of the system is defined by the matrices (A, B, C) of appropriate
dimensions. The dynamics of the associated adjoint system can also be expressed in
state-space form:

z(k+ 1)= A†z(k)+ C†v(k),
w(k)= B†z(k).

}
(A 2)

The † superscript refers to the complex conjugate transpose and in this case z∈Cnx is
the adjoint state vector, v ∈Cny is the adjoint input vector and w ∈Cnu is the adjoint
output vector. Note that, in general, the adjoint formulation is obtained based on a
non-trivial inner-product matrix, but for clarity we assume the identity matrix is used
here.

The realisation (A, B, C) of the primal system in (A 1) is not unique. Any
appropriate coordinate transformation defined by the matrices T and S such that
T = S−1 can be applied to it, resulting in the transformed realisation (SAT , SB, CT ),
with unmodified input–output dynamics. The purpose of balanced truncation is to
find the transformation that results in a transformed state vector x̂ = Tx, where the
states are sorted in decreasing order of dynamical significance. The significance of a
state in this context is affected both by the amount of input energy required to reach
it from x̂ = 0 (its controllability) and the energy of the output signal generated by
letting the system evolve with no input from that state (its observability). If such a
transformation is found, the least significant states can easily be discarded by simply
truncating the state vector and system matrices.

Willcox & Peraire (2002) and Rowley (2005) introduced a snapshot-based procedure
that is based on the work of Moore (1981) and results in an approximation of the
required transformation. It provides a set of so-called Hankel singular values (HSVs)
σi, sorted so that σ1 > · · ·>σnx . They indicate how significant the corresponding state
is. The algorithm is also referred to as balanced proper orthogonal decomposition
(BPOD). The first step consists in storing state snapshots from the impulse response of
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the forward system into a matrix X and state snapshots from the impulse response of
the adjoint system into another matrix Z . Assuming that a snapshot is saved every
p time steps and that (N + 1) snapshots are saved in each case, the matrices are
structured as follows:

X = [x(1) x(1+ p) . . . x(1+ pN)] = [B ApB . . . ApNB], (A 3)

Z = [z(1) z(1+ p) . . . z(1+ pN)] = [C† A†pC† · · · A†pNC†]. (A 4)

Here, x(k)= A(k−1)B= [A(k−1)b1 . . . A(k−1)bnu] for k > 1 is an (nx × nu) matrix and
bi is the ith column of B, so that A(k−1)bi is the forward impulse response from
the ith input. Similarly, z(k) = A†(k−1)C† is an (nx × ny) matrix and A†(k−1)c†

i is the
adjoint impulse response from the ith input. The forward (respectively adjoint) impulse
response snapshots can be obtained either by letting the state evolve from the initial
condition x(1)= bi (z(1)= c†

i ) for each column of B (C†) or by starting the simulation
at x(0)= 0 (z(0)= 0) and forcing the system with an impulsive input at k= 0.

Once the snapshots have been collected, the following singular value decomposition
(SVD) is performed to obtain the transformation matrices:

Z †X = UΣV † = [U1 U2]
[
Σ1 0
0 Σ2

] [
V †

1

V †
2

]
, (A 5a)

T̂ = XV 1Σ
−1/2
1 , Ŝ =Σ

−1/2
1 U†

1Z †. (A 5b,c)

Here T̂ is an (nx × r) matrix and Ŝ is an (r × nx) matrix. These matrices are
used to simultaneously balance and truncate the system and thus obtain an rth-order
ROM. The elements of the diagonal matrix Σ are the HSVs σi mentioned above.
The singular values in Σ2 identified in (A 5a) are zero or negligible since more
snapshots than there are dynamically significant states are usually stored. The number
of truncated states can be chosen based on the HSV distribution. The transformed
and truncated system is then given by

x̂1(k+ 1)= Âx̂1(k)+ B̂u(k),
ŷ(k)= Ĉx̂1(k)≈ y(k),

}
(A 6)

where (Â, B̂, Ĉ)= (ŜAT̂ , ŜB,CT̂ ), x̂1 ∈Cr is the ROM state and ŷ ∈Cny is the ROM
output, which approximates the full system output y.

This method is particularly appealing because it is applicable to even very large
systems since only matrix multiplications and an SVD of an (N+ 1)× (N+ 1) matrix
are required regardless of the actual dimension of the full system. However, it was
originally designed for stable systems only: clearly, as t→∞ the state vector x→ 0
if the system is stable. As a result, if snapshots are stored over a long enough period
of time, the matrices T̂ and Ŝ converge and so does the identified balanced ROM.

If the system is unstable, on the other hand, the state vector becomes unbounded
for large t, so it is not immediately obvious that the transformation matrices converge,
that they lead to a converged ROM or that this ROM is balanced. For this reason,
a number of methods have been developed to circumvent this issue (e.g. Barbagallo
et al. 2009; Ahuja & Rowley 2010; Dergham et al. 2011). They require additional
computations that render the algorithm significantly more costly and often completely
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intractable if the system dimension is very large (as for instance in three-dimensional
flows).

In a recent study, Flinois et al. (2015) showed that the unmodified algorithm does in
fact theoretically lead to a fully converged balanced ROM. In practice, finite-precision
arithmetic cannot handle both the small but important transient information and the
unbounded long-term growth of the response if snapshots are stored until a large
final simulation time t∞→∞. As a result, if the final simulation time is too large,
the information related to the stable modes is lost. It was therefore shown that a
compromise must be found: on the one hand, t∞ must be large enough to obtain a
converged model; and on the other, it must be small enough to retain the information
about stable modes. In Flinois et al. (2015), accurate models were obtained both
for the unstable Ginzburg–Landau equation and for the unstable flow around a
cylinder. This approach therefore provides a way of obtaining balanced ROMs even
for potentially very large unstable systems, and it is used in § 3.2 of this article.

A.2. The Eigensystem Realisation Algorithm
The ERA was developed by Juang & Pappa (1985). In this method, the impulse
response output of the system given in (A 1) is recorded and stored in the following
two Hankel matrices:

H1 =


y1 y1+p · · · y1+Np

y1+p y1+2p · · · y1+(N+1)p

...
...

. . .
...

y1+Np y1+(N+1)p · · · y1+2Np

 ,

=


CB CApB · · · CANpB

CApB CA2pB · · · CA(N+1)pB
...

...
. . .

...

CANpB CA(N+1)pB · · · CA2NpB

 , (A 7)

H2 =


y2 y2+p · · · y2+Np

y2+p y2+2p · · · y2+(N+1)p

...
...

. . .
...

y2+Np y2+(N+1)p · · · y2+2Np

 ,

=


CAB CA(p+1)B · · · CANp+1B

CA(p+1)B CA(2p+1)B · · · CA((N+1)p+1)B
...

...
. . .

...

CA(Np+1)B CA((N+1)p+1)B · · · CA(2Np+1)B

 , (A 8)

where yk = CA(k−1)B is an (ny × nu) matrix.
Once these matrices have been formed, we take the SVD of H1. Noting that Z †X =

H1, this results in H1 = UΣV † as in (A 5a). The reduced system matrices are then
given by

Ar =Σ
−1/2
1 U1H2V 1Σ

−1/2
1 ,

Br = first nu columns of Σ
1/2
1 V †

1,

Cr = first ny rows of U1Σ
1/2
1 .

 (A 9)
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yu

FIGURE 21. Block diagram considered for H∞ loop-shaping.

In Ma et al. (2011), it was shown that the ROM obtained with both BPOD and the
ERA are in fact identical. Indeed Z †AX = H2, and hence

Ar = Σ
−1/2
1 U1(Z

†AX)V 1Σ
−1/2
1

= ŜAT̂

= Â. (A 10)

Similarly, using (A 5a) we have Σ
1/2
1 V †

1 =Σ
−1/2
1 U†

1H1 and since the first nu columns
of H1 are equal to Z †B, we have Br= B̂. Finally U1Σ

1/2
1 =H1V 1Σ

−1/2
1 and again since

the first ny rows of H1 are equal to CX , we have Cr = Ĉ.
This approach therefore also provides a way of obtaining balanced ROMs, but at

an even lower computational cost, and without the need for an adjoint solver as it is
only based on sensor measurements from as little as one impulse response simulation.
This article focuses mainly on the ERA and models are obtained using this method
in §§ 3.3 and 3.4.

Appendix B. H∞ loop-shaping
B.1. The generalised stability margin

In H∞ loop-shaping, the control system shown in figure 21 is considered. Here, Gw
is a shaped linear model, with input and output disturbances d1 and d2, respectively;
K∞ is a controller, which is subject to input and output noise sources n1 and n2,
respectively. The nominal inputs and outputs to the system are u and y, respectively.
Note that a positive feedback sign convention is used here.

The transfer functions from the disturbance and noise sources to the input and
output signals are given by(

u
y

)
=
[

K∞
I

]
(I −GwK∞)−1[Gw I]

(
d1
d2

)
+
[

I
Gw

]
(I −K∞Gw)

−1[K∞ I]
(

n1
n2

)
, (B 1)

where I is the identity matrix. The generalised stability margin of the feedback
configuration [Gw, K∞] is defined as the inverse of the H∞ norm of the second set
of transfer functions if [Gw,K∞] is internally stable (i.e. if all transfer functions from
n1 and n2 to u and y are stable) and to 0 if not:

b(Gw,K∞)=


∥∥∥∥[ I

Gw

]
(I −K∞Gw)

−1[K∞ I]
∥∥∥∥−1

∞
if [Gw,K∞] is stable,

0 otherwise.
(B 2)
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The generalised stability margin can only take values between 0 and 1. Maximising
b(Gw, K∞) can be shown (Vinnicombe 2001; Jones et al. 2015) to maximise the
robust stability of the system with respect to perturbations to the normalised coprime
factors of the model, which can be used to represent a large set of realistic model
uncertainties. In fact, it can be shown (Vinnicombe 2001) that the norms of both sets
of transfer functions are equal:∥∥∥∥[K∞

I

]
(I −GwK∞)−1[Gw I]

∥∥∥∥
∞
=
∥∥∥∥[ I

Gw

]
(I −K∞Gw)

−1[K∞ I]
∥∥∥∥
∞
. (B 3)

Hence, maximising b(Gw,K∞) minimises the influence of the worst-case disturbances
entering the model from all positions in the feedback loop and can be seen as giving
a measure of robust performance as well as robust stability (Jones et al. 2015).

B.2. Controller synthesis
In the H∞ loop-shaping procedure proposed by McFarlane & Glover (1992), the
designer first chooses frequency-dependent weights W to shape a nominal model
G0. For SISO systems like the ones considered here, the shaped model is simply
Gw =WG0. The weights are chosen to enforce the performance criteria for the given
application.

In the second step of the design procedure, the controller K∞ that maximises
b(Gw, K∞) is identified, typically using the ncfsyn command in MATLAB. If the
resulting value of b(Gw, K∞) is acceptably large (usually 0.2–0.3 is sufficient
(Vinnicombe 2001)), then the controller can be expected to provide reasonable
robustness to the closed-loop system. If not, one must redesign the weights W and/or
modify the actual system and/or the nominal model G0. In the final step, once an
acceptable K∞ has been designed, the final controller is generated by absorbing the
weights within the controller so that K =K∞W.

B.3. The ν-gap metric
The ν-gap metric, introduced by Vinnicombe (1993), is a measure of uncertainty that
fits naturally into the H∞ loop-shaping framework. The ν-gap between two SISO
linear rational models G1 and G2 can be evaluated directly from their frequency
responses,

δν(G1,G2)= sup
ω

|G1(iω)−G2(iω)|
(1+ |G1(iω)|2)1/2(1+ |G2(iω)|2)1/2 , (B 4)

where ω is the angular frequency, if the following conditions are satisfied:

1+G2(−iω)G1(iω) 6= 0, ∀ω,
wno[1+G2(−iω)G1(iω)] − η[G1] − η[G2] = 0.

}
(B 5)

Here, given a linear rational SISO model whose frequency response is G(iω), η[G] is
its number of open right half-plane (unstable) poles and wno[G] is its winding number,
referring to the number of anticlockwise encirclements of the origin of G(iω) in the
complex plane. If the conditions above are not satisfied, then δν(G1,G2)= 1. Note that
δν(G1,G2)= δν(G2,G1) and that, for identical systems, δν(G1,G1)= 0.
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In order to use the ν-gap within the H∞ loop-shaping procedure outlined above,
one typically first obtains a nominal model G0 and a family of ‘perturbed’ models
that collectively represent an uncertain system, where the ith model is Gi. Then, after
designing the weights W as discussed above, the ν-gap is calculated for each shaped
perturbed model: δν(WG0,WGi).

The shaped nominal model is then used to obtain K =K∞W. At this stage, the ν-
gap can be used to provide guarantees regarding the stability of the model family. As
described by Vinnicombe (1993), given weights W and a controller K∞ that result in
a stability margin of b(WG0,K∞)= β, two scenarios can arise for each Gi:

(i) δν(WG0,WGi) < β, in which case WGi is guaranteed to be stabilised by K∞;
(ii) δν(WG0, WGi) > β, in which case there exists a controller that stabilises WG0

with a stability margin of a least β but destabilises WGi.

Note that the shaped models are again used in all cases. The second scenario is
problematic since it is possible that our particular choice of K∞ does not stabilise
WGi. In this case, one option is to alter the system/models in order to reduce the
associated uncertainty. Alternatively, the weights W can be changed in order to ensure
b(WG0,K∞) > δν(WG0,WGi) for all Gi. An important note therefore is that the ν-gap
only provides information regarding the similarity of two models in feedback given the
weights W and is not a measure of the similarity between the two open-loop models
in general. In other words, modifying W is likely to have a significant impact on the
calculated ν-gap.
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