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An optimal L2 autoconvolution inequality

Ethan Patrick White

Abstract. Let F denote the set of functions f ∶ [−1/2, 1/2] → R≥0 such that ∫ f = 1. We determine the
value of inf f ∈F ∥ f ∗ f ∥2

2 up to a 4 ⋅ 10−6 error, thereby making progress on a problem asked by Ben
Green. Furthermore, we prove that a unique minimizer exists. As a corollary, we obtain improvements
on the maximum size of Bh[g] sets for (g , h) ∈ {(2, 2), (3, 2), (4, 2), (1, 3), (1, 4)}.

1 Introduction

Let g , h, N be positive integers. A subset A ⊂ [N] = {1, 2, . . . , N} is a Bh[g] set if, for
every x ∈ Z, there are at most g representations of the form

a1 + a2 +⋯+ ah = x , a i ∈ A, 1 ≤ i ≤ h,

where two representations are considered to be the same if they are permutations of
each other. As a shorthand, we let Bh = Bh[1]. Note that B2 sets are the very well-
known Sidon sets. Let Rh[g](N) denote the largest size of subset A ⊂ [N] such that A
is a Bh[g] set. By counting the number of ordered h-tuples of elements of A, we have
the simple bound (∣A∣+h−1

h ) ≤ ghN , which implies Rh[g](N) ≤ (ghh!N)1/h . On the
other hand, Bose and Chowla showed that there exist Bh sets of size N 1/h(1 + o(1)),
where we use o(1) to denote a term going to zero as N →∞ [2]. This lower bound
result has been generalized to more pairs (g , h) by several authors [3, 4, 11]. Recently,
the bound Rh[g](N) ≥ (Ng)1/h(1 − o(1)) for all N, g ≥ 1, and h ≥ 2 was obtained in
[10]. In general, estimating the constant

σh(g) = lim
N→∞

Rh[g](N)
(gN)1/h

is an open problem. In fact, the only case for which the above limit is known to exist
is in the case of the classical Sidon sets, where we have σ2(1) = 1. Henceforth, we will
understand upper and lower bounds on σh(g) to be estimates on the lim sup and
lim inf, respectively.

Several improved upper bounds for σh(g) have been obtained by various authors,
for references to many of them, as well as an excellent resource on Bh[g] sets in general
(see [16]). In this work, we will improve the upper bounds on σh(g) for h = 2 and
2 ≤ g ≤ 4, as well as g = 1 and h = 3, 4. No improvement on σh(g) for g = 1 and h = 3, 4
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has been made since [7] in 2001. The most recent improvements on estimates for σ2(g)
which are the best for 2 ≤ g ≤ 4 are the following:

σ2(g) ≤
√

1.75(2 − 1/g) Green [7]
≤
√

1.74217(2 − 1/g) Yu [18]
≤
√

1.740463(2 − 1/g). Habsieger and Plagne [9]

On the other hand, for g ≥ 5, the best recent upper bounds are the following:

σ2(g) ≤
√

3.4796 Cilleruelo, Ruzsa and Trujillo [5]
≤
√

3.1696 Martin and O’Bryant [13]
≤
√

3.1377 Matolcsi and Vinuesa [15]
≤
√

3.1250. Cloninger and Steinerberger [6]

Interestingly, the key to improving upper bounds on σ2(g) is to better estimate the
2-norm of an autoconvolution for small g and the infinity norm of an autoconvolution
for large g. In the case of the infinity norm, the best-known results are

0.64 ≤ inf
f ∶[−1/2,1/2]→R≥0

∫ f = 1

∥ f ∗ f ∥∞ ≤ 0.75496.

The lower bound is due to Cloninger and Steinerberger [6], and the upper bound is
due to Matolcsi and Vinuesa [15]. It is believed that the upper bound above is closer to
the truth. The method of Cloninger and Steinerberger is computational, and is limited
by a nonconvex optimization program.

Throughout, we denote by F the family of nonnegative functions f ∈ L1(−1/2, 1/2)
such that ∫ f = 1. For 1 ≤ p ≤ ∞, we define

μp = inf
f ∈F

∥ f ∗ f ∥p = inf
f ∈F

⎛
⎝∫

1

−1
(∫

1/2

−1/2
f (t) f (x − t)dt)

p

dx
⎞
⎠

1/p

,

the minimum p-norm of the autoconvolution supported on a unit interval. Determin-
ing μp precisely is an open problem for all values of p, and is the content of Problem
35 in Ben Green’s 100 open problems [8]. Prior to this work, the best-known bounds
for the p = 2 case are

0.574575 ≤ μ2
2 ≤ 0.640733,

where the lower bound is due to Martin and O’Bryant [14] and the upper bound is due
to Green [7]. Our main theorem is the following, and we improve upper and lower
bounds for μ2.

Theorem 1.1 The infimum of the L2-norm of an autoconvolution f ∗ f for f ∈ F can
be bounded as follows:

0.574636066 ≤ μ2
2 ≤ 0.574642912.
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110 E. P. White

Figure 1: A close approximation to the minimizer.

We are also able to prove that there exists a unique minimizer f ∈ F of the L2-
norm of an autoconvolution. Our method produces arbitrarily close approximations
to the minimizer. The function f ∈ F with the smallest L2-norm of its autoconvolution
we computed is shown in Figure 1. We also show its autoconvolution f ∗ f , and
the function π f (x)

√
1/4 − x2. Notably, the function π f (x)

√
1/4 − x2 takes values

in [0.99, 1.02] for ∣x∣ ≤ 0.499. A singularity of strength 1/
√

x at the boundary of the
[−1/2, 1/2] domain creates an autoconvolution that neither vanishes nor “blows up”
at the boundary, as demonstrated by f ∗ f . Similar functions were studied by Barnard
in Steinerberger on their work on convolution inequalities [1].

Combining our new bounds on μ2
2 with methods of Green [7, Theorems 15, 17, and

24] gives the following corollary.

Corollary 1.2 The following asymptotic bounds on Bh[g] sets hold:

σ2(g) ≤
⎛
⎝

2 − 1/g
μ2

2

⎞
⎠

1/2

, σ3(1) ≤
⎛
⎝

2
μ2

2

⎞
⎠

1/3

, σ4(1) ≤
⎛
⎝

4
μ2

2

⎞
⎠

1/4

,

where μ2
2 = 0.574636066 denotes the lower bound on μ2

2 stated in Theorem 1.1.

Corollary 1.2 is an improvement on the previous best upper bounds for σh[g] for
h = 2 and 2 ≤ g ≤ 4 as well as g = 1 and h = 3, 4. One of the main theorems proved by
Green in [7] gives a bound on the additive energy of a discrete function on [N]. We
show that our bound in the continuous case applies to the discrete one, and so the
Theorem 1.1 bound gives another improved estimate.
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Corollary 1.3 Let H∶ [N] → R≥0 be a function with ∑N
j=1 H( j) = N. Then, for all

sufficiently large N, we have

∑
a+b=c+d

H(a)H(b)H(c)H(d) ≥ μ2
2 N3 .

The methods of Habsieger, Plagne, and Yu [9, 18], Cloninger and Steinerberger
[6], and Martin and O’Bryant are all limited by long computation times. In contrast,
the key to our improvement is a convex quadratic optimization program whose
optimum value is shown to converge to μ2

2 . The strategy of using Fourier analysis
to produce a convex program to obtain bounds on a convolution-type inequality was
also employed recently by the author to improve bounds on Erdős’ minimum overlap
problem in [17]. We hope that our methods may also be useful in obtaining estimates
for the infimum of an autoconvolution with respect to other p-norms.

2 Existence and uniqueness of the optimizer

In this section, we prove the existence and uniqueness to the solution of the following
optimization problem:

Infimum:∫
1

−1
( f ∗ f )2(x) dx ,(2.1)

Such that: f ∶ [−1/2, 1/2] → R≥0 ∫
1/2

−1/2
f (x) dx = 1.(2.2)

We remark that (2.2) defines the family F seen in the introduction. For all f ∈
L1(R), we define the Fourier transform on R as

f̃ (y) = ∫
R

e−2πix y f (x) dx .

For any f as in (2.2), we note that f̃ ∗ f = f̃ 2, and so by Parseval’s identity,

∫
1

−1
( f ∗ f )2(x) dx = ∫

R

∣ f̃ (y)∣4 d y.(2.3)

The following proposition proves the existence and uniqueness of an optimizer in
F to (2.1) using the “direct method in the calculus of variations.” A similar method is
used to show the existence of optimizers to autocorrelation inequalities in [12].

Proposition There exists a unique extremizing function f ∈ F to the optimization
problem (2.1).

Proof Let { fn} ⊂ F be a minimizing sequence such that limn→∞ ∥ fn ∗ fn∥2 = μ2.
Since L1 and L∞ are separable, we can apply the sequential Banach–Alaoglu theorem
to conclude the existence of f ∈ L1(−1/2, 1/2) and g ∈ L∞(R) such that

fn
∗⇀ f converges weakly in L1(−1/2, 1/2),

f̃n
∗⇀ g converges weakly in L∞(R),
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112 E. P. White

where possibly we passed to a subsequence of { fn} to make the above hold. For all
h ∈ L1(R), by definition of convergence in the weak topology, we have

⟨g , h⟩ = lim
n→∞

⟨ f̃n , h⟩ = lim
n→∞

⟨ fn , h̃⟩ = ⟨ f , h̃⟩ = ⟨ f̃ , h⟩;

hence g = f̃ . Note that for all y ∈ R, we have

f̃n(y) = ∫
R

fn(x)e−2πix y1(−1/2,1/2)(x) dx ,

and since e−2πix y1(−1/2,1/2)(x) ∈ L∞(R), by weak convergence, we see limn→∞ f̃n(y) =
f̃ (y). In addition, limn→∞ ∣ f̃n(y)∣4 = ∣ f̃ (y)∣4, and so by Fatou’s lemma,

∫
R

∣ f̃ (y)∣4 d y ≤ lim inf
n→∞ ∫

R

∣ f̃n(y)∣4 d y.

Finally, we have

1 = lim
n→∞

⟨1(−1/2,1/2) , fn⟩ = ⟨1(−1/2,1/2) , f ⟩ = ∫
1/2

−1/2
f (x) dx .

We conclude that f ∈ F is an extremizing function. For uniqueness, suppose that
f , g ∈ F satisfy ∥ f̃ ∥4 = ∥g̃∥4 = μ1/2

2 . Then, by Minkowski’s inequality,

∥ f̃ + g̃
2

∥
4
≤ 1

2
(∥ f̃ ∥4 + ∥g̃∥4) = μ1/2

2 .

Minkowski’s inequality above must be an equality, implying f and g are linearly
dependant. Since f , g have the same average value, we conclude that f = g and so
the extremizing function is unique. ∎

Note that the uniqueness of the optimizer implies that it must be even. Throughout,
we will denote the unique optimizer by f◇ ∈ F.

3 Useful identities

For ease of notation, we will always use lowercase letters f , g to denote functions on
[−1/2, 1/2], or period 1 functions. We define the Fourier transform of f ∶ [−1/2, 1/2] →
R for k ∈ Z as

f̂ (k) = ∫
1/2

−1/2
e−2πi kx f (x) dx .

We will use upper case letters F , G to denote functions on [−1, 1] or period 2
functions. We define the Fourier transform of F∶ [−1, 1] → R for k ∈ Z as

F̂(k) = 1
2 ∫

1

−1
e−πi kx f (x) dx .

This is an abuse of the notation “̂,” but which of the two above transforms is meant
will be made clear by the letter case of the function notation. Let f ∈ F and define
F(x) be the extension of f (x) to a function on [−1, 1] defined by setting F(x) = 0
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outside of [−1/2, 1/2]. Since supp(F) ⊂ [−1/2, 1/2], the support of F ∗ F is contained
in [−1, 1]; hence,

F̂ ∗ F(k) = 1
2 ∫

1

−1
e−πi kx F ∗ F(x) dx = 1

2 ∫
1

−1
e−πi kx ∫

1/2

−1/2
f (t) f (x − t) dt dx

= 1
2 ∫

1/2

−1/2
e−πi kt F(t)∫

1

−1
e−πi k(x−t)F(x − t) dx dt = 2F̂(k)2 .

We calculate the relationship between F̂ and f̂ below:

F̂(m) = 1
2 ∑

k
f̂ (k)∫

1/2

−1/2
eπix(2k−m) dx =

⎧⎪⎪⎨⎪⎪⎩

1
2 f̂ (m/2), if m is even,
(−1)(m+1)/2 ∑k∈Z

f̂ (k)(−1)k

π(2k−m) , if m is odd.

(3.1)

From Parseval’s theorem and the above, we obtain

∥F ∗ F∥2
2 = 2 ∑

k∈Z
∣F̂ ∗ F(k)∣2 = 8 ∑

k∈Z
∣F̂(k)∣4 .

= 1
2 ∑

m∈Z
∣ f̂ (m)∣4 + 8

π4 ∑
m∈Z

m odd

∣∑
k∈Z

f̂ (k)(−1)k

2k − m
∣ 4 .(3.2)

Since f (x) is real and even, we know that f̂ (k) = f̂ (−k) ∈ R for all k ∈ Z.

Lemma 3.1 For all f ∈ F, we have the identity

∥ f ∗ f ∥2
2 =

1
2
+
∞

∑
m=1

f̂ (m)4 + 16
π4 ∑

m≥1
m odd

( 1
m

+ 2
∞

∑
k=1

m f̂ (k)(−1)k

m2 − 4k2 )
4

.

Proof Since f̂ (0) = 1, we have for all odd m ∈ Z,

∑
k∈Z

f̂ (k)(−1)k

m − 2k
= 1

m
+ 2

∞

∑
k=1

m f̂ (k)(−1)k

m2 − 4k2 .

Substituting the above into (3.2) gives the result. ∎

We are unable to analytically determine the f̂ (k) such that ∥ f ∗ f ∥2 is minimized.
In the following section, we will use Lemma 3.1 together with a convex program to
provide upper bounds on μ2 as well as an assignment of f̂ (k) that is very close to
optimal. The following lemma suggests a method of obtaining strong lower bounds
from good f ∈ F with small ∥ f ∗ f ∥2, i.e., good lower bounds can be found from good
upper bound constructions.

Lemma 3.2 Let f , g be periodic real functions with period 1, such that ∫
1/2
−1/2 f = 1 and

∫
1/2
−1/2 g = 2. Define F , G∶ [−1, 1] → R by

https://doi.org/10.4153/S0008439523000565 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000565
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F(x) =
⎧⎪⎪⎨⎪⎪⎩

f (x), for x ∈ [−1/2, 1/2],
0, otherwise,

G(x) =
⎧⎪⎪⎨⎪⎪⎩

1, for x ∈ [−1/2, 1/2],
1 − g(x), otherwise.

Then,

1/2 = ∑
k≠0

F̂(k)Ĝ(k) ≤ (∑
k≠0

∣F̂(k)∣4)
1/4

(∑
k≠0

∣Ĝ(k)∣4/3)
3/4

.(3.3)

Proof By Plancherel’s theorem, we have

1 = ∫
1

−1
F(x)G(x) dx = ⟨F , G⟩ = 2⟨F̂ , Ĝ⟩ = 2 ∑

k∈Z
F̂(k)Ĝ(k).

Since Ĝ(0) = 0, by applying Hölder’s inequality, we conclude (3.3). ∎

Inequality (3.3) is tight only when ∣F̂(k)∣3 = ∣Ĝ(k)∣ for k ≠ 0. Suppose that f (x)
leads to an F(x) that is close to optimal for (3.3). We hypothesize that for some C ∈ R,
the function defined by ĝ(k) = C f̂ (k)3 for k ≠ 0 and ĝ(0) = 2 will create a G(x) that
is also close to optimal for (3.3). We use this idea to produce good lower bounds for
μ2 in the following section.

4 Quantitative results

In this section, we describe a convex program used to approximate the optimal
solution of (2.1) with finitely many variables. Our primal program is the following:

Input: R, T ∈ N,
Variables: { fk , wk , xk}T

k=1 , {ym , zm}R
m=1 ,

Minimize: 1
2
+

T
∑
m=1

xk +
16
π4

R
∑
m=1

zm ,

Subject to: wk ≥ f 2
k , xk ≥ w2

k ; 1 ≤ k ≤ T ,

ym ≥ ( 1
2m − 1

+ 2
T
∑
k=1

(2m − 1) fk(−1)k

(2m − 1)2 − 4k2 )
2

; 1 ≤ m ≤ R,

zm ≥ y2
m ; 1 ≤ m ≤ R.(4.1)

For any R, T ∈ N, let O(R, T) be the optimum of the above program. We remark
that the reason for the “redundant” variables {wk , xk}T

k=1 and {ym , zm}R
m=1 is to

demonstrate that the program is easily implemented as a quadratically constrained
linear program. For any T ∈ N, let FT ⊂ F be the subset of functions that are degree
at most T in their Fourier series expansion, i.e., f ∈ FT implies f̂ (k) = 0 for ∣k∣ > T .

Proposition Let R, T ∈ N, then

O(R, T) ≤ min
f ∈FT

∥ f ∗ f ∥2
2 ≤ μ2

2 + 3T−1 log T .(4.2)

Moreover, if T ≥ 20 and 9R3 ≥ T4/ log T, then ∣O(R, T) − μ2
2 ∣ < 3T−1 log T .
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Proof Fix arbitrary R, T ∈ N. The left inequality of (4.2) follows immediately from
Lemma 3.1. Fix a b ∈ N, let f◇ ∈ F be the extremizer, and define for all 0 < ε < 1/4 a
smoothed version of it:

fε(x) = (1 + bε) f◇ ∗ h∗b
ε ((1 + bε)x),

where

hε(x) =
⎧⎪⎪⎨⎪⎪⎩

1/ε, if − ε
2 < x < ε

2
0, otherwise

and h∗b
ε =

b
,-----------------------.----------------------/
hε ∗⋯ ∗ hε .

Note that since ε < 1/4, we can consider hε as a function on (−1/2, 1/2) with mass 1.
Furthermore, f◇ ∗ h∗b

ε is supported on [−(1 + bε)/2, (1 + bε)/2] and so fε ∈ F. Since
∥h̃ε∥∞ ≤ 1, we have

∫ ∣ f̃ε(y)∣4 d y ≤ ∫ ∣ f̃◇ ( y
1 + bε

)∣ 4 d y = (1 + bε)∫ ∣ f̃◇(y)∣4 d y ≤ (1 + bε)μ2
2 .

(4.3)

Let fε ,T ∈ FT be the degree T Fourier approximation of fε , i.e.,

fε ,T(x) = ∑
∣k∣≤T

f̂ε(k)e2πi kx .

Note that ∥ f̂◇∥∞ ≤ ∥ f ∥1 = 1, and so ∥ f̂ε ,T∥∞ ≤ ∥ f̂ε∥∞ ≤ 1 as well. Consequently, we
have the estimate

∥ f̂ε ,T − f̂ε∥4
4 ≤ ∥ f̂ε ,T − f̂ε∥2

2 = ∑
∣k∣>T

∣ f̂ε(k)∣2 = ∑
∣k∣>T

∣ f̃ε(k)∣2

= ∑
∣k∣>T

∣ f̃◇(k/(1 + bε))h̃b
ε (k/(1 + bε))∣2

≤ ∥ f̃◇∥2
∞ ∑
∣k∣>T

( 1 + bε
πεk

)
2b
≤ 2
(2b − 1)T2b−1 (

1 + bε
πε

)
2b

.(4.4)

If 1 + bε ≤ π, then from (4.3) and (4.4), we have

∥ f̂ε ,T∥4
4 ≤ ∥ f̂ε∥4

4 + ∥ f̂ε ,T − f̂ε∥4
4 ≤ (1 + bε)μ2

2 +
2

(2b − 1)T2b−1ε2b .

By choosing ε = T− 2b−1
2b+1 and b = ⌈log T⌉, we obtain

∥ f̃ε ,T∥4
4 ≤ μ2

2 + T−
2b−1
2b+1 (μ2

2b + 2
2b − 1

) ≤ μ2
2 + 3T−1 log T .

This proves the right inequality of (4.2) since min f ∈FT ∥ f ∗ f ∥2
2 ≤ ∥ f̃ε ,T∥4

4.
Now, add the hypotheses that R ≥ 2T ≥ 40. Let { fk}T

k=1 be the solution to the
program with inputs R, T . Define fP(x) = ∑∣k∣≤T e2πi kx f∣k∣. We have

min
f ∈FT

∥ f ∗ f ∥2
2 ≤ ∥ fP ∗ fP∥2

2 ≤ O(R, T) + 16
π4

∞

∑
m=R+1

( 1
2m − 1

+ 2
T
∑
k=1

(2m − 1) fk(−1)k

(2m − 1)2 − 4k2 )
4

.

(4.5)
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Table 1: First values of { fk} for
almost optimal f (x)

fk : 1 ≤ k ≤ 10 fk : 11 ≤ k ≤ 20
−0.297645963 −0.094219882

0.216255517 0.090244578
−0.178147938 −0.086733571
0.154958273 0.083602996
−0.138960878 −0.08078878
0.127073164 0.078241005
−0.117792216 −0.075920127
0.110286604 0.073794356
−0.10405425 −0.07183781
0.098771678 0.07002916

For all m ≥ R + 1 and 1 ≤ k ≤ T , we have (2m − 1)2 − 4k2 ≥ 2m2. We can bound the
inside sum above by Hölder’s inequality:

∣
T
∑
k=1

(2m − 1) fk(−1)k

(2m − 1)2 − 4k2 ∣ ≤ (2m − 1)(
T
∑
k=1

f 4
k )

1/4

(
T
∑
k=1

(2m2)−4/3)
3/4

≤ 2T3/4

3m
.

Substituting this estimate into (4.5), we obtain

min
f ∈FT

∥ f ∗ f ∥2
2 ≤ O(R, T) + 16

π4

∞

∑
m=R+1

(3T3/4/2m)4 ≤ O(R, T) + 1
3
(T/R)3 .

SinceO(R, T) ≤ min f ∈FT ∥ f ∗ f ∥2
2, if 9R3 ≥ T4/ log T , we have 1

3(T/R)3 ≤ 3T−1 log T
and so

O(R, T) − 3T−1 log T ≤ μ2
2 ≤ O(R, T) + 3T−1 log T .

∎

As a consequence of Proposition 4, we see that the optimum of our program will
converge to μ2

2 for the right choice of input, thereby giving good upper and lower
bounds for μ2

2 .

4.1 Computational results

Proposition 4.1 suggests that R/T should be large to produce the best estimates of μ2
2

by O(R, T). In contrast, we found the best performance of the convex program when
T/R is large. Our best data come from using our convex program with R = 5, 000 and
T = 40, 000. We used IBM’s CPLEX software on a personal computer to determine
the optimal solution, and the full assignment of { fk}40,000

k=1 is available upon request.
The first 20 values of fk are displayed in Table 1.

Here, we have O(5, 000, 40, 000) = 0.574643014. By Proposition 4, we obtain
the estimates 0.573848267 ≤ μ2

2 ≤ 0.575437762. Using more careful calculation, and
Lemma 3.2, below we produce substantially better estimates with the same data. We
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remark that the optimal functions created by the convex program appear to converge
to a function with asymptotes at x = ±1/2 on the order of 1/

√
x.

For the remainder of this section, let T = 40, 000 and R = 5, 000. With fk the
solution partially stated above, put fP(x) = 1 +∑0≠∣k∣≤T f∣k∣e2πi kx . Also, let FP be the
extension of fP to [−1, 1], defined to be zero outside of [−1/2, 1/2]. The functions
fP and fP ∗ fP are shown in Figure 1. In the following two subsections, we calculate
upper and lower bounds for μ2

2 , thereby proving Theorem 1.1. We export our computed
solution { fk}40,000

k=1 to MATLAB and used “Variable-Precision Arithmetic” operations
to avoid floating-point rounding errors on the order of precision stated in our
theorem, and we used the default of 32 significant digits. In the calculation of our
upper and lower bounds, we will use the following quantities related to { fk}40,000

k=1 :

T
∑
k=1

∣ fk ∣ ≈ 138.986734521,
T
∑
k=1

∣ fk ∣3 ≈ 0.0748989557,
T
∑
k=1

k2∣ fk ∣3 < 257, 609.(4.6)

4.2 Computing an upper bound

We want to estimate ∥ fP ∗ fP∥2
2 from above. We will take advantage of the fact that

the Fourier coefficients F̂P(k) decay quickly. From (3.1), we see that F̂P(2m) = 0 for
all ∣m∣ ≥ T + 1. Also, for odd ∣m∣ ≥ 4T , we have

∣F̂P(m)∣ = ∣ ∑
k∈Z

f̂P(k)(−1)k

π(2k − m) ∣ ≤
2

mπ ∑
∣k∣≤T

∣ f̂P(k)∣.(4.7)

From (4.6), we obtain the estimate ∣F̂P(m)∣ < 178/m. This gives the bound on the tail
sum for all N ∈ N:

∑
m>N

∣F̂(2m − 1)∣4 < 1784 ∫
∞

N
(2x − 1)−4 dx = 1784(2N − 1)−3/6.

From (3.2), we have, for all N ≥ 2T ,

∥ fP ∗ fP∥2
2 = 8 ∑

m∈Z
∣F̂P(m)∣4 ≤ 1

2
+

T
∑
m=1

f̂P(m)4

+ 16
π4

N
∑
m=1

( 1
2m − 1

+ 2(2m − 1)
T
∑
k=1

f̂P(k)(−1)k

(2m − 1)2 − 4k2 )
4

+ 1784(2N − 1)−3/3.

The choice of N = 107 gives the estimate ∥ fP ∗ fP∥2
2 ≤ 0.574642912.

4.3 Computing a lower bound

We use Lemma 3.2 to compute a good lower bound. To do this, we need to find a
good choice of g(x) on [−1/2, 1/2]. As per the discussion following Lemma 3.2, a
good choice gP may have the Fourier coefficients ĝP(0) = 2 and

ĝP(m) = α f̂P(m)3 , m ∈ Z / {0}.
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Below, we optimize α to suit our particular fP ; this ends up giving α = −13.342. Let
GP be as in the statement for Lemma 3.2, i.e.,

GP(x) =
⎧⎪⎪⎨⎪⎪⎩

1, for x ∈ [−1/2, 1/2],
1 − gP(x), otherwise.

We need to accurately bound ∑m≠0 ∣ĜP(m)∣4/3 from above. We can proceed similar
to our recent upper bound calculation, using the decay of the Fourier coefficients. For
m ≠ 0, we have

ĜP(m) = − 1
2
(−1)m ∫

1/2

−1/2
gP(x)e−πimx dx .(4.8)

The dependance of ĜP on ĝP was essentially calculated in (3.1), and we restate it below:

ĜP(m) =
⎧⎪⎪⎨⎪⎪⎩

− 1
2 ĝP(m/2), if m is even,

(−1)(m+1)/2 ∑k∈Z
ĝP(k)(−1)k

π(2k−m) , if m is odd.

We see ĜP(2m) = 0 for all ∣m∣ ≥ T + 1. Fix an odd m ∈ Z; similar to (4.7), we have

∣ĜP(m)∣ = ∣ ∑
k∈Z

ĝP(k)(−1)k

π(2k − m) ∣ =
2

πm
∣1 +

T
∑
k=1

ĝP(k)(−1)k

1 − 4k2/m2 ∣

= 2
πm

∣1 + α
T
∑
k=1

∣ fk ∣3
1 − 4k2/m2 ∣.(4.9)

Using (4.9), we compute that the below sum is minimized for the choice α = −13.432:

∑
0≠∣m∣≤2⋅107

∣ĜP(m)∣4/3 = 1.885125792 . . . .(4.10)

It remains to bound the tail sum for the above. Define 1 + θk = 1/(1 − 4k2/m2). Then,
if ∣m∣ > 2 ⋅ 107 and ∣k∣ ≤ T , we have 0 < θk ≤ 5k2/m2. Now, using (4.6), we have

∣1 + α
T
∑
k=1

∣ fk ∣3
1 − 4k2/m2 ∣ ≤ ∣1 + α

T
∑
k=1

∣ fk ∣3∣ + ∣α∣
T
∑
k=1

θk ∣ fk ∣3

= ∣1 + α(0.07487 . . .)∣ + 5∣α∣
m2 ⋅ 257, 609 ≤ 6.982 ⋅ 10−4 ,

for all ∣m∣ > 2 ⋅ 107. Hence, via (4.9), we have ∣ĜP(m)∣ ≤ 4.45 ⋅ 10−4/m. This gives the
bound on the tail sum:

∑
∣m∣>107

∣Ĝ(2m − 1)∣4/3 < 2(4.45 ⋅ 10−4)4/3 ∫
∞

107
(2x − 1)−4/3 dx < 3.76 ⋅ 10−7 .

Combining the above with (4.10) gives ∑∣m∣≠0 ∣ĜP(m)∣4/3 < 1.885126168. By
Lemma 3.2, we have

μ2
2 ≥

1
2
+ 1

2 ⋅ (1.885126168)3 > 0.574636066.

This concludes the proof of Theorem 1.1.
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5 Number-theoretic corollaries

In this section, we briefly discuss how results on Bh[g] sets can be obtained from
our estimates of μ2. We rely heavily on the method of Green [7]. The cornerstone of
several of the number-theoretic results proved by Green is the following.

Theorem 5.1 (Green [7, Theorem 6]) Let H∶ {1, . . . , N} → R be a function such that
∑n

j=1 H( j) = N, and v , X be positive integers. For each r ∈ Z2N+v , put

Ĥ(r) = ∑
x∈Z2N+v

e2πirx/(2N+v)H(x),

the discrete Fourier transform. Let g ∈ C1[−1/2, 1/2] be such that ∫
1/2
−1/2 g(x) dx = 2.

Then there is a constant C, depending only on g such that

∑
0<∣r∣≤X

∣Ĥ(r)∣4 ≥ γ(g)N4(1 − C( v
N

+ N2

v2 X
+ X2

N
)),

where

γ(g) = 2(∑
r≥1

∣g̃(r/2)∣4/3∣)
−3

.

Green finds a function g ∈ C1[−1/2, 1/2] such that γ(g) > 1/7. Let gP ∈ C1[−1/2, 1/2]
be as in Section 4.3. By equation (4.8), we have

γ(gP) = 2(∑
r≥1

∣2ĜP(r)∣4/3∣)
−3

> 1.885126168−3 = 2μ2
2 − 1,

where μ2
2 = 0.574636066 denotes the lower bound on μ2

2 obtained in Section 4.3. We
conclude that Theorem 5.1 can be stated by replacing γ(g) with 2μ2

2 − 1.

Proof of Corollary 1.2 To obtain the claimed bounds on σh[g], we simply reuse the
method of Green, replacing the 1/7 bound with 2μ2

2 − 1. The bound for σ4(1) is found
in [7, equation (30)] and stated in [7, Theorem 15]. The bound for σ3(1) is obtained
through [7, Lemma 16] and stated in [7, Theorem 17]. Finally, the bound for σ2(g) is
obtained by replacing 8/7 with 2μ2

2 in [7, equation (37)], thereby giving an improved
version of [7, Theorem 24]. ∎

Lastly, in our proof of Corollary 1.3, we scale a function on [N] to a simple function
on [0, 1], and check that the inequalities work in our favor.

Proof of Corollary 1.3 Let H∶ [N] → R≥0 be a function with∑N
j=1 H( j) = N . Recall

the definition of discrete convolution

H ∗ H(x) =
N
∑
j=1

H( j)H(x − j),
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and so the additive energy of H is given by ∑N
j=1 H ∗ H(x)2. Define the simple

function f ∶ [0, 1) → R by

f (x) =
N
∑
j=1

H( j)1(( j−1)/N , j/N](x).

Clearly, f (x − 1/2) ∈ F, and so ∥ f ∗ f ∥2
2 ≥ μ2

2 . The function f ∗ f consists of 2N line
segments with domain (( j − 1)/N , j/N] for j ∈ [2N]. Moreover, for all j ∈ [2N], we
have

N f ∗ f (( j − 1)/N) = H ∗ H( j).(5.1)

For any line segment �∶ [a, b] → R, we have the following estimate by convexity:

∫
b

a
�(x)2 dx ≤ �(a)2 + �(b)2

2
(b − a).(5.2)

By (5.2), we have

∫
2

0
f ∗ f (x)2 dx =

2N
∑
j=1
∫

j/N

( j−1)/N
f ∗ f (x)2 dx ≤ N

2

2N
∑
j=1
( f ∗ f ( j/N)2 + f ∗ f (( j − 1)/N)2).

And, by (5.1), the above becomes

N3

2

2N
∑
j=1

(H ∗ H( j)2 + H ∗ H( j − 1)2) = N3
2N
∑
j=1

H ∗ H( j)2 .

This proves the additive energy bound. ∎
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