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Abstract

Given a commutative complete local noetherian ring A with finite residue field k, we
show that there is a topologically finitely generated profinite group Γ and an absolutely
irreducible continuous representation ρ : Γ → GLn(k) such that A is a universal
deformation ring for Γ, ρ.

1. Introduction

Let Λ be a commutative complete noetherian local ring with residue field k of positive
characteristic p. We write CΛ for the category of commutative complete noetherian local
Λ-algebras with residue field k; morphisms in CΛ are continuous Λ-algebra homomorphisms
inducing the identity on the residue field k. The aim of this paper is to give characterisations
of objects in CΛ which can be realised as a universal deformation ring of some residual
representation. The problem, often referred to as the inverse deformation problem, originated
from a question of Flach; the above formulation is due to Bleher, Chinburg and De Smit (see
[BCS10, BCS13, Chi05]).

To describe the main results of this paper, fix Λ, k and CΛ as above. We refer the reader to
[Maz89, Maz97] for details on deformations of representations. Suppose we are given a profinite
group Γ together with a continuous representation ρ : Γ −→ GLn(k). The representation ρ will
be referred to as the residual representation. Given a Λ-algebra A in CΛ with maximal ideal mA,
recall that:
• a continuous homomorphism ρ : Γ −→ GLn(A) is said to be a lifting of ρ if ρ = ρ (mod mA);
• two liftings ρ1, ρ2 : Γ −→ GLn(A) of ρ are strictly equivalent if there exists a matrix
X ∈ GLn(A) such that X ≡ I (mod mA) and Xρ1(g)X−1 = ρ2(g) for all g ∈ Γ.

Strict equivalence is an equivalence relation; a deformation of ρ is a strict equivalence class
of liftings. Note that if f : A→ B is a morphism in CΛ and ρ : Γ −→ GLn(A) is a lifting of ρ,
then f ◦ ρ : Γ −→ GLn(B) is also a lifting of ρ. Furthermore, the association

A→ Defρ,Λ(A) := the set of deformations of ρ to A

is a functor from CΛ to Sets.
Now assume that the profinite group Γ and the residual representation ρ satisfy the following

two hypotheses.

(H1) (p-finiteness condition.) Each open subgroup U of Γ admits only finitely many continuous
homomorphisms to Z/pZ.

(H2) The residual representation ρ : Γ −→ GLn(k) admits no non-scalar centraliser, i.e. if
X ∈ GLn(k) satisfies Xρ(g) = ρ(g)X for all g ∈ Γ then X = λI for some λ ∈ k.
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The functor Defρ,Λ : CΛ → Sets is then representable under these assumptions (see [dSL97,
Proposition 7.1], [Maz89, Proposition 1]). We recall that this means we can find an object R
of CΛ and a continuous representation ρ : Γ → GLn(R) lifting ρ with the following universal
property: if A ∈ Ob(CΛ) and ρA : Γ→ GLn(A) is a lifting of ρ then there is a unique morphism
f :R→ A in CΛ such that ρA is strictly equivalent to f◦ρ. We shall refer to the pair (R, ρ)—which
is unique up to a canonical isomorphism and strict equivalence—as the universal deformation
for ρ in CΛ.

Definition. A Λ-algebra A ∈ Ob(CΛ) is said to be a universal deformation ring in CΛ if we
can find a profinite group Γ and a residual representation ρ : Γ→ GLn(k) satisfying (H1) and
(H2) with universal deformation (R, ρ) in CΛ such that R and A are isomorphic objects in CΛ.

We can now state the main result of this paper.

Theorem 1.1. Let k be a finite field of characteristic p and let W (k) be its Witt ring. Then
every object of CW (k) is a universal deformation ring.

More precisely, let A be an object of CW (k) and let Γ := SLn(A) where n is a positive integer
subject to the following restrictions.
• If k has at least seven elements or k is F4, then n > 2.
• If k is F2, then n > 5.
• If k is either F3 or F5, then n > 3.

Let ρ : Γ→ GLn(k) be the reduction of the standard representation ρA : Γ→ SLn(A) modulo
the maximal ideal of A. Then the pair (A, ρA) is the universal deformation for ρ in CW (k).

The restrictions on n in Theorem 1.1 are in place because our method relies on a
structure result for subgroups of SLn over commutative complete noetherian local rings (see
Proposition 4.1). The said result is used, in the first instance, to construct an isomorphism
of local rings, and then to show that the isomorphism constructed is a morphism in CW (k).
Unfortunately Proposition 4.1 fails in the excluded cases. In fact, Theorem 1.1 fails in all but
one of the excluded cases (see Remark 4.6).

We now give an overview of the developments concerning the inverse deformation problem;
for a more detailed account, see [BCS13]. As indicated at the start of this section, the inverse
deformation problem originated from a question by Flach in [Chi05] which asked if it is possible
for a universal deformation ring not to be a complete intersection ring. The motivation behind
this question was that up to that point, although there had been many explicit calculations, all
known universal deformation rings were complete intersection rings.

The first example of a universal deformation ring which was not a complete intersection was
given by Bleher and Chinburg in [BC06], where they showed W (k)[[t]]/(t2, 2t) is a universal
deformation ring when p = 2 (see also [BC07]). This example was greatly generalised by Bleher,
Chinburg and de Smit in [BCS10] to provide a positive answer to the inverse deformation
problem for all rings of the form W (k)[[t]]/(pnt, t2). Bleher, Chinburg and de Smit further
gave a categorisation of all possible pairs (Γ, ρ) which have W (k)[[t]]/(pnt, t2) as their universal
deformation ring in [BCS13]. Another class of non-complete intersection rings which are universal
deformation rings is given by Zp[[t]]/(pn, pmt) where p > 3 and n > m are positive integers. This
is due to Rainone (see [Rai10]).

We note that Dorobisz has independently proved results similar to [Dor13, Theorem 1.1].
His methods are more linear algebraic (in that skilful use is made of matrix identities), while we
rely on cohomological arguments.
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This article is organised as follows. In § 2 we present preparatory material concerning the
structure of SLn which will be essential to the proof of Theorem 1.1. The results here are either
well known or elementary. We then prove Theorem 1.1 in § 3, assuming a key result on subgroups
of SLn holds (Assumption 3.2). Section 4 then discusses verification of Assumption 3.2 following
a simplified form of the argument used in [Man15].

Notation and conventions
Throughout this paper, all rings are assumed to have a multiplicative identity. Moreover, all
local rings are assumed to be commutative. The maximal ideal of a local ring A will be denoted
by mA.

If k is a perfect field of positive characteristic then W (k) denotes its ring of Witt vectors.
We will often write W instead of W (k) when it is clear what the residue field k is. If A is a
complete noetherian local ring with residue field k then A is canonically a W -algebra. We write
ιA : W → A for the corresponding natural homomorphism and set WA := ιA(W ). Note that WA

is the smallest closed subring of A which is local with residue field k.

2. Preliminaries: some properties of SLn

In this section we describe certain aspects of the structure of special linear groups which play
a key role in the proof of Theorem 1.1. Throughout this section, A denotes a commutative ring.
Recall that if x ∈ A, and 1 6 i, j 6 n with i 6= j, the elementary matrix Eij(x) ∈ SLn(A) is the
n by n matrix whose (i, j)th entry is x, whose diagonal entries are all 1, and whose remaining
entries are all 0.

Lemma 2.1. (i) The n by n elementary matrices in SLn(A) satisfy the following Steinberg
relations:

(a) Eij(x)Eij(y) = Eij(x+ y);

(b) [Eij(x), Ejk(y)] = Eik(xy) if i 6= k;

(c) [Eij(x), Ekl(y)] = 1 if i 6= l, j 6= k.

(ii) Let a, b, c, d ∈ A. Then the relation(
1 −a
0 1

)(
1 0
b 1

)(
0 1
−1 0

)(
1 0
a 1

)
=

(
c 0
0 d

)
(2.1)

holds if and only if a = c, b = d and ab = cd = 1.
(iii) If A is a local ring and n > 2, then SLn(A) is generated by the elementary matrices

Eij(x), x ∈ A.

The first part is well known (see [Ros94] or [Sri08], for instance). For the second part of the
lemma, multiplying out the left-hand side transforms relation (2.1) into(

2a− a2b 1− ab
ab− 1 b

)
=

(
c 0
0 d

)
and the conclusion follows. The third part of Lemma 2.1 is essentially covered by the discussion
following [Sri08, Example 1.6].

Lemma 2.1 implies the following proposition (which will be used in determining the image
of liftings of residual representations in deformation problems).
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Proposition 2.2. Let A be a local ring and let n > 2 be an integer. In addition, assume that
the residue field of A has at least four elements when n = 2. Then for any commutative ring B
and positive integer m, the image of a group homomorphism ρ : SLn(A)→ GLm(B) is in fact a
subgroup of SLm(B).

Proof. By Lemma 2.1, the image of ρ is generated by the images of elementary matrices and so
we need to verify that the image of an elementary matrix has determinant 1.

First suppose n > 3. Given an elementary matrix Eij(x) in SLn(A), pick an integer k
between 1 and n distinct from i, j. The relation [Eik(x), Ekj(1)] = Eij(x) then implies that
the determinant of ρ(Eij(x)) must be 1.

Suppose now that n = 2. Our assumption on the size of the residue field allows us to fix a
unit u ∈ A such that u2 6≡ 1 (mod mA). Thus 1− u2 is a unit in A. The desired conclusion then
follows from the commutator relation(

1 x
0 1

)(
u 0
0 u−1

)(
1 −x
0 1

)(
u−1 0
0 u

)
=

(
1 x(1− u2)
0 1

)
, (2.2)

and a similar one for lower triangular matrices, valid for all x ∈ A. 2

We now highlight a class of signed permutation matrices which can be used to conjugate the
elementary matrix E1n(x) to another elementary matrix Eij(x).

Definition 2.3. Let n be a positive integer. The diagonal matrix in GLn(Z) obtained by
replacing the (i, i)th entry of the identity matrix by −1 is denoted by Di. For 1 6 i, j 6 n
with i 6= j, the permutation matrix in GLn(Z) obtained by interchanging the ith and jth rows
of the identity matrix will be denoted by P(ij). The matrices Di and P(ij) have determinant −1.

Finally, given 1 6 i, j 6 n with i 6= j, define the signed permutation matrix Tij ∈ SLn(Z) by

Tij :=



I if (i, j) = (1, n),

D2P(1n) if (i, j) = (n, 1),

DnP(jn) if i = 1 and j 6= n,

D1P(1i) if i 6= 1 and j = n,

P(1i)P(nj) if i 6= 1 and j 6= n and (i, j) 6= (n, 1).

(2.3)

If X ∈ GLn(Z) then its image in GLn(A) under the unique ring homomorphism Z→ A will
also be denoted by X. We then have the following lemma.

Lemma 2.4. Let n > 2 be an integer.

(i) Suppose X ∈ GLn(A). Then XEij(1) = Eij(1)X for all elementary matrices Eij(1) with
1 6 i < j 6 n if and only if X = λE1n(x) for some λ ∈ A×, x ∈ A.

(ii) TijE1n(x)T−1
ij = Eij(x) for all 1 6 i 6= j 6 n and x ∈ A.

We give a brief sketch of the proof. That λE1n(x) commutes with Eij(1) when 1 6 i < j 6 n
is clear from the Steinberg relations (Lemma 2.1, part (i)(c)). For the other direction, let est
denote the n by n matrix whose (s, t)th entry is 1 and whose all other entries are 0. If xlk denotes
the (l, k)th entry of X, then the relation Eij(1)X = XEij(1) implies

n∑
m=1

xjmeim =
n∑

m=1

xmiemj

and the desired conclusion follows. The second part is a straightforward calculation which we
skip.
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3. Proof of Theorem 1.1

We shall now show that every complete local noetherian ring with finite residue field is a universal
deformation ring.

Throughout this section, k is a finite field of characteristic p > 0 and W denotes its Witt
ring. Recall that CW is the category of complete noetherian local W -algebras with residue field
k. If A is a W -algebra in CW , we define WA := ιA(W ) where ιA : W → A is the canonical
structure map.

We now turn to the proof of Theorem 1.1. Fix a W -algebra A in CW . Fix also an integer n
subject to the following conditions.

Assumption 3.1.
• If the cardinality of k is at least 7 or k = F4, then n > 2.
• If k is F2, then n > 5.
• If k is either F3 or F5, then n > 3.

Set Γ := SLn(A). We write ρA : Γ→ SLn(A) for the standard representation of Γ, and define
the residual representation ρ := ρA (mod mA). Thus

ρ : Γ→ SLn(k) ↪→ GLn(k).

Note that Γ is topologically finitely generated and ρ is clearly surjective. Thus Γ and ρ satisfy
hypotheses (H1) and (H2) from § 1, and hence ρ has a universal deformation in CW .

We will show that the pair (A, ρA) is in fact the universal deformation for ρ in CW . For
clarity the argument is split into four steps.

Step 1. We begin by observing some characteristics of the universal deformation. Let R together
with ρR : Γ→ GLn(R) be the universal deformation for

ρ : Γ→ SLn(k) ↪→ GLn(k).

By Proposition 2.2, the restrictions imposed on n imply that ρR takes values in SLn(R).
We now make the following critical assumption which will only be justified in § 4.

Assumption 3.2. There exists an X ∈ GLn(R) with X ≡ I (mod mR) such that XρR(Γ)X−1 ⊇
SLn(WR).

We continue with the proof of Theorem 1.1. Assumption 3.2 allows us to derive the following
consequence: replacing ρR with a strictly equivalent representation if necessary, we may assume
that ρR(Γ) contains a copy of SLn(WR).

Step 2. Let π : R→ A be the unique W -algebra homomorphism in CW associated with ρA by
the universality of (R, ρR). Thus π ◦ ρR is strictly equivalent to ρA and π is compatible with the
W -algebra structure morphisms ιA and ιR, i.e. the diagram

W

ιR
��

W

ιA
��

R
π // A

(3.1)

commutes. We now make the following observations.
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Proposition 3.3.

(i) ρR : Γ→ SLn(R) is injective and π : ρR(Γ)→ SLn(A) is an isomorphism.

(ii) The map π : R→ A is surjective.

(iii) The restriction π|WR
: WR→WA is an isomorphism.

Proof. Part (i) follows from the observations that π ◦ ρR is strictly equivalent to ρA, and that
ρA is an isomorphism. Part (ii) is then immediate.

We now consider part (iii). By Assumption 3.2, we can pick a γ in Γ with ρR(γ) = E12(1).
Now ρA(γ) and E12(π(1)) have the same order (as they are conjugates), and so we may conclude
that the restriction π|WR

: WR→WA must be an isomorphism. 2

The above assertion allows us to identify WR and WA. Henceforth, we will not differentiate
between ιR(x) and ιA(x) for x ∈W .

Step 3. We shall now show that under the group isomorphism π : ρR(Γ)→ SLn(A), the preimage
of an elementary matrix in SLn(A) is an elementary matrix in SLn(R). This allows us to construct
a local W -algebra homomorphism A→ R which is a section for π : R→ A.

We first observe the following lemma.

Lemma 3.4. For each x ∈ A there exist a unique λx in R× and a unique s(x) in R such that
λxE1n(s(x)) ∈ ρR(Γ) and π(λxE1n(s(x))) = E1n(x).

The above association has the following additional properties.

(i) Let x ∈ A and let 1 6 i, j 6 n with i 6= j. Then the preimage of Eij(x) under the
isomorphism π : ρR(Γ)→ SLn(A) is the matrix λxEij(s(x)).

(ii) If x ∈WA then λx = 1 and s(x) = x.

Proof. Uniqueness is immediate from Proposition 3.3(i). For existence, let X ∈ ρR(Γ) satisfy
π(X) = E1n(x). Now E1n(x) commutes with the elementary matrices Eij(1) where 1 6 i < j 6 n.
Then by Proposition 3.3 and our identification of WR with WA, the elementary matrices Eij(1)
with 1 6 i < j 6 n are in ρR(Γ) and commute with X. Hence by Lemma 2.4 we must have
X = λxE1n(s(x)) for some s(x) in R and λx in R×.

Now for the first part of the two properties. Let x ∈ A and let 1 6 i, j 6 n with i 6= j. From
the preceding two steps, the signed permutation matrix Tij , as defined by the relations (2.3),
is in ρR(Γ). Since λxEij(s(x)) = TijλxE1n(s(x))T−1

ij by Lemma 2.4, we see that λxEij(s(x)) is
in ρR(Γ) and is the unique preimage of Eij(x). The second property is immediate as we are
identifying WA and WR. 2

Keep the notation of Lemma 3.4. We will now show that λx is in fact 1 for all x ∈ A.
This can be derived from the Steinberg relations when n > 3 as follows. Let i, j, k be three
distinct integers in {1, 2, . . . , n}. By considering their preimages in ρR(Γ), the relation Eij(x) =
Eik(x)Ekj(1)Eik(x)−1Ekj(1)−1 then implies that

λxEij(s(x)) = λxEik(s(x))Ekj(1)λ−1
x Eik(s(x))−1Ekj(1)−1

= Eij(s(x)),

and hence λx = 1.
We now consider the case when n = 2. Note the following claim.
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Claim 3.5. Under the isomorphism π : ρR(Γ)→ SL2(A), the preimage of a diagonal matrix in
SL2(A) is also a diagonal matrix.

To see the claim, let X ∈ ρR(Γ)⊆ SL2(R) be the preimage of the diagonal matrix D ∈ SL2(A).
Then DE12(1)D−1 = E12(u) for some u ∈ A×, and so XE12(1)X−1 = λuE12(s(u)). Similarly,
X conjugates E21(1) to a lower triangular matrix (in fact XE21(1)X−1 = λu−1E21(s(u−1))). We
can therefore conclude that the preimage X is a diagonal matrix in ρR(Γ).

Now let x ∈ A. As k has at least four elements, we can find y ∈ A, u ∈ A× so that(
1 y
0 1

)(
u 0
0 u−1

)(
1 y
0 1

)−1(
u 0
0 u−1

)−1

=

(
1 x
0 1

)
.

(Use the commutator relation (2.2).) Using Lemma 3.4, Claim 3.5 and taking preimages, we get

λy

(
1 s(y)
0 1

)(
v 0
0 v−1

)(
λy

(
1 s(y)
0 1

))−1(
v 0
0 v−1

)−1

= λx

(
1 s(x)
0 1

)
,

for some v ∈ R×, and we obtain λx = 1.
We can now define the desired section of π : R→ A.

Proposition 3.6. The function s : A → R characterised by the following property is well
defined.

If x ∈A then s(x) is the unique element inR such that π(s(x)) = x and the elementary
matrix Eij(s(x)) is a matrix in ρR(Γ) for all 1 6 i, j 6 n, i 6= j.

Moreover, the map s : A→ R is in fact a morphism in CW .

Proof. The characterising property that defines s : A→ R has been covered in Lemma 3.4 and
the discussion following it.

We shall now show that the map s : A→ R is a morphism in CW . It follows immediately
from the construction and Lemma 2.1, part (i)(a), that s(x + y) = s(x) + s(y) for all x, y ∈ A.
Moreover, s|WA

is the inverse to π|WR
, and π◦s is the identity on A. By construction s(mA) ⊆ mR

and s induces the identity on A/mA = R/mR = k. Thus if we can show that s(xy) = s(x)s(y)
for all x, y ∈ A then s : A → R will be a morphism in CW . This follows from the Steinberg
relations when n > 3: if 1 6 i, j, k 6 n are three distinct integers, then the commutator relation
[Eij(s(x)), Ejk(s(y))] = Eik(s(x)s(y)) shows that s(xy) = s(x)s(y).

We now consider the multiplicativity of s when n = 2. If u ∈ A× then, using relation (2.1),
we have (

1 −u
0 1

)(
1 0
u−1 1

)(
0 1
−1 0

)(
1 0
u 1

)
=

(
u 0
0 u−1

)
.

Since the preimage of a diagonal matrix is also diagonal by Claim 3.5, the above relation implies
that (

1 −s(u)
0 1

)(
1 0

s(u−1) 1

)(
0 1
−1 0

)(
1 0

s(u) 1

)
=

(
v 0
0 v−1

)
for some v ∈ R×. By part (b) of Lemma 2.1, we must have v = s(u), i.e. the preimage of

(
u 0
0 u−1

)
under π : ρR(Γ)→ SL2(A) is

(s(u) 0

0 s(u)−1

)
.

It now follows that s(xy) = s(x)s(y) if both x, y are units in A. If x ∈ A× and y 6∈ A× then,
as 1 + y is a unit, we get s(x(1 + y)) = s(x)s(1 + y). Using additivity of s : A→ R and s(1) = 1,
we obtain s(xy) = s(x)s(y). The other two remaining cases are treated similarly. 2
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Step 4. To complete the proof of the theorem, we have to verify that the pair (A, ρA : Γ →
SLn(A)) is the universal deformation. Since the elementary matrices Eij(x) generate SLn(A) by
Lemma 2.1, the elementary matrices Eij(s(x)) must generate ρR(Γ). As π ◦ s is the identity on
A, we can now conclude that s ◦ π ◦ ρR = ρR. By universality, the homomorphism s ◦ π : R→ R
must be the identity on R. Thus π : R→ A is an isomorphism with inverse s : A→ R and π ◦ρR
(respectively, s ◦ ρA) is strictly equivalent to ρA (respectively, ρR). This concludes the proof of
Theorem 1.1.

4. Subgroups of SLn over complete noetherian local rings and Assumption 3.2

In this section we justify the validity of Assumption 3.2, which we made in step (1) of the proof
of Theorem 1.1. We retain the notation and assumptions made at the start of § 3. Thus W is
the Witt ring of the finite field k and n is a positive integer satisfying the restrictions made in
Assumption 3.1. Assumption 3.2 is then a consequence of the following proposition.

Proposition 4.1. Let the finite field k and positive integer n be as above. Thus n > 2 and
the pair (n, |k|) is not one of the following: (2, 2), (2, 3), (2, 5), (3, 2), or (4, 2). Suppose we are
given a W -algebra A in CW and a closed subgroup G of SLn(A) with full residual image, i.e.
G (mod mA) = SLn(k). Then there exists an X ∈ GLn(A) with X ≡ I (mod mA) such that
XGX−1 ⊇ SLn(WA).

When k is not equal to either F2 or F3, or when k = F4 and n 6= 3, Proposition 4.1 is covered by
the main theorem of [Man15]. The argument in [Man15] required certain cohomological properties
of SLn(k) which followed from results of Cline et al. [CPS75], and Quillen in [Qui72]. In this
paper we shall indicate how the same argument may be recovered in the excluded cases by using
results of Sah in [Sah74, Sah77]. To this end, we begin by setting out the following assumptions
and notations.

Assumption 4.2. Throughout this section, we assume the following about k.
• The finite field k is either F2 or F3 or F4, p denotes its characteristic, and Wm := W/pm.
• n is a fixed integer subject to the following conditions:

– if k = F2 then n > 5;

– if k = F3 then n > 3;

– if k = F4 then n = 3.

• M (respectively, M0) denotes the space of n by n matrices over k (respectively, the space
of n by n matrices over k with trace 0). When p|n, we set S := kI and V = M0/S.

We remark that if A is a W -algebra in CW , then GLn(A) acts on M and M0 by conjugation.
We make free use of standard results on group extensions and cohomology (see [Bro82, NSW08]);
what will be needed here is covered by [Man15, § 2].

The following proposition gathers various properties of SLn(Wm) that will be needed in the
proof of Proposition 4.1.

Proposition 4.3. Let k and n be as in Assumption 4.2.

(i) If p - n then M0 is an irreducible SLn(k)-module. If p|n then S is the unique non-trivial
SLn(k)-submodule of M0. Moreover,

HomSLn(k)(M0,M0) ∼= k ∼= HomSLn(k)(V,V).

1732

https://doi.org/10.1112/S0010437X16007582 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007582


The inverse deformation problem

(ii) Let Γm := ker(SLn(Wm+1)
mod pm−−−−−→ SLn(Wm)). Then the extension

I → Γm→ SLn(Wm+1)→ SLn(Wm)→ I

does not split.

(iii) Suppose p|n. Then H1(SLn(k),k) and H2(SLn(k),k) are both (0). Furthermore,
H1(SLn(Wm),k) = (0) for all m > 1.

(iv) The inflation map H1(SLn(Wm),M0) → H1(SLn(Wm+1),M0) is an isomorphism.
Consequently,

H1(SLn(Wm),M0) ∼= H1(SLn(k),M0) =

{
(0) if p - n,
k if p|n.

(v) Suppose p|n.

(a) If Zm denotes the subgroup of scalar matrices in Γm, then the extension

I −→ Γm/Zm −→ SLn(Wm+1)/Zm
mod pm−−−−−→ SLn(Wm) −→ I (4.1)

does not split.

(b) The inflation map H1(SLn(Wm),V)→ H1(SLn(Wm+1),V) is an isomorphism.

(c) The map H2(SLn(Wm),S)→ H2(SLn(Wm),M0) induced by the inclusion S ⊂ M0 is
an injection.

(d) H1(SLn(Wm),M) = (0) for all m > 1.

Proof. (i) See [Man15, Lemma 3.3].
(ii) When m > 2, the non-splitting is covered by the argument in [Man15, Proposition 3.7]

(see the paragraphs above and around the displayed relation (3.5) in [Man15]). We give an
indication of the proof.

For a contradiction, assume the sequence splits. Then the image in SLn(Wm+1) of the
elementary matrix E12(1) ∈ SLn(Wm) under the section splitting the sequence can be written in
the form (I + pmX)E12(1), and this must have order pm. By induction, it follows that

((I + pmX)E12(1))k =

(
I + pm

k−1∑
j=0

E12(j)XE12(−j)
)
E12(k)

for all integers k > 1. If we write E12(1) as I +N (so E12(j) = I + jN), the above relation then
becomes

((I + pmX)E12(1))k = (I + pm(kX + ak(NX −XN)− bkNXN))E12(k)

where ak = 1 + · · ·+ (k− 1) and bk = 12 + · · ·+ (k− 1)2. If k = pm and m > 2 then p divides ak
and bk, and we get

((I + pmX)E12(1))p
m

= E12(pm).

Since this equality does not hold in SLn(Wm+1), we obtain the desired contradiction.
So now assume m = 1. When k = F2 or F3, the sequence is non-split by [Sah74, Theorem II.7].

Thus, by Assumption 4.2, we only need to show that the sequence does not split when k = F4
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and n = 3. Now if Γ denotes the kernel of the reduction map GL3(W2) → GL3(k), then the
sequence

I → Γ→ GL3(W2)→ GL3(k)→ I (4.2)

is non-split by [Sah77, Proposition 0.3]. Let G̃ be the subgroup of GL3(W2) consisting of matrices
with determinant 1 modulo p. Since H1(SL3(k),M) = (0) (see [Sah77, Proposition 3.4]), the
restriction map

H2(GL3(k),M)→ H2(SL3(k),M)

is injective. Therefore the non-splitting of (4.2) implies that

I → Γ→ G̃→ SL3(k)→ I

is non-split. Consequently, I → Γ1→ SL3(W2)→ SL3(k)→ I cannot be split.
(iii) Assumption 4.2 and the hypothesis p|n imply that k is either F2 or F3. The first part is

then covered by [Sah74, Theorem III.5 and Proposition III.7].
For the second part, first identify Γm and M0 using the isomorphism φ : Γm→M0 given by

φ(I + pmM) := M (mod p). Then

H1(Γm,k)SLn(Wm) ∼= HomSLn(k)(M0,k) = (0)

by part (i) above. An induction argument using inflation–restriction then implies that
H1(SLn(Wm),k) = (0) for all m > 1.

(iv) As in the proof of part (iii), we use the identification φ : Γm→M0 given by φ(I+pmM) :=
M (mod p). The transgression map

δ : H1(Γm,M0)SLn(Wm)
→ H2(SLn(Wm),M0)

sends −φ to the class of the extension

0→M0
φ−1

−−→ SLn(Wm+1)→ SLn(Wm)→ 1

in H2(SLn(Wm),M0) (see [Man15, Proposition 2.1]). Since H1(Γm,M0)SLn(Wm) has dimension 1
as a k-vector space by part (i), and δ(−φ) 6= 0 as the above extension is non-split by part (ii), the
transgression map δ is injective. Hence the inflation map H1(SLn(Wm),M0)→ H1(SLn(Wm+1),
M0) is an isomorphism. Consequently, H1(SLn(Wm),M0) ∼= H1(SLn(k),M0).

We now turn to calculation of the cohomology group H1(SLn(k),M0) under our assumptions
on k and n. Since H1(SL3(F4),M0) = (0) by [CPS75, Theorem 4.2], we shall assume that k is
either F2 or F3. By [Sah74, Theorem III.5], we have H1(SLn(k),M) = (0). When p - n the
direct sum decomposition M = M0 ⊕ kI then implies that H1(SLn(k),M0) = (0). If p|n the
exact sequence 0→ M0 → M→ k → 0 along with part (iii) implies that the connecting map
H0(SLn(k),k)→ H1(SLn(k),M0) is an isomorphism, and so H1(SLn(k),M0) ∼= k.

(v): We give a brief sketch; see [Man15, § 3.3] for details.
We first claim that for a fixed positive integer m, the non-splitting of extension (4.1) is

equivalent to the inflation map H1(SLn(Wm),V)→ H1(SLn(Wm+1),V) being an isomorphism.
This is done by an argument similar to part (iv) as follows. The identification φ : Γm → M0

induces an isomorphism ψ : Γm/Zm→ V, and the image of −ψ under the transgression map

δ : H1(Γm/Zm,V)SLn(Wm)
→ H2(SLn(Wm),V)
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is the cohomology class of extension (4.1). Since

H1(Γm/Zm,V)SLn(Wm) ∼= HomSLn(k)(V,V) ∼= k,

it follows that δ is injective if and only if δ(−ψ) 6= 0, i.e. the extension (4.1) is non-split. But δ
is injective if and only if the inflation map

H1(SLn(Wm),V)→ H1(SLn(Wm+1)/Zm,V)

is an isomorphism. Now, the third term in the inflation–restriction exact sequence

0→ H1(SLn(Wm+1)/Zm,V)→ H1(SLn(Wm+1),V)→ H1(Zm,V)SLn(Wm+1)

is isomorphic to HomSLn(k)(S,V), which vanishes. Hence the inflation map

H1(SLn(Wm+1)/Zm,V)→ H1(SLn(Wm+1),V)

is an isomorphism, and the desired equivalence follows.
The non-splitting of extension (4.1) when m > 2 is covered by [Man15, Lemma 3.9]. (The

proof is similar to the one we sketched in part (ii) above, except that we need to work
modulo the central subgroup Zm.) By the claim above, the inflation map H1(SLn(Wm),V)
→ H1(SLn(Wm+1),V) is an isomorphism whenever m > 2.

To see that the extension (4.1) does not split when m = 1, consider the commutative diagram

H1(Γ1,M0)SLn(k) δ //

��

H2(SLn(k),M0)

��
H1(Γ1,V)SLn(k) δ // H2(SLn(k),V)

where the vertical maps come from 0 → S → M0 → V → 0 and the horizontal maps are
transgressions. The left-hand arrow is an isomorphism by part (i), the right-hand arrow is an
injection by part (iii), and the top arrow is an injection by part (iv). The bottom arrow is
therefore an injection, and consequently the inflation map H1(SLn(k),V) → H1(SLn(W2),V)
is an isomorphism. Hence, by our claim above, extension (4.1) is non-split when m = 1 as well,
and this completes the proofs of parts (a) and (b).

We now verify the injectivity of H2(SLn(Wm),S) → H2(SLn(Wm),M0). Observe that we
have isomorphisms

H1(SLn(Wm),V) ∼= H1(SLn(k),V) ∼= H1(SLn(k),M0) ∼= k

for all m > 1. (The first isomorphism is by part (b) above. The second isomorphism follows from
the short exact sequence 0→ S→ M0 → V→ 0 using part (iii). The third isomorphism holds
by part (iv).) Writing H i(−) for the cohomology group H i(SLn(Wm),−), we obtain the long
exact sequence

H1(S)→ H1(M0)→ H1(V)→ H2(S)→ H2(M0)

from 0→ S→M0→ V→ 0. Now H1(S) = (0) by part (iii). Also, H1(M0) and H1(V) are both
isomorphic to k (by part (iv) and from the observation above). Hence the map H1(M0)→H1(V)
is an isomorphism, and part (c) follows.

For the final part, consider the long exact sequence

0→ S→ S→ k→ H1(M0)→ H1(M)→ H1(k)
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obtained from 0→ M0 → M→ k→ 0. Since the map M→ k is the trace map, the sequence
0→ k→ H1(M0)→ H1(M)→ H1(k) is exact. Part (d) now follows because dimkH

1(M0) = 1
by part (iv) and H1(k) = 0 by part (iii). 2

We now return to the proof of Proposition 4.1. We begin by indicating how the result for
general complete noetherian local rings can be deduced from the artinian case.

Suppose we are given a complete local noetherian W -algebra A in CW and a closed subgroup
G ⊆ SLn(A) with full residual image. Note that the filtration mA ⊇ m2

A ⊇ · · · can be refined to
a filtration J1 ⊇ J2 ⊇ · · · by closed ideals satisfying the following conditions.
• For all i, the quotient A/Ji is artinian, and J1 = mA.
• For all i the surjection A/Ji+1→ A/Ji is small.

Recall that a surjective morphism f : B → C of local artinian rings is small if ker(f) is a
principal ideal killed by mB.

Now suppose we can find, for each positive integer i, an invertible matrix Xi ∈ GLn(A/Ji)
such that:
• XiG(i)X−1

i ⊇ SLn(WA/Ji) where G(i) = G (mod Ji); and
• X1 ∈ SLn(k) is the identity and Xi+1 (mod Ji) = Xi for all i.

Then, since A∼= lim
←−A/Ji, we can findX ∈GLn(A) such thatX ≡Xi (mod Ji) andXGX−1 ⊇

SLn(WA). Thus Proposition 4.1 will follow from the result below.

Proposition 4.4. Keep the hypotheses and notation of Assumption 4.2. Let A be an artinian
W -algebra in CW and let t be a non-zero element of A killed by its maximal ideal, i.e. tmA = (0).
Suppose G is a subgroup of SLn(A) such that G (mod tA) = SLn(WA/tA). Then there is an
X ∈ GLn(A) with X ≡ I (mod tA) such that SLn(WA) ⊆ XGX−1.

Proof. We set B := A/tA and π : A→ B to be reduction modulo tA. Then we have an exact
sequence

0→M0
ε−→ SLn(A)

π−→ SLn(B)→ I (4.3)

where the map ε : M0 → SLn(A) is constructed as follows: lift x ∈ M0 to an n by n matrix x̃
over A and take ε(x) := I + tx̃. Denote by G̃ the preimage of SLn(WB) in SLn(A). Thus

0→M0
ε−→ G̃

π−→ SLn(WB)→ I (4.4)

is exact and G, SLn(WA) are subgroups of G̃. There are then the following three possibilities to
consider:
• G = G̃, in which case there is nothing to prove;
• π : G→ SLn(WB) is an isomorphism; or
• G fits into an exact sequence 0→ S→ G→ SLn(WB)→ I.

Suppose π : G→ SLn(WB) is an isomorphism. Then the sequence (4.4) splits. Consequently,
π : SLn(WA) → SLn(WB) must also be an isomorphism (otherwise G̃ = SLn(WA) and the
splitting of sequence (4.4) contradicts Proposition 4.3(ii)). It follows that G is a twist of SLn(WA)
by an element of H1(SLn(WB),M0).

If p and n are coprime then H1(SLn(WB),M0) = (0) by Proposition 4.3(iv), and we can find
X ∈ SLn(A) with π(X) = I such that XGX−1 = SLn(WA). If p divides n then H1(SLn(WB),M)
= (0) by Proposition 4.3(v)(d). In this case, we can find X ∈ GLn(A) with X ≡ I (mod tA) such
that XGX−1 = SLn(WA).

We now consider the case when

0→ S→ G→ SLn(WB)→ I (4.5)
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is exact. Assumption 4.2 then implies that k is either F2 or F3 and that p|n. Since H2(SLn(WB),

S) → H2(SLn(WB),M0) is injective by Proposition 4.3(v)(c), the sequence (4.5) splits if and

only if the sequence (4.4) splits. Now, if WA = WB then the sequence (4.4) splits. Consequently,

the sequence (4.5) also splits. Hence G contains a subgroup which is isomorphic to SLn(WB)

under the reduction map π, and we are in the set-up covered by the second case, which was

discussed in the previous paragraph.

We are now left with the possibility that WA = Wm+1 and WB = Wm. In this case, we must

have G̃ = SLn(WA). The image of M0 (respectively, S) under the map ε is precisely the subgroup

Γm (respectively, Zm), defined in Proposition 4.3, part (ii) (respectively, part (v)). Now sequence

(4.5) implies that G/Zm→ SLn(Wm) is an isomorphism splitting the sequence

I −→ Γm/Zm −→ SLn(Wm+1)/Zm −→ SLn(Wm) −→ I.

This contradicts Proposition 4.3(v)(a), completing the proof. 2

Remark 4.5. The results of Sah [Sah74, Sah77] used in the proof of Proposition 4.3 are precisely

the cohomological results needed to make the main argument of [Man15] carry over when k

and n satisfy the conditions set out in Assumption 4.2. We leave the precise verification to the

interested reader, and state the following extension of Proposition 4.1 (and the main theorem of

[Man15]).

Let A be a complete local noetherian ring with maximal ideal mA and finite residue field

A/mA of characteristic p. Suppose we are given a subfield k of A/mA and a closed subgroup G

of GLn(A) such that:

• n > 2 and the pair (n, |k|) is not one of (2, 2), (2, 3), (2, 5), (3, 2), or (4, 2);

• G (mod mA) ⊇ SLn(k).

Then G contains a conjugate of SLn(WA).

Remark 4.6. We now discuss the necessity of the restrictions on (n, |k|) in Proposition 4.1, and

also in Theorem 1.1.

The standard representation of S3 shows that SL2(F2) lifts to GL2(Z2). Since there is no

ring homomorphism from F2 to Z2, Theorem 1.1 fails for (A, ρA) when A = F2 and Γ = SL2(F2)

(with ρ̄ and ρA as in the statement of Theorem 1.1). Also, SL2(Z2) contains a double cover of

SL2(F2) (see the exercises at the end of [Ser98, ch. IV(3)]), and this double cover shows that

Proposition 4.1 fails when (n, |k|) = (2, 2).

Similarly, the following two observations imply the necessity of excluding the cases when

(n, |k|) is one of (2, 3), (3, 2) or (2, 5) from Proposition 4.1 and Theorem 1.1.

• The reduction map SLn(Z/p2Z)→ SLn(Z/pZ) has a section when (n, p) is either (2, 3) or

(3, 2). (See [Sah74, Theorem II.7].)

• SL2(F5) has a lift to SL2(Z5[ζ]) where ζ5 = 1, ζ 6= 1. (See § 11.3.3, particularly Proposition

11.3.6 and the paragraph preceding it, of [Bon11].)

Finally, it is known (see [Wil]) that SL4(F2) has a double cover inside SL4(Z/4Z) and,

from their orders, we see that this double cover cannot contain a conjugate of SL4(Z/4Z). The

restriction (n, |k|) 6= (4, 2) is therefore necessary in Proposition 4.1. However, although our proof

breaks down, Dorobisz [Dor13] has shown that the conclusion of Theorem 1.1 still holds in this

case.

1737

https://doi.org/10.1112/S0010437X16007582 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007582


T. Eardley and J. Manoharmayum

Acknowledgement
The authors would like to thank the referee for detailed and helpful comments. The referee’s
suggestions have led us to include stronger results and improved exposition.

References

BC06 F. Bleher and T. Chinburg, Universal deformation rings need not be complete intersections,
C. R. Math. Acad. Sci. Paris 342 (2006), 229–232.

BC07 F. Bleher and T. Chinburg, Universal deformation rings need not be complete intersections,
Math. Ann. 337 (2007), 739–767.

BCS10 F. Bleher, T. Chinburg and B. de Smit, Deformation rings which are not local complete
intersections, Preprint (2010), arXiv:1003.3143 [math.NT].

BCS13 F. Bleher, T. Chinburg and B. de Smit, Inverse problems for deformation rings, Trans. Amer.
Math. Soc. 365 (2013), 6149–6165.
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