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We consider the size spectrum of entrained bubbles under strong free-surface
turbulence (SFST). We investigate the entrainment bubble-size spectrum per unit
(mean) interface area, N E

a (r), with dimension length−3, and develop a physical/
mechanistic model for N E

a (r) through energy arguments. The model obtains two
distinct regimes of N E

a (r), separated by bubble-size scale r0. For bubble radius
r> r0, the effects of gravity g dominate those of the surface tension force σ/ρ, and
N E

a (r) ∝ g−1ε2/3r−10/3, where ε is the turbulence dissipation rate. For r < r0, surface
tension is more important and N E

a (r) ∝ (σ/ρ)−1ε2/3r−4/3. From the model, we show
that r0 ≈ rc = 1/2

√
σ/ρg, the capillary length scale, and not the generally assumed

Hinze scale rH . For an air–water interface and Earth gravity, rc≈ 1.5 mm. The model
provides an ε–r entrainment regime map that identifies a critical dissipation rate εcr

(constant for given g and σ/ρ) above which there is appreciable air entrainment,
thus separating SFST and weak FST. We confirm the theoretical model and its
predictions using two-phase, high-fidelity direct numerical simulations of a canonical
FST flow using the conservative volume-of-fluid method: the respective power laws
of N E

a (r) ∝ r−10/3 and r−4/3 for r > r0 and r < r0; the value r0 = rc; the scaling
N E

a (r)∝ ε2/3; and the predictions of the ε–r entrainment regime map.

Key words: bubble dynamics, multiphase flow

1. Introduction

Air entrainment occurs and plays important roles in both natural processes and
engineering applications. Quantifying the total volume, size distribution and scale
dependence of entrained air in free-surface turbulence is key to modelling the natural
air entrainment and gas transfer across the air–sea interface in ocean breaking waves

† Email address for correspondence: yue@mit.edu
c© The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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(Deane & Stokes 2002) and the design of aeration cascades to increase oxygen
concentration in water treatment plants (Chanson 1996).

To date, much of the understanding of air entrainment is in the context of breaking
waves. Deane & Stokes (2002) measured the bulk bubble-size spectra (per unit
volume) N(r) inside breaking waves in the laboratory. In the initial acoustic phase,
when entrainment primarily occurs, they identified two distinct power-law regimes
of N(r), depending on the bubble size r. For r & 1 mm, N(r) ∝ r−10/3, while for
r . 1 mm, N(r)∝ r−3/2. They calculated the Hinze scale rH (Hinze 1955) using

rH = 2−8/5(Wec σ/ρ)
3/5ε−2/5, (1.1)

where Wec ≈ 4.7 is the critical Weber number for bubble breakup by turbulence
predicted from experiments (Lewis 1982; Martínez-Bazán, Montanes & Lasheras
1999). Using the fact that rH in the experiments was close to the separation scale
r0∼ 1 mm, they argued that r0 is rH . In the quiescent phase (∼1.5 s after the acoustic
phase) the bubble plume evolved rapidly under the influence of advection, turbulent
diffusion and buoyant degassing, with an accompanying (more complex) evolution of
N(r). For the air entrainment phase, other researchers (Loewen, O’Dor & Skafel 1996;
Rojas & Loewen 2007; Blenkinsopp & Chaplin 2010; Deike, Melville & Popinet
2016; Wang, Yang & Stern 2016) confirm the power-law dependence N(r) ∝ r−10/3

for larger bubbles in breaking waves experiments and simulations. For the regime
r . r0, Rojas & Loewen (2007) and Wang et al. (2016) obtained similar results to
those of Deane & Stokes (2002).

Several parameterizations have been proposed for the air entrainment phase N(r).
Garrett, Li & Farmer (2000) performed a dimensional analysis in which N(r)
(dimension L−4) is assumed to depend on the turbulence dissipation rate ε, the average
rate of supply of air Q and the bubble radius r, and obtained a parameterization of
the form

N(r)∝Qε−1/3r−10/3. (1.2)

Deane & Stokes (2002) pointed out that (1.2) is valid only for r & rH . For r . rH ,
surface tension becomes important, requiring a different scale dependence. Performing
a similar dimensional analysis for r < rH , and assuming N(r) is a multiplicative
function of surface tension σ , liquid density ρ, jet velocity v and bubble radius r,
they obtain a N(r) scaling for these smaller bubbles:

N(r)∝Q(σ/ρ)−3/2v2r−3/2. (1.3)

The models (1.2) and (1.3) originate from dimensional analysis and it is not clear
if they reflect all of the underlying physical mechanism(s) of air entrainment. In
particular, the inverse dependence on ε in (1.2) and the non-dependence on ε in (1.3)
of N(r) seem non-physical. Since turbulence provides energy for bubble entrainment
(Brocchini & Peregrine 2001), a greater ε should increase the magnitude of N(r).
Deike et al. (2016) argued that Q should itself be a function of ε, and the combination
of Q and ε−1/3 in (1.2) could lead to a positive exponent for ε. Similarly for (1.3),
we can obtain a scaling of ε2/3 instead of ε0 if ε ∝ v3/Dj, with Dj the jet diameter.
Finally, the identification of the regime separation scale r0 with the Hinze scale rH ,
while physically plausible, is not definitive. The possibility that r0 derives from other
relevant physical scales of the problem cannot be ruled out.

In this paper, we investigate the air entrainment across a free surface induced
by underlying strong free-surface turbulence (SFST), specifically its bubble-size
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distribution and scale dependence. We define N E
a (r) (dimension L−3) as the

bubble-size spectrum per unit mean interface area (over a unit time in the quasi-steady
air entrainment process). Through energy arguments, we show (in § 2) that N E

a (r)
follows two power-law regimes, depending on bubble size r, separated by a
bubble-size length scale r0. For r > r0, N E

a (r) scales as g−1ε2/3r−10/3, describing
a gravity-dominated entrainment regime. For r< r0, N E

a (r) scales as (σ/ρ)−1ε2/3r−4/3,
describing a surface-tension-dominated entrainment regime. We show that r0 is in
fact the capillary scale rc = 1/2

√
σ/ρg, independent of flow parameters such as ε;

and hence not related to the Hinze scale rH as is often assumed (Deane & Stokes
2002; Wang et al. 2016). Inspired by the diagram of the (L, q)-plane in Brocchini
& Peregrine (2001), we derive a (r, ε)-plane prediction of when air entrainment
occurs in free-surface turbulence (FST). The resulting regime map predicts a critical
dissipation value εcr below which air entrainment is suppressed, thus demarcating
weak FST (WFST) from SFST in terms of air entrainment. Like r0, εcr depends only
on the physical constants g and σ/ρ.

In § 3, we confirm our theoretical predictions using high-resolution direct numerical
simulations (DNS) of canonical FST flows, solving three-dimensional two-phase
incompressible Navier–Stokes equations with a fully nonlinear interface resolved by
the conservative volume-of-fluid method (cVOF) (Weymouth & Yue 2010). We note
that the surface entrainment size spectrum N E

a (r) has a direct relationship to the (bulk)
volume size spectrum Na(r) generally measured in experiments and simulations by
labelling and sizing bubbles in the bulk. For a relatively short time after the onset of
entrainment, before subsurface mechanisms come into play, Na(r) closely resembles
N E

a (r) in terms of the power-law regimes and slopes. With increasing time, Na(r)
evolves (primarily) as a result of turbulent bubble fragmentation and degassing, and
can become qualitatively different from N E

a (r) (Yu et al. 2019). We perform DNS
over a range of Froude (Fr) and Weber (We) numbers for the FST and obtain Na(r)
at a relatively early time. The DNS confirms the key predictions of the scaling
model: the gravity- and surface-tension-dominated power-law regimes and slopes;
the separation scale r0 = rc (≈1.5 mm for an air–water interface in Earth gravity);
and the scaling with ε2/3 (over the range we considered). Plotting the DNS data
on the ε–r regime map also confirms the critical dissipation for air entrainment,
εcr ∼O(10−2 m2 s−3), for an air–water interface and Earth gravity.

2. Scaling for bubble-size distribution of air entrainment in SFST

To model the size spectrum of entrainment across a given free-surface area, we
consider the entrainment size spectrum N E

a (r), of dimension L−3, where N E
a (r
′)δr is

the number of bubbles of (equivalent) radius r′< r< r′+ δr entrained per unit (mean)
free-surface area. For simplicity, we assume quasi-steady air entrainment over unit
time. A physical/mechanistic derivation for the scaling of N E

a (r) through an energy
argument requires two assumptions. First, we assume that the only source of bubble
generation is the surrounding turbulence (Brocchini & Peregrine 2001). Second, we
assume that the void fraction of bubbles is small and does not affect the dynamics of
the bulk water turbulence (Garrett et al. 2000).

Consider a simplified entrainment scenario of a static spherical air bubble of radius
r formed at a depth 2rα under the free surface (a change in energy between Scenario
1 and 2 sketched in figure 1a). We assume the constant α is of order 1 to account
for this simplification. The minimum energy required to entrain such a bubble, Eb(r),
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FIGURE 1. (a) Scenarios considered in the energy argument for bubble entrainment.
(b) Sheared free-surface turbulent flow for DNS. Yu et al. (2019) contains full simulation
details.

is the sum of the potential energy and the surface energy:

Eb(r)= g
4
3
πr32rα + σ

ρ
4πr2. (2.1)

The total number of bubbles of radius r entrained across a (initial) surface area Ah is
N E

a (r)Ah dr and the total energy required for entrainment of these bubbles is

N E
a (r)Ah drEb(r)=N E

a (r)Ah dr
(

g
4
3
πr32rα + σ

ρ
4πr2

)
. (2.2)

Using our first assumption, this amount of energy is supplied by turbulence over
a near-surface region of depth r (around the entrained bubbles). Defining E(k) as
the turbulence energy spectrum, the turbulence energy per unit volume at length
scale 1/k is given by |E(k) dk|. We argue that the turbulence of length scale 1/k is
primarily responsible for the entrainment of bubbles of radius r∼ 1/k. The available
energy supplied by near-surface turbulence for entrainment within a volume Ahr is
proportional to

|E(k) dk|Ahr∝ |E(r−1) dr−1|Ahr= E(r−1)r−2 drAhr. (2.3)

From an energy argument, (2.2) is proportional to (2.3) which yields

N E
a (r)Ah dr

(
g

4
3
πr32rα + σ

ρ
4πr2

)
∝ E(r−1)r−2 drAhr. (2.4)

For SFST, the characteristic large surface deformations (and large Fr and We) weaken
the free-surface boundary conditions, resulting in essentially isotropic near-surface
turbulence (Yu et al. 2019). Thus, the Kolmogorov spectrum E(r−1) ∝ ε2/3r5/3

provides the near-surface turbulence energy spectrum (this is also confirmed in
the DNS, see figure 4). Using the Kolmogorov spectrum, (2.4) becomes

N E
a (r)∝

(
2
3

grα + σ
ρ

1
r

)−1

ε2/3r−7/3. (2.5)
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For flows with different underlying turbulence spectra (for example, due to large
bubble density, Alméras et al. 2017), the predicted bubble-size spectra will be
modified accordingly.

From (2.5), we observe two regimes of entrainment by considering f (r) =
(2/3)grα + (σ/ρ)(1/r). For large r, gravity dominates f (r) as (2/3)grα is large,
and (2.5) becomes

N E
a (r)∝ g−1ε2/3r−10/3. (2.6)

For small r, surface tension dominates f (r) as (σ/ρ)(1/r) is large, and (2.5) becomes

N E
a (r)∝ (σ/ρ)−1ε2/3r−4/3. (2.7)

The scale separating the two regimes r0 occurs when the two terms in f (r)
are comparable at r0 = √1.5σ/αρg. This capillary scale r0 ≈ rc = 0.5

√
σ/ρg

corresponds to a balance between gravity and surface tension forces, or Bond number
Bo≡ ρg(2rc)

2/σ = 1.
We note that (2.6) and (2.7) are also obtained directly from dimensional analysis

using the relevant set of physical parameters. In contrast to Garrett et al. (2000) and
Deane & Stokes (2002), for free-surface air entrainment, the size spectrum per unit
surface area, N E

a (r) (dimension L−3), is powered by the FST kinetic energy measured
by ε (L2T−3). This is balanced by gravity g (LT−2) and surface tension σ/ρ (L3T−2).
Matching dimensions, we immediately obtain the scaling results for the respective size
regimes.

Several remarks are in order. First, for the r > r0 regime, the power-law slope
r−10/3 happens to coincide with that of Garrett et al. (2000) – for example, (1.2).
However, the underlying physical processes in these two models are different in that
Garrett et al. (2000) considered a cascade scenario of bubble fragmentation rather
than air entrainment driven by surface turbulence as in our model. In fact, the slopes
of the two power-law regimes in (2.6) and (2.7) result directly from the power-law
slope of the near-surface isotropic SFST energy spectrum. One physical explanation
for the coincidental similarity of the power-law slope of our model and Garrett et al.
(2000) is to frame the air–water boundary of an initially large cavity immersed in
an isotropic turbulent field as a free surface with underlying isotropic near-surface
turbulence. In this context, the bubble generation process through fragmentation is
similar to turbulence air entrainment (Hendrickson et al. 2019). Second, for r< r0 in
the surface-tension-dominated regime, the power-law slope in (2.7) differs (slightly)
from the model of Deane & Stokes (2002) in (1.3). Third, the (positive exponent)
dependence on turbulence dissipation rate ∼ε2/3 in the current models (2.6) and (2.7)
is physically reasonable compared to that of (1.2) (∼ε−1/3) and (1.3) (∼ε0). In the
current model, stronger surface turbulence leads to more entrainment. Finally, the
separation scale r0 is independent of flow parameters and not strictly related to the
Hinze scale rH as generally assumed (without strict theoretical consideration). The
present theory provides a direct argument that r0 is the physical capillary scale r0≈ rc,
which, for an air–water interface under the influence of Earth gravity, is rc≈ 1.5 mm.

As discussed in § 1, the scale dependence of the surface entrainment size spectrum
N E

a (r) should be reflected in the underlying volume size spectrum Na(r) providing
it is early enough in time, when fragmentation and degassing are not a factor.
Figure 2 shows the theoretical prediction for N E

a (r) in (2.5) superposed on available
experimental and DNS data for Na(r) obtained for both breaking waves and SFST
flows. For comparison of the spectral shape/slope, we normalize the magnitude of
each dataset by its values at some (arbitrary) radius r = 2 mm. Despite the fact that
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FIGURE 2. Comparison of N E
a (r) in (2.5) (with α = 6) and the measured bubble-size

spectrum Na(r) inside breaking waves from the literature. All the data and (2.5) are
normalized by their own values at r = 2 mm: ——, equation (2.5); E, Deane & Stokes
(2002);@, Rojas & Loewen (2007); , Wang et al. (2016); ∗, DNS of Fr2=21, We=2100
and Re= 1200 in § 3;A, Yu et al. (2019).

most of the datasets in figure 2 are from breaking waves, the scale dependence of
the data appears to be well described by (2.5) for the entire range of r. We point out
that in figure 2 the transition between the two regimes for most of the data occurs
near r0 = 1–2 mm, despite presumably different values of turbulent dissipation rates
for the different datasets.

Air entrainment in SFST is a result of two competing effects on the free surface: the
disrupting effect of near-surface turbulence and the stabilizing effect from gravity and
surface tension. Comparing the two effects provides criteria for the lower and upper
bounds rl and ru of bubble size that can be entrained. We argue that the lower bound
rl corresponds to a scale where turbulence disturbance is much smaller than surface
tension forces – that is, Wet = ρv2(2rl)/σ =Wel (� 1), where v2 ≈ 2.0(εd)2/3 is the
turbulence fluctuation over a distance d= 2rl; rl can be further written as

rl = 2−8/5(σ/ρWel)
3/5ε−2/5. (2.8)

Equation (2.8) is the same form as the Hinze scale (1.1), with Wel replacing Wec.
Both rl and rH correspond to the critical length scales resulting from the competition
between near-surface turbulence and surface tension forces. While the length scale rH

is for bubbles with a stable spherical interface, rl is the length scale associated with
the breakup of a free surface with a relatively unstable flat interface. As such, we
expect Wel�Wec (and consequently rl� rH).

We define the upper bound bubble length scale ru similarly from the (turbulence)
Froude number Fr2

t = v2/g(2ru)= Fr2
u (�1), which yields

ru = 4(Fr2
ug)−3ε2. (2.9)
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Fr2 = 10, We = 105, Re = 1000

Fr2 = 21, We = 2100, Re = 1200

FIGURE 3. Conceptual ε–r regime map to predict FST-driven entrainment for an air–water
interface under Earth gravity: rl of (2.8); ru of (2.9); with εc≈ 0.02 m2 s−3

and rc≈1.5 mm. For DNS data: , range of measured entrained bubbles; - - -, potential
size range of DNS. For visualization: Wel ≡ 0.1 and Fr2

u ≡ 0.1 (consistent with physical
arguments).

With the expressions (2.8) and (2.9) in terms of ε, we obtain a critical turbulent
dissipation εcr when ru(εcr)= rl(εcr), below which no entrainment would occur:

εcr =Cεg5/4(σ/ρ)1/4. (2.10)

As with the separation scale r0 for N E
a (r), εcr is a constant that depends only on

the interface media and value of gravity. The upper and lower bounds (2.8) and (2.9)
enable us to predict an ε–r regime map for bubble entrainment in FST (see figure 3,
also see Brocchini & Peregrine (2001)). The dependencies of rl and ru on ε demarcate
four regions in the (ε–r)-plane. The strong free-surface turbulence regime (ε > εcr) is
where entrainment occurs within the size range rl < r < ru, which we denote Region
2 in figure 3. The bubble-size range increases with ε. Turbulence will not entrain
bubbles outside of this size range due to dominant gravity or surface tension forces.
The weak free-surface turbulence regime (ε < εcr) is where no entrainment occurs for
three different physical reasons. In Region 1, r< rl and surface tension forces stabilize
the free surface. In Region 3, r> ru and strong gravity forces suppress air entrainment.
In Region 0, both gravity and surface tension forces suppress entrainment.

3. Direct numerical simulations of FST

We perform DNS of a canonical problem of three-dimensional incompressible
two-phase (air and water) viscous turbulent flow with turbulent kinetic energy supplied
by a sheared underlying bulk water flow (see figure 1b). Extensive documentation
of the turbulence characteristics of this flow exists for non-entraining WFST at low
Fr (Shen et al. 1999; Shen, Triantafyllou & Yue 2000, 2001; Shen & Yue 2001)
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FIGURE 4. One-dimensional near-surface energy spectrum E11(k1) (——), E22(k1)
(– – –), E33(k1) (— · —) at t= 56 for DNS-1.

and air-entraining SFST at high Fr (Yu et al. 2019). We solve the three-dimensional
two-phase incompressible Navier–Stokes equations with a fully nonlinear interface
resolved by the cVOF method (Weymouth & Yue 2010), which conserves volume to
machine accuracy. Yu et al. (2019) provides the details of numerical implementations
and verifications. For the data presented here, the mean shear-flow depth L and
velocity deficit U are the characteristic length and velocity scales and normalize all
the variables unless otherwise stated, with Fr2=U2/gL, We=ρU2L/σ and Re=UL/ν.
The domain size is 63 and the grid size ∆≈ 0.01. In the analyses below, we report
(only) bubbles that are considered resolved in the presence of surface tension in the
DNS corresponding to equivalent diameter 2r & 7∆. The unreported entrained volume
is .1 % for all cases. For SFST, we present results for two high-resolution DNS, both
with Bo= ρgL2/σ = 100. DNS-1 has parameters Fr2 = 21, We= 2100 and Re= 1200
and DNS-2 has Fr2 = 24.64, We= 2464 and Re= 1300. We note that for constant g,
σ/ρ and ν, DNS-2 has a larger U and the same L as DNS-1.

The DNS results capture the evolution of air-entraining SFST corresponding to
large Fr and We (Yu et al. 2019). Briefly, starting from a quiescent free surface, the
FST grows rapidly due to production by the bulk flow mean shear, followed by a
quasi-steady active entrainment SFST period, after which the FST eventually decays
(and entrainment ceases) due to turbulence diffusion and dissipation. We report results
within the quasi-steady active entrainment SFST period. In this period, turbulence
forms vortical structures of different length scales near the free surface and entrains
bubbles of different sizes (Yu et al. 2019). Figure 4 shows the one-dimensional
energy spectra of near-surface turbulence during the SFST period for DNS-1 (DNS-2
is similar). Consistent with the assumption in § 2, the turbulence shows isotropy, with
the three components having comparable magnitudes and following the Kolmogorov
k−5/3 spectral slope.

Figure 5 shows the volume bubble-size spectra Na(r) for DNS-1 during the active
entrainment period (r is normalized by the capillary scale rc for clarity). The measured
bulk spectrum provides direct support of the scale dependencies of (2.6) and (2.7),
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FIGURE 5. Volume bubble-size spectrum Na(r) during the active entrainment period of
DNS-1:E, at a time sampled within the entrainment period;@, at a time sampled close
to the end of entrainment period; ∗, average of Na(r) at every tL/U = 0.5 within the
entrainment period. Here rc= 0.5

√
σ/ρg is the capillary length scale and rH is the Hinze

scale in (1.1). The two theoretical power laws of r−4/3 and r−10/3 are represented by
——. The inset shows the average volume bubble-size spectrum Na(r) (within the
entrainment period) for: ∗, DNS-1; +, DNS-2.

respectively, for r > r0 and r < r0 with the separation scale r0 ≈ rc. We estimate rH
(shown in figure 5) using the dimensionless form of (1.1), rH = 2−8/5(Wec/We)3/5ε−2/5,
using the DNS-1 near-surface turbulence dissipation rate ε ∼ O(10−3) and Wec = 4.7.
For DNS-1, rH is approximately three times greater than rc, and this scale separation
allows us to confirm that the separation scale between the two regimes is indeed
r0≈ rc and not rH . For this particular DNS case, turbulence fragmentation of entrained
bubbles should not have significant effects on Na(r) within the entrainment period,
because rH is at the upper bound of the measured entrainment. We confirm this by
comparing the three spectra at different times for r< rH in figure 5. This enables us
to estimate N E

a (r) using Na(r) with confidence. The inset of figure 5 shows Na(r)
for both DNS-1 and DNS-2 averaged over the entrainment period. For DNS-2, ε is
increased by a factor of 1.5. However, r0 is the same for both DNS datasets and
occurs at rc (which is the same for both DNS). This further confirms that r0 between
the two power-law entrainment regimes is in fact the capillary scale rc and not the
Hinze scale rH , which changes with ε.

To confirm the scaling of the entrainment model with turbulent dissipation, we
perform a series of lower-resolution DNS with ∆ = 0.027 for FST with Fr2 = 10,
We = 50 000 and Re = 1000, varying the slope of the initial mean shear profile to
achieve different values for ε. Figure 6 shows the linear dependence of the integral
of averaged Na(r) (or entrained volume) plotted against ε2/3 (averaged during the
entrainment period), which confirms the positive exponent scaling of N E

a (r)∝ ε2/3 in
(2.5). Linear regression obtains a horizontal intercept corresponding to ε2/3 ≈ 0.002.
When scaled by an air–water interface under Earth gravity, it provides an independent
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FIGURE 6. Integral of Na(r) over the resolved range of r plotted against ε2/3, normalized
by L and U (f). The average is during the entrainment period for DNS with Fr2= 10 and
We = 50 000 and four variable shear profiles. ——: linear regression model y = 2.01x −
0.00422 with R-square 0.996.

estimate of εcr ≈ 0.03 m2 s−3 that compares well to the 0.02 m2 s−3 value obtained
from figure 3.

Finally, we confirm the prediction of the ε–r entrainment regime map, figure 3,
using FST DNS over a broad range of Fr2, We and ε (by varying the initial mean
shear profiles). We estimate the physical units of the characteristic length scale L and
near-surface turbulence dissipation rate ε using the defined values of Fr2, We and Re
(and assume Earth gravity and an air–water interface). The measured size range of
entrainment as functions of ε for the different cases are superimposed onto the map in
figure 3 (heavy lines). Notice that rl and ru in (2.8) and (2.9) assume an unbounded
turbulence inertial range. For each DNS case, the range of the entrainment bubble
size has a lower bound of ∆ and an upper bound of L as well. This range of (∆, L)
is represented by dashed lines. The selected DNS cases with/without air entrainment
correctly fall into the predicted regions of strong/weak FST, substantially confirming
the predictions of § 2.

4. Conclusion

We perform theoretical and numerical investigations of air entrainment, and
specifically the entrainment bubble-size distribution under SFST. Using arguments
relating the energy required for bubble entrainment/formation and available turbulent
kinetic energy in the SFST, we obtain a theoretical model for the surface entrainment
bubble-size spectrum N E

a (r). The model describes two size regimes separated by a
scale r0, with N E

a (r) ∝ g−1ε2/3r−10/3 for r > r0, and N E
a (r) ∝ (σ/ρ)−1ε2/3r−4/3 for

r< r0, where r is the (equivalent) bubble radius, g is gravity, σ is the surface tension,
ρ is the water density and ε is the turbulent dissipation rate of the SFST. From
the model, we obtain that r0 is the capillary scale rc (≈1.5 mm for an air–water
interface under Earth gravity), distinct from the Hinze scale rH . We also propose an

885 R2-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

98
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.986


Scale separation and dependence of FST entrainment

ε–r regime map to describe air entrainment in free-surface turbulent flows. The map
predicts a critical value of the dissipation rate εcr ≈ 0.02 m2 s−3 above which air
entrainment occurs. High-resolution volume-conserving two-phase DNS of canonical
shear-flow FST confirm the theoretical model and predictions. Namely, it provides
direct evidence of the two power-law regimes and slopes, the separation scale r0≈ rc,
the positive exponent of the turbulent dissipation ε2/3, and the ε–r entrainment regime.

We remark that, while the (shear-flow) FST we consider is canonical and
has been studied extensively theoretically and computationally, there exist few
detailed experimental investigations of SFST air entrainment. Direct experimental
measurements to support the present theoretical and DNS results would be invaluable.
In particular, it would be useful to confirm the scale separation we find for additional
combinations of ρ, σ and ε. The energy argument and predictions for SFST air
entrainment may provide insights into more complex air-entraining, free-surface
problems, such as wave breaking (see figure 2) and ship wakes (Hendrickson et al.
2019). These are subjects of our current investigations.

Acknowledgements

This work was funded by the Office of Naval Research N00014-10-1-0630 and
N00014-17-1-2089 under the guidance of Dr K.-H. Kim and Dr T. C. Fu. The
computational resources for the effort were funded through the High Performance
Modernization Program at the Department of Defense.

Declaration of interests

The authors report no conflict of interest.

References

ALMÉRAS, E., MATHAI, V., LOHSE, D. & SUN, C. 2017 Experimental investigation of the turbulence
induced by a bubble swarm rising within incident turbulence. J. Fluid Mech. 825, 1091–1112.

BLENKINSOPP, C. E. & CHAPLIN, J. R. 2010 Bubble size measurements in breaking waves using
optical fiber phase detection probes. IEEE J. Ocean. Engng 35 (2), 388–401.

BROCCHINI, M. & PEREGRINE, D. H. 2001 The dynamics of strong turbulence at free surfaces.
Part 1. Description. J. Fluid Mech. 449, 225–254.

CHANSON, H. 1996 Air Bubble Entrainment in Free-surface Turbulent Shear Flows. Elsevier.
DEANE, G. B. & STOKES, M. D. 2002 Scale dependence of bubble creation mechanisms in breaking

waves. Nature 418 (6900), 839–844.
DEIKE, L., MELVILLE, W. K. & POPINET, S. 2016 Air entrainment and bubble statistics in breaking

waves. J. Fluid Mech. 801, 91–129.
GARRETT, C., LI, M. & FARMER, D. 2000 The connection between bubble size spectra and energy

dissipation rates in the upper ocean. J. Phys. Oceanogr. 30 (9), 2163–2171.
HENDRICKSON, K., WEYMOUTH, G. D., YU, X. & YUE, D. K. P. 2019 Wake behind a three-

dimensional dry transom stern. Part 1. Flow structure and large-scale air entrainment. J. Fluid
Mech. 875, 854–883.

HINZE, J. O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes.
AIChE J. 1 (3), 289–295.

LEWIS, D. A. 1982 Bubble splitting in shear flow. Trans. Inst. Chem. Engrs 60, 283–291.
LOEWEN, M. R., O’DOR, M. A. & SKAFEL, M. G. 1996 Bubbles entrained by mechanically

generated breaking waves. J. Geophys. Res. 101 (C9), 20759–20769.
MARTÍNEZ-BAZÁN, C., MONTANES, J. L. & LASHERAS, J. C. 1999 On the breakup of an air

bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid
Mech. 401, 157–182.

885 R2-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

98
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.986


X. Yu, K. Hendrickson and D. K. P. Yue

ROJAS, G. & LOEWEN, M. R. 2007 Fiber-optic probe measurements of void fraction and bubble
size distributions beneath breaking waves. Exp. Fluids 43 (6), 895–906.

SHEN, L., TRIANTAFYLLOU, G. S. & YUE, D. K. P. 2000 Turbulent diffusion near a free surface.
J. Fluid Mech. 407, 145–166.

SHEN, L., TRIANTAFYLLOU, G. S. & YUE, D. K. P. 2001 Mixing of a passive scalar near a free
surface. Phys. Fluids 13 (4), 913–926.

SHEN, L. & YUE, D. K. P. 2001 Large-eddy simulation of free-surface turbulence. J. Fluid Mech.
440, 75–116.

SHEN, L., ZHANG, X., YUE, D. K. P. & TRIANTAFYLLOU, G. S. 1999 The surface layer for
free-surface turbulent flows. J. Fluid Mech. 386, 167–212.

WANG, Z., YANG, J. & STERN, F. 2016 High-fidelity simulations of bubble, droplet and spray
formation in breaking waves. J. Fluid Mech. 792, 307–327.

WEYMOUTH, G. D. & YUE, D. K. P. 2010 Conservative volume-of-fluid method for free-surface
simulations on Cartesian-grids. J. Comput. Phys. 229 (8), 2853–2865.

YU, X., HENDRICKSON, K., CAMPBELL, B. K. & YUE, D. K. P. 2019 Numerical investigation of
shear-flow free-surface turbulence and air entrainment at large Froude and Weber numbers.
J. Fluid Mech. 880, 209–238.

885 R2-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

98
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.986

	Scale separation and dependence of entrainment bubble-size distribution in free-surface turbulence
	Introduction
	Scaling for bubble-size distribution of air entrainment in SFST
	Direct numerical simulations of FST
	Conclusion
	Acknowledgements
	References


