# COHOMOLOGY AND EXTENSIONS OF REGULAR SEMIGROUPS 

M. LOGANATHAN

(Received 3 June 1982)

Communicated by T. E. Hall


#### Abstract

Let $S$ be a regular semigroup and $A$ a $D(S)$-module. We proved in a previous paper that the set $\operatorname{Ext}(S, A)$ of equivalence classes of extensions of $A$ by $S$ admits an abelian group structure and studied its functorial properties. The main aim of this paper is to describe $\operatorname{Ext}(S, A)$ as a second cohomology group of certain chain complex.


1980 Mathematics subject classification (Amer. Math. Soc.): 20 M 50.

Let $S$ be a regular semigroup and $A$ a $D(S)$-module. Denote by $S$ the regular semigroup obtained from $S$ by adjoining an identity element $I, I \notin S$, and by $A^{1}$ the $D\left(S^{I}\right)$-module obtained from $A$ by taking $A_{I}^{1}=\lim _{L_{D(I S)}} A$, where $I S$ denotes the subsemigroup generated by the idempotents of $S$. In Loganathan (1982) we showed that the set $\operatorname{Ext}(S, A)$ of equivalence classes of extensions of $A$ by $S$ admits an abelian group structure and studied its functorial properties. One of the purposes of the present paper is to construct a chain complex $\mathbf{C}$ in the category of $D\left(S^{I}\right)$-modules and to show that the group $\operatorname{Ext}(S, A)$ is naturally isomorphic to the second cohomology group $H^{2}\left(\mathbf{C}, A^{1}\right)$. This generalizes the corresponding result for inverse semigroups due to Lausch (1975).

After Section 2 which gives necessary preliminaries, we construct in Section 3 the chain complex $\mathbf{C}$ and compare the lower dimensional cohomology groups of $\mathbf{C}$ and the category $D\left(S^{I}\right)$. It is shown that the second cohomology group $H^{2}\left(D\left(S^{I}\right), B\right)$ is isomorphic to a subgroup of $H^{2}(\mathbf{C}, B)$ and that the first cohomology group $H^{\prime}\left(D\left(S^{I}\right), B\right)$ is isomorphic to the group $H^{l}(\mathbf{C}, B)$, for any $D\left(S^{I}\right)$-module $B$. In Section 4 we prove that the group $\operatorname{Ext}(S, A)$ is isomorphic to

[^0]the group $H^{2}\left(\mathbf{C}, A^{1}\right)$. The remainder of the paper is devoted to interpreting the groups $H^{2}\left(D\left(S^{I}\right), A^{1}\right)$ and $H^{2}\left(D\left(S^{I}\right), A^{1}\right)$ in terms of $I$-split extensions and automorphisms of extensions respectively.

## 2. Preliminaries

Let $S$ be a regular semigroup, and $E(S)$ the set of idempotents of $S$. We denote the set of inverses of an element $x \in S$ by $V(x)$, that is,

$$
V(x)=\left\{x^{\prime} \in S: x x^{\prime} x=x, x^{\prime} x x^{\prime}=x^{\prime}\right\} .
$$

If $x^{\prime} \in V(x)$ then $\left(x, x^{\prime}\right)$ is called a regular pair in $S$. For $e, f \in E(S)$, let $S(e, f)$ be the sandwich set of $e$ and $f$, that is,

$$
S(e, f)=\{h \in E(S): h e=h=f h \text { and } e h f=e f\} .
$$

Lemma 2.1 (Nambooripad, 1979). Let $S$ be a regular semigroup and let $x, y \in S$. Suppose that $x^{\prime} \in V(x), y^{\prime} \in V(y)$ and let $h \in S\left(x^{\prime} x, y y^{\prime}\right)$. Then $y^{\prime} h x^{\prime} \in V(x y)$.

A sequence ( $e_{0}, e_{1}, \ldots, e_{n}$ ) of idempotents of $S$ is called an $E(S)$-chain if $e_{i} \mathcal{R} e_{i+1}$ or $e_{i} \mathcal{R} e_{i+1}$ for $i=0,1, \ldots, n-1$.

Lemma 2.2 (Nambooripad, 1979). Let $S$ be a regular semigroup and IS the subsemigroup generated by the idempotents of $S$. Then
(i) given any $x$ in IS there exists an $E(S)$-chain $\left(e_{0}, e_{1}, \ldots, e_{n}\right)$ such that $x=e_{0} e_{1} \cdots e_{n}$;
(ii) given any regular pair ( $x, x^{\prime}$ ) in IS there exists an $E(S)$-chain $\left(f_{0}, f_{1}, \ldots, f_{m}\right)$ such that $\left(x, x^{\prime}\right)=\left(f_{0} f_{1} \cdots f_{m}, f_{m} \cdots f_{1} f_{0}\right)$.

We recall from Loganathan (1981) that if $S$ is any regular semigroup then $C(S)$ is defined to be the category whose objects are the idempotents of $S$ and whose morphisms from an object $e$ to the object $f$ are the triples ( $e, x, x^{\prime}$ ) such that $x^{\prime} \in V(x), e \geqslant x x^{\prime}$ and $x^{\prime} x=f$. The category $D(S)$ is the quotient category of $C(S)$ by the congruence generated by the following relation. If ( $e, x, x^{\prime}$ ), $\left(e, y, y^{\prime}\right): e \rightarrow f$ are morphisms from $e$ to $f$ then $\left(e, x, x^{\prime}\right) \sim\left(e, y, y^{\prime}\right)$ if and only if $x=y$ or $x^{\prime}=y^{\prime}$. We denote the image of $\left(e, x, x^{\prime}\right)$ in $D(S)$ by $\left[e, x, x^{\prime}\right]$.

Finally we recall the definition of the cohomology of a small category. For more details we refer to Watts (1965) and to Loganathan (1981). Let Ab denote the category of abelian groups. Let $\mathcal{C}$ be any small category. A $\mathcal{C}$-module is a functor $A: \mathcal{C} \rightarrow \mathrm{Ab}$. Let $A, B$ be two $\mathcal{C}$-modules. A $\mathcal{C}$-homomorphism $\varphi: A \rightarrow B$ is a natural transformation from $A$ to $B$. The group of all $\mathcal{C}$-homomorphisms from $A$
to $B$ is denoted by $\operatorname{Hom}_{\mathcal{C}}(A, B)$. The category of $\mathcal{C}$-modules and $\mathcal{C}$-homomorphisms is denoted by $\operatorname{Mod}(\mathcal{C})$. The inverse limit functor $\lim _{e}: \operatorname{Mod}(\mathcal{C}) \rightarrow \mathrm{Ab}$ is left exact. Therefore the right derived functors of $\lim _{\leftarrow}$ can be defined. If $A$ is a $\varrho_{-}$-module then the value of the $n$th right derived functor of $\lim _{e}$ on $A$, denoted by $H^{n}(\mathcal{C}, A)$, is called the $n$th cohomology group of $\mathcal{C}$ with coefficients in $A$.

Let $\Delta Z: \mathcal{C} \rightarrow \mathrm{Ab}$ be the constant $\mathcal{C}$-module at $Z$, the additive group of integers, that is $(\Delta Z)_{e}=Z$ for every object $e$ of $\mathcal{C}$, and $(\Delta Z) u$ is the identity homomorphism for every morphism $u$ of $\mathcal{C}$. Then $H^{n}(\mathcal{C}, A)=\operatorname{Ext}_{\mathcal{C}}^{n}(\Delta Z, A)$. Therefore the cohomology groups of $\mathcal{C}$ may be calculated using a projective resolution of the module $\Delta Z$.

Let $\mathcal{C}_{0}$ denote the discrete subcategory determined by the identity morphisms of $\mathcal{C}$. $A \mathcal{C}_{0}$-set is a functor from $\mathcal{C}_{0}$ to the category of sets, and a $\mathcal{C}_{0}$-map is a natural transformation between such functors. Note that a $\mathcal{C}$-module (resp. $\mathcal{C}^{-}$-homomorphism) may be regarded as a $\mathcal{C}_{0}$-set (resp. $\mathcal{C}_{0}$-map) in an obvious way.

Let $X$ be a $\mathcal{C}_{0}$-set and $F$ a $\mathcal{C}$-module. $F$ is called a free $\mathcal{C}$-module on $X$ if there exist a $\bigodot_{0}$-map $i: X \rightarrow F$ such that to every $\mathcal{C}$-module $A$ and to every $\mathcal{C}_{0}$-map $j: X \rightarrow A$ there is a unique $\mathcal{C}$-homomorphism $\varphi: F \rightarrow A$ such that $i \varphi=j$. Given a $\mathcal{C}_{0}$-set $X=\left\{X_{e}: e \in O b \mathcal{C}\right\}$ a free $\mathcal{C}^{-}$module $F$ on $X$ can be obtained by associating to each object $e$ of $\mathcal{C}$ the free abelian group $F_{e}$ generated by the symbols ( $x, u$ ), where $u: h \rightarrow e$ runs through the morphisms of $\mathcal{C}$ with range $e$ and $x \in X_{h}$, and to each morphism $v: e \rightarrow f$ the homomorphism $F v: F_{e} \rightarrow F_{f}$, where $F v$ is given by $(x, u)(F v)=(x, u v)$. The $\mathcal{C}_{0}$-map $i: X \rightarrow F$ is defined by $x i=\left(x, 1_{e}\right)$, where $x \in X_{e}$ and $1_{e}$ is the identity morphism of $\mathcal{C}$ at $e$. We usually identify $X$ with its image in $F$ under $i$.

## 3. Chain complexes over $\Delta Z$

Let $S$ be a regular semigroup. In this section we construct a chain complex $\mathbf{C}$ in the category of $D\left(S^{I}\right)$-modules. The cohomology of $\mathbf{C}$ will be used in Section 4 to describe the group $\operatorname{Ext}(S, A)$.

Throughout the remainder of this paper $S$ will denote a regular semigroup with an inverse map $x \mapsto x^{*}: S \rightarrow S$; a map $x \mapsto x^{*}: S \rightarrow S$ is called inverse if (i) $x^{*} \in V(x)$ for each $x \in S$; (ii) $x^{*} \in H_{e}$ if $x \in H_{e}$. We extend $x \mapsto x^{*}: S \rightarrow S$ to $S^{I}$ by defining $I^{*}=I$. If $x, y \in S^{I}$ then we denote the $D\left(S^{I}\right)$-morphisms

$$
\left[y^{*} y, y^{*} y(x y)^{*} x y,(x y)^{*} x y\right]: y^{*} y \rightarrow(x y)^{*} x y
$$

and

$$
\left[x^{*} x, x^{*} x y,(x y)^{*} x h\right]: x^{*} x \rightarrow(x y)^{*} x y,
$$

$h \in S\left(x^{*} x, y y^{*}\right)$, by $K_{x, y}$ and $J_{x, y}$ respectively.

Lemma 3.1 (Loganathan 1982). For $x, y, z \in S^{I}$, we have
(i) $K_{y, z} K_{x, y z}=K_{x y, z}$;
(ii) $J_{x, y} J_{x y, z}=J_{x, y z}$;
(iii) $K_{x, y} J_{x y, z}=J_{y, z} K_{x, y z}$.

Let $C_{n}, n \geqslant 0$, be the free $D\left(S^{I}\right)$-module on the $D\left(S^{I}\right)_{0}$-set $S^{n}=\left\{S_{e}^{n}: e \in\right.$ $\left.E\left(S^{I}\right)\right\}$, where for $n \geqslant 1$,

$$
S_{e}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in S, 1 \leqslant i \leqslant n,\left(x_{1} \cdots x_{n}\right)^{*} x_{1} \cdots x_{n}=e\right\}
$$

and for $n=0, S_{I}^{0}$ consists of a single element, denoted by $\left\rangle\right.$, and $S_{e}^{0}$ is empty if $e \neq I$. Note that $S_{I}^{n}$ is an empty set for all $n \geqslant 1$. We define $D\left(S^{I}\right)$-homomorphisms $d_{n}: C_{n} \rightarrow C_{n-1}$ by

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}\right) d_{n}= & \left(\left(x_{2}, \ldots, x_{n}\right), K_{x_{1}, x_{2} \cdots x_{n}}\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i}\left(x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n}\right) \\
& +(-1)^{n}\left(\left(x_{1}, \ldots, x_{n-1}\right), J_{x_{1} \cdots x_{n-1}, x_{n}}\right), \quad n>1
\end{aligned}
$$

and

$$
(x) d_{1}=\left(\langle \rangle,\left[I, x^{*} x, x^{*} x\right]\right)-\left(\langle \rangle,\left[I, x, x^{*}\right]\right)
$$

A routine verification shows that $d_{n} d_{n-1}=0$. Hence

$$
\begin{equation*}
\mathrm{C}: \cdots \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{0} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

is a free chain complex in $\operatorname{Mod}\left(D\left(S^{I}\right)\right)$. If $B$ is a $D\left(S^{I}\right)$-module then the $n$th cohomology group of $\mathbf{C}$ with coefficients in $B$ is the abelian group

$$
H^{n}(\mathbf{C}, B)=H^{n}\left(\operatorname{Hom}_{D\left(S^{\prime}\right)}(\mathbf{C}, B)\right)
$$

The following description of the second cohomology group of $\mathbf{C}$ is needed in Section 4. Suppose that $A$ is a $D(S)$-module. Then we denote by $A^{\prime}$ the $D\left(S^{I}\right)$-module extended from $A$ by taking $A_{I}^{1}=\lim _{\leftarrow}{ }_{D(I S)} A$ and defining, for every morphism $\left[I, x, x^{\prime}\right]: I \rightarrow e$,

$$
A^{1}\left(\left[I, x, x^{\prime}\right]\right): A_{I}^{1} \rightarrow A_{e}^{1}\left(=A_{e}\right)
$$

to be the composite

$$
\lim _{D(I S)} A \xrightarrow{p_{x x^{\prime}}} A_{x x^{\prime}} \xrightarrow{A\left(\left[\mid x x^{\prime}, x, x^{\prime}\right]\right)} A_{e},
$$

where $p_{x x^{\prime}}$ is the projection from $\lim _{\llcorner }$D(IS)$A$ to $A_{x x^{\prime}}$. If we regard $S \times S$ and $S$ as $D(S)_{0}$-sets by taking for each $e \in E(S),(S \times S)_{e}=S_{e}^{2}$ and $S_{e}=S_{e}^{1}$ respectively
then, since $S_{I}^{n}$ is an empty set for all $n \geqslant 1$, it follows that

$$
\operatorname{Hom}_{D\left(S^{\prime}\right)}\left(C_{2}, A^{1}\right)=\operatorname{Hom}_{D(S)_{0}}(S \times S, A)
$$

and

$$
\operatorname{Hom}_{D\left(S^{\prime}\right)}\left(C_{1}, A^{1}\right)=\operatorname{Hom}_{D(S)_{0}}(S, A)
$$

Hence, a 2-cocycle $\alpha$ can be considered as a $D(S)_{0}$-map $\alpha: S \times S \rightarrow A$ such that

$$
\begin{equation*}
(y, z) \alpha A\left(K_{x, y z}\right)-(x y, z) \alpha+(x, y z) \alpha-(x, y) \alpha A\left(J_{x y, z}\right)=0 \tag{3.2}
\end{equation*}
$$

for all $x, y, z \in S ; \alpha$ is a coboundary if and only if there exists a $D(S)_{0}$-map $\beta: S \rightarrow A$ such that

$$
\begin{equation*}
(x, y) \alpha=(y) \beta A\left(K_{x, y}\right)-(x y) \beta+(x) \beta A\left(J_{x, y}\right) \tag{3.3}
\end{equation*}
$$

for all $x, y \in S$.
We would like to compare the lower dimensional cohomology groups of $\mathbf{C}$ and the small category $D\left(S^{I}\right)$. For this purpose we shall construct free resolutions of the $D\left(S^{I}\right)$-module $\Delta Z$.

Let $G_{n}, n \geqslant 1$, be the free $D\left(S^{I}\right)$-module on the $D\left(S^{I}\right)_{0}$-set $Y^{n}=\left\{Y_{e}^{n}: e \in\right.$ $E\left(S^{I}\right)$ \}, where $Y_{e}^{n}$ consists of all composable sequences $\left\langle u_{1}, \ldots, u_{n}\right\rangle$ of morphisms of $D\left(S^{I}\right)$ with domain of $u_{1}=I$, and range of $u_{n}=e$. Put $G_{0}=C_{0}$. Define $D\left(S^{I}\right)$-homomorphisms $\varepsilon: G_{0} \rightarrow \Delta Z$ by $(\rangle) \varepsilon=1$, the identity element of the group $(\Delta Z)_{I}=Z$, and $d_{n}: G_{n} \rightarrow G_{n-1}$ by

$$
\begin{aligned}
\left\langle u_{1}, \ldots, u_{n}\right\rangle d_{n}= & \left\langle\left[I, e_{1}, e_{1}\right] u_{2}, u_{3}, \ldots, u_{n}\right\rangle \\
& +\sum_{i=1}^{n-1}(-1)^{i}\left\langle u_{1}, \ldots, u_{i} u_{i+1}, \ldots, u_{n}\right\rangle \\
& +(-1)^{n}\left(\left\langle u_{1}, \ldots, u_{n-1}\right\rangle, u_{n}\right)
\end{aligned}
$$

where $e_{1} \in E\left(S^{I}\right)$ and domain of $u_{2}=e_{1}$;

$$
\left\langle\left[I, x, x^{\prime}\right]\right\rangle d_{1}=\left(\langle \rangle,\left[I, x^{\prime} x, x^{\prime} x\right]\right)-\left(\langle \rangle,\left[I, x, x^{\prime}\right]\right)
$$

Define $D\left(S^{I}\right)_{0}$-homomorphisms $s_{n}: G_{n} \rightarrow G_{n+1}(n \geqslant 0)$ and $\delta: \Delta Z \rightarrow G_{0}$ by

$$
\begin{aligned}
\left(\left\langle u_{1}, \ldots, u_{n}\right\rangle, v\right) s_{n} & =(-1)^{n+1}\left\langle u_{1}, \ldots, u_{n}, v\right\rangle ; \\
\left(\left\rangle,\left[I, x, x^{\prime}\right]\right) s_{0}\right. & =-\left\langle\left[I, x, x^{\prime}\right]\right\rangle \\
(1) \delta & =(\langle \rangle,[I, e, e])
\end{aligned}
$$

where 1 is the identity element of the group $(\Delta Z)_{e}=Z$. It is easy to verify that

$$
\delta \varepsilon=1_{\Delta Z}, \quad s_{0} d_{1}+\varepsilon \delta=1_{G_{0}}, \quad s_{n} d_{n+1}+d_{n} s_{n-1}=1_{G_{n}} \quad(n>0)
$$

Using these relations one can show as in Mac Lane (1963), page 115, that

$$
\cdots \rightarrow G_{n} \xrightarrow{d_{n}} G_{n-1} \rightarrow \cdots \rightarrow G_{0} \rightarrow 0
$$

is a free resolution of $\Delta Z$.
In $G_{n}$ put $\left(\left\langle u_{1}, \ldots, u_{n}\right\rangle, v\right)=0$, whenever one of the variables $u_{i}=$ identity morphism or $u_{1}=[I, f, f]$ for some $f \in E\left(S^{I}\right)$. Then we get another free resolution

$$
\begin{equation*}
\mathbf{F}: \cdots \rightarrow F_{n} \xrightarrow{d_{n}} F_{n-1} \rightarrow \cdots \rightarrow F_{0} \rightarrow 0 \tag{3.4}
\end{equation*}
$$

of $\Delta Z$ such that $F_{0}=G_{0}=C_{0}$, and $F_{n}$ is the free $D\left(S^{I}\right)$-module on the $D\left(S^{I}\right)_{0}$-set $X^{n}=\left\{X_{e}^{n}: e \in E\left(S^{I}\right)\right\}$, where $X_{e}^{n}$ is the subset of $Y_{e}^{n}$ consisting of all $\left\langle u_{1}, \ldots, u_{n}\right\rangle$ such that $u_{1} \neq[I, e, e]$ for any $e \in E\left(S^{I}\right)$ and such that none of the $u_{1}, \ldots, u_{n}$ are identity morphisms. Note that $X_{I}^{n}$ is an empty set for all $n \geqslant 1$.

Now

$$
\mathrm{C}: \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{0} \rightarrow 0
$$

is a free chain complex over $\Delta Z$ and

$$
\mathbf{F}: \cdots \rightarrow F_{n} \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{0} \rightarrow 0
$$

is a free resolution of $\Delta Z$. Therefore the identity homomorphism of $\Delta Z$ can be lifted to a chain map $\varphi: \mathbf{C} \rightarrow \mathbf{F}$ and any two such chain maps are chain homotopic.

Proposition 3.2. Let $\varphi: \mathbf{C} \rightarrow \mathbf{F}$ be a chain map such that $\varphi_{0} \varepsilon=\varepsilon$. Then for any $D\left(S^{J}\right)$-module B,

$$
\begin{equation*}
\varphi_{1}^{*}: H^{\prime}\left(D\left(S^{I}\right), B\right) \rightarrow H^{1}(\mathbf{C}, B) \tag{i}
\end{equation*}
$$

is an isomorphism and

$$
\begin{equation*}
\varphi_{2}^{*}: H^{2}\left(D\left(S^{I}\right), B\right) \rightarrow H^{2}(C, B) \tag{ii}
\end{equation*}
$$

is a monomorphism.
Proof. We choose $\varphi$ so that $\varphi_{n}: C_{n} \rightarrow F_{n}, n=0,1,2$ are given by

$$
\begin{aligned}
\varphi_{0} & =\text { identity homomorphism; } \\
(x) \varphi_{1} & =\left\langle J_{I, x}\right\rangle \\
(x, y) \varphi_{2} & =\left\langle J_{I, x}, J_{x, y}\right\rangle+\left\langle J_{I, y}, K_{x, y}\right\rangle .
\end{aligned}
$$

(i) Suppose $\beta$ : $F_{1} \rightarrow B$ is a cocycle such that $\varphi_{1} \beta$ is a coboundary. Then there exists a unique $b \in B_{I}$ such that

$$
(x) \varphi_{1} \beta=\left(J_{I, x}\right) \beta=b B\left(J_{I, x^{*} x}\right)-b B\left(J_{I, x}\right),
$$

for all $x \in S$. Since

$$
\left\langle\left[I, x, x^{*}\right],\left[x^{*} x, x^{*} x, x^{\prime} x\right]\right\rangle(\beta) d_{2}^{*}=0
$$

it follows that

$$
\left\langle\left[I, x, x^{\prime}\right]\right\rangle \beta=b B\left(\left[I, x^{\prime} x, x^{\prime} x\right]\right)-b B\left(\left[I, x, x^{\prime}\right]\right)
$$

for all $\left\langle\left[I, x, x^{\prime}\right]\right\rangle \in X^{1}$. Hence $\beta$ is a coboundary. Thus $\varphi_{1}^{*}$ is a monomorphism. Now suppose that $\beta: C_{1} \rightarrow B$ is a cocycle. Then $(x) \beta=0$ for all $x \in I S$. If we define $\beta^{\prime}: F_{1} \rightarrow B$ by

$$
\left\langle\left[I, x, x^{\prime}\right]\right\rangle \beta^{\prime}=(x) \beta B\left(\left[x^{*} x, x^{*} x, x^{\prime} x\right]\right), \quad\left\langle\left[I, x, x^{\prime}\right]\right\rangle \in X^{\prime}
$$

then $\beta^{\prime}$ is a cocycle and $\varphi_{2} \beta^{\prime}=\beta$. Hence $\varphi_{2}^{*}$ is an epimorphism.
(ii) Suppose that $[\alpha] \in \operatorname{ker} \varphi_{2}^{*}$, and let $\alpha^{\prime}=\varphi_{2} \alpha$. Then there exists a $D\left(S^{\prime}\right)$ homomorphism $\beta^{\prime}: C_{1} \rightarrow B$ such that

$$
\begin{equation*}
(x, y) \alpha^{\prime}=(x) \beta^{\prime} B\left(J_{x, y}\right)+(y) \beta^{\prime} B\left(K_{x, y}\right)-(x y) \beta^{\prime}, \tag{3.5}
\end{equation*}
$$

for all $(x, y) \in S^{2}$. If $x, y \in I S$ then $(x, y) \alpha^{\prime}=0$ because

$$
\begin{aligned}
(x, y) \alpha^{\prime} & =(x, y) \varphi_{2} \alpha \\
& =\left\langle J_{I, x}, J_{x, y}\right\rangle \alpha+\left\langle J_{I, y}, K_{x, y}\right\rangle \alpha \\
& =\left\langle J_{I, x^{*} x}, J_{x, y}\right\rangle \alpha+\left\langle J_{I, y^{*} y}, K_{x, y}\right\rangle \alpha \\
& =0
\end{aligned}
$$

Since every element of $I S$ can be expressed as a product of idempotents of $S$, using (3.5) one can prove by an induction argument that $(x) \beta^{\prime}=0$ for all $x \in I S$. This implies that $\beta: F_{1} \rightarrow B$ given by

$$
\begin{equation*}
\left\langle\left[I, x, x^{\prime}\right]\right\rangle \beta=(x) \beta^{\prime} B\left(K_{x^{\prime} x, x^{*} x}\right)-\left\langle J_{I, x}, K_{x^{\prime} x, x^{*} x}\right\rangle \alpha \tag{3.6}
\end{equation*}
$$

is well defined and it is a $D\left(S^{I}\right)$-homomorphism from $F_{1}$ to $B$. We claim that $\alpha=(\beta) d_{2}^{*}$. To prove this let

$$
\left\langle\left[I, x, x^{\prime}\right],\left[e, y, y^{\prime}\right]\right\rangle \in X_{f}^{2}, \quad f \in E(S)
$$

Consider

$$
\begin{align*}
\left\langle\left[I, x, x^{\prime}\right],\left[e, y, y^{\prime}\right]\right\rangle(\beta) d_{2}^{*}= & \left\langle\left[I, y, y^{\prime}\right]\right\rangle \beta-\left\langle\left[I, x y, y^{\prime} x^{\prime}\right]\right\rangle \beta \\
& +\left\langle\left[I, x, x^{\prime}\right]\right\rangle \beta B\left(\left[e, y, y^{\prime}\right]\right) \\
= & (x, y) \alpha^{\prime} B\left(K_{f,(x y)^{*} x y}\right)-\left\langle J_{I, y}, K_{f, y^{*} y}\right\rangle \alpha  \tag{3.7}\\
& +\left\langle J_{I, x y}, K_{f,(x y)^{*} x y}\right\rangle \alpha \\
& -\left\langle J_{I, x}, K_{e, x^{*} x}\right\rangle \alpha B\left(\left[e, y, y^{\prime}\right]\right) \\
& \text { (using (3.5) and (3.6)). }
\end{align*}
$$

Now

$$
\begin{align*}
&(x, y) \alpha^{\prime} B\left(K_{f,(x y)^{*} x y}\right)=\left\langle J_{I, x}, J_{x, y}\right\rangle \alpha B\left(K_{f,(x y)^{*} x y}\right) \\
&+\left\langle J_{I, y}, K_{x, y}\right\rangle \alpha B\left(K_{f,(x y)^{*} x y}\right) \\
&=\left\langle K_{x, I} J_{x, y}, K_{f,(x y)^{*} x y}\right\rangle \alpha-\left\langle J_{I, x} J_{x, y}, K_{f,(x y)^{*} x y}\right\rangle \alpha \\
&+\left\langle J_{I, x}, J_{x, y} K_{f,(x y)^{*} x y}\right\rangle \alpha \\
&-\left\langle J_{I, y} K_{x, y}, K_{f,(x y)^{*} x y}\right\rangle \alpha  \tag{3.8}\\
&+\left\langle J_{I, y}, K_{x, y} K_{f,(x y)^{*} x y}\right\rangle \alpha \\
&=-\left\langle J_{I, x y}, K_{f,(x y)^{*} x y}\right\rangle \alpha+\left\langle J_{I, x}, J_{x, y} K_{f,(x y)^{*} x y}\right\rangle \alpha \\
&+\left\langle J_{I, y}, K_{f, y^{*} y}\right\rangle \alpha,
\end{align*}
$$

since $K_{x, I} J_{x, y}=J_{I, y} K_{x, y}$ by Lemma 3.1; and, since $\left\langle J_{I, x}, K_{e, x^{*} x},\left[e, y, y^{\prime}\right]\right\rangle(\alpha) d_{3}^{*}$ $=0$,

$$
\begin{align*}
\left\langle J_{I, x}, K_{e, x^{*} x}\right\rangle \alpha & B\left(\left[e, y, y^{\prime}\right]\right)=-\left\langle J_{I, x} K_{e, x^{*} x},\left[e, y, y^{\prime}\right]\right\rangle \alpha \\
& +\left\langle J_{I, x}, K_{e, x^{*} x}\left[e, y, y^{\prime}\right]\right\rangle \alpha \\
= & -\left\langle\left[I, x, x^{\prime}\right],\left[e, y, y^{\prime}\right]\right\rangle \alpha  \tag{3.9}\\
& +\left\langle J_{I, x},\left[x^{*} x, x^{*} x y, y^{\prime} e\right]\right\rangle \alpha .
\end{align*}
$$

Substituting (3.8) and (3.9) in (3.7) we get

$$
\begin{aligned}
\left\langle\left[I, x, x^{\prime}\right],\left[e, y, y^{\prime}\right]\right\rangle(\beta) d_{2}^{*}= & \left\langle J_{I, x}, J_{x, y} K_{f,(x y)^{*} x y}\right\rangle \alpha \\
& +\left\langle\left[I, x, x^{\prime}\right],\left[e, y, y^{\prime}\right]\right\rangle \alpha \\
& -\left\langle J_{I, x},\left[x^{*} x, x^{*} x y, y^{\prime} e\right]\right\rangle \alpha \\
= & \left\langle\left[I, x, x^{\prime}\right],\left[e, y, y^{\prime}\right]\right\rangle \alpha
\end{aligned}
$$

since $J_{x, y} K_{f,(x y)^{*} x y}=\left[x^{*} x, x^{*} x y, y^{\prime} y(x y)^{*} x h\right]=\left[x^{*} x, x^{*} x y, y^{\prime} e\right]$. Thus $\alpha=$ $(\beta) d_{2}^{*}$. Hence $\varphi_{2}^{*}$ is a monomorphism.

If $S$ is an inverse semigroup then the chain complex $\mathbf{C}$ is exact and hence a free resolution of $\Delta Z$. In this case $\varphi$ becomes a chain equivalence inducing isomorphism on the cohomology groups. In the general case, $\boldsymbol{\varphi}^{*}$ need not be an isomorphism. The reader is advised to compare Proposition 3.1 with Theorem 7.5 and the subsequent Remark in Lausch (1975).

## 4. Description of $\operatorname{Ext}(S, A)$

Let $\pi: T \rightarrow S$ be an idempotent separating homomorphism from a regular semigroup $T$ onto $S$. Then, for each $e \in E(S)$,

$$
(\operatorname{Ker} \pi)_{e}=\{t \in T: t \pi=e\}
$$

is a subgroup of $T$ and the following two properties hold:

$$
\begin{align*}
& a f=f a, \text { for all } a \in(\operatorname{Ker} \pi)_{e} \text { and all } f \in E(T)  \tag{4.1}\\
& \text { such that } e \geqslant f \pi ; \\
& x^{\prime}(\operatorname{Ker} \pi)_{e} x \subseteq(\operatorname{Ker} \pi)_{\left(x^{\prime} x\right) \pi}, \text { for all regular pairs } \\
& \left(x, x^{\prime}\right) \text { in } T \text { such that } e \geqslant\left(x x^{\prime}\right) \pi
\end{align*}
$$

Suppose now that the groups ( $\operatorname{Ker} \pi)_{e}, e \in E(S)$, are abelian. Thus, using (4.1) and (4.2), it is easy to see that $\pi$ defines a $D(S)$-module, denoted by Ker $\pi$, which associates to each object $e$ the abelian group ( $\operatorname{Ker} \pi)_{e}$ and to each morphism $\left[e, x, x^{\prime}\right]: e \rightarrow f$ the homomorphism

$$
(\operatorname{Ker} \pi)\left[e, x, x^{\prime}\right]:(\operatorname{Ker} \pi)_{e} \rightarrow(\operatorname{Ker} \pi)_{f}
$$

given by $a\left((\operatorname{Ker} \pi)\left[e, x, x^{\prime}\right]\right)=y^{\prime} a y$, where $\left(y, y^{\prime}\right)$ is a regular pair in $T$ satisfying $\left(y \pi, y^{\prime} \pi\right)=\left(x, x^{\prime}\right)$.

Let $A$ be a $D(S)$-module. We recall from Loganathan (1982) that an extension of $A$ by $S$ is a triple $E=(T, \pi, i)$ consisting of a regular semigroup $T$, an idempotent separating homomorphism $\pi$ from $T$ onto $S$ such that the groups $(\operatorname{Ker} \pi)_{e}, e \in E(S)$, are abelian, and an isomorphism $i: A \rightarrow \operatorname{Ker} \pi$ of $D(S)$ modules. Two extensions $E_{1}=\left(T_{1}, \pi_{1}, i_{1}\right)$ and $E_{2}=\left(T_{2}, \pi_{2}, i_{2}\right)$ are said to be equivalent if there exists a homomorphism (in fact an isomorphism) $\theta: T_{1} \rightarrow T_{2}$ such that $\theta \pi_{2}=\pi_{1}$ and $a i_{1} \theta=a i_{2}$, for all $a \in A$. Let $\operatorname{Ext}(S, A)$ denote the set of all equivalence classes of extensions of $A$ by $S$. We have shown in Loganathan (1982) that $\operatorname{Ext}(S, A)$ admits an abelian group structure. We now show that the abelian group $\operatorname{Ext}(S, A)$ is naturally isomorphic to the group $H^{2}\left(\mathbf{C}, A^{1}\right)$.

Lemma 4.1. Let $\pi: T \rightarrow S$ be an idempotent separating homomorphism from $a$ regular semigroup $T$ onto $S$. Suppose that $t \pi=u \pi=x, t, u \in T$. Then, for each $e \in E(S) \cap L_{x}$, there exists a unique element $a$ in $T$ such that $u=$ ta and $a \pi=e$.

Proof. Let $x^{\prime}$ be an inverse of $x$ such that $x^{\prime} x=e$. Choose $t^{\prime} \in V(t)$ and $u^{\prime} \in V(u)$ such that $t^{\prime} \pi=x^{\prime}=u^{\prime} \pi$. Then, since $\pi$ is idempotent-separating, $t t^{\prime}=u u^{\prime}$, and $t^{\prime} t=u^{\prime} u$. If we take $a=t^{\prime} u$ then $u=u u^{\prime} u=t t^{\prime} u=t a$, and $a \pi=$ $x^{\prime} x=e$. The element $a$ is unique, for if $b$ is another element of $T$ satisfying $u=t b$ and $b \pi=e$ then $b=t^{\prime} u=a$.

Let now $E=(T, \pi, i)$ be an extension of $A$ by $S$. Fix an inverse map $t \mapsto t^{*}: T \rightarrow T$ such that $\left(t^{*}\right) \pi=(t \pi)^{*}$ for all $t \in T$. Choose a section $j: S \rightarrow T$; that is, $j$ is a map from $S$ to $T$ such that $x j \pi=x$, for all $x \in S$. Since $((x j)(y j)) \pi=x y=(x y) j \pi$, it follows from Lemma 4.1 that there exists a $D(S)_{0^{-}}$ map $\alpha: S \times S \rightarrow A$ such that

$$
(x) j(y) j=(x y) j((x, y) \alpha) i, \quad \text { for all } x, y \in S
$$

We shall prove that $\alpha$ is a 2 -cocycle. First we prove a lemma.

Lemma 4.2. Let $t, u \in T$, and let $a \in A_{(1 \pi)^{*} l \pi}, b \in A_{(u \pi)^{*} u \pi}$. Then

$$
t(a) i u(b) i=t u\left(a A\left(J_{t \pi, u \pi}\right)+b A\left(K_{t \pi, u \pi}\right)\right) i
$$

Proof. Let $h \in S\left(t^{*} t, u u^{*}\right)$. Then $t^{*} t h u u^{*}=t^{*} t u u^{*}, t^{*} t \geqslant t^{*} t h$ and $u u^{*} \geqslant h u u^{*}$. Since $a \in A_{(t \pi)^{*}(t \pi)},(a) i t^{*} t=t^{*} t(a) i=(a) i$. Now

$$
\begin{aligned}
t(a) i u(b) i & =t(a) i t^{*} t h u u^{*} u(b) i \\
& =t t^{*} t h(a) i u(b) i \quad\left(\text { by }(4.1), \text { since } t^{*} t \geqslant t^{*} t h\right) \\
& =t u u^{*} h(a) i u(b) i .
\end{aligned}
$$

Since $\left(t u u^{*} h(a) i u\right) \pi=(t u) \pi$ and since $\pi$ is idempotent separating, it follows that

$$
t u u^{*} h(a) i u=t u u^{*} h(a) i u k, \quad \text { where } k=(t u)^{*} t u
$$

Hence

$$
\begin{aligned}
t(a) i u(b) i & =t u u^{*} h(a) i u k(b) i \\
& =t u\left(k u^{*} h(a) i t^{*} t u\right)\left(k(b) i u u^{*} k\right) \quad\left(\text { by }(4.1), \text { since } u^{*} u \geqslant u^{*} u k\right) \\
& =t u\left(a A\left(J_{t \pi, u \pi}\right)+b A\left(K_{t \pi, u \pi}\right)\right) i .
\end{aligned}
$$

Hence the result.

Let $\alpha$ be as above. Suppose $x, y, z \in S$. Put $e=(x y z) j^{*}(x y z) j$ and $f=$ $(y z) j^{*}(y z) j$. Then

$$
\begin{aligned}
& (x j)((y j)(z j))=(x j)(y z) j(y, z) \alpha i \\
& \quad=(x y z) j(x, y z) \alpha i(y, z) \alpha i \\
& \quad=(x y z) j(x, y z) \alpha i e f e(y, z) \alpha i \quad(\text { since } e f=e \text { and }(x, y z) \alpha i e=(x, y z) \alpha) \\
& =(x y z) j(x, y z) \alpha i e(y, z) \alpha i f e \quad(b y(4.1), \text { since } f \geqslant f e) \\
& =(x y z) j\left((x, y z) \alpha+(y, z) \alpha A\left(K_{x, y z}\right)\right) i
\end{aligned}
$$

where as

$$
\begin{aligned}
((x j)(y j))(z j) & =(x y) j(x, y) \alpha i(z j) \\
& =(x y) j(z j)\left((x, y) \alpha A\left(J_{x y, z}\right)\right) i \quad \text { (using Lemma 4.2) } \\
& =(x y z) j\left((x y, z) \alpha+(x, y) \alpha A\left(J_{x y, z}\right)\right) i
\end{aligned}
$$

Since $(x j)((y j)(z j))=((x j)(y j))(z j)$, Lemma 4.1 implies that

$$
(x, y z) \alpha+(y, z) \alpha A\left(K_{x, y z}\right)=(x y, z) \alpha+(x, y) \alpha A\left(J_{x y, z}\right)
$$

That is,

$$
(y, z) \alpha A\left(K_{x, y z}\right)-(x y, z) \alpha+(x, y z) \alpha-(x, y) \alpha A\left(J_{x y, z}\right)=0
$$

Hence $\alpha$ is a 2-cocycle by (3.2).
Suppose $E^{\prime}=\left(T^{\prime}, \pi^{\prime}, i^{\prime}\right)$ is another extension of $A$ by $S$ which is equivalent to $E=(T, \pi, i)$ and $\theta: T \rightarrow T^{\prime}$ is an isomorphism such that $\theta \pi^{\prime}=\pi$ and $a i \theta=a i^{\prime}$, for all $a \in A$. Let $\alpha^{\prime}=S \times S \rightarrow A$ be the cocycle induced by a section $j^{\prime}: S \rightarrow T^{\prime}$. Since $j \theta \pi^{\prime}=j^{\prime} \pi^{\prime}$, it follows from Lemma 4.1 that there exists a $D(S)_{0}$-map $\beta: S \rightarrow A$ such that $x j \theta=\left(x j^{\prime}\right)\left(x \beta i^{\prime}\right)$, for all $x \in S$. It is easily seen that $\alpha-\alpha^{\prime}$ $=(\beta) d_{2}^{*}$. Consequently, the cohomology class of $\alpha$ does not depend on the extension $E$ but only on the equivalence class $[E]$. Hence we have a well defined mapping

$$
[E] \mapsto([E]) \Sigma: \operatorname{Ext}(S, A) \rightarrow H^{2}\left(\mathbf{C}, A^{1}\right)
$$

Proposition 4.3. $\Sigma$ is a homomorphism of abelian groups.
Proof. Consider two extensions $E_{1}=\left(T_{1}, \pi_{1}, i_{1}\right), E_{2}=\left(T_{2}, \pi_{2}, i_{2}\right)$ with sections $j_{1}: S \rightarrow T_{1}, j_{2}: S \rightarrow T_{2}$ and corresponding 2-cocycles $\alpha_{1}: S \times S \rightarrow A, \alpha_{2}: S$ $\times S \rightarrow A$. Let $E_{1}+E_{2}=\left(T_{1}+T_{2}, \pi, i\right)$ be the sum of $E_{1}$ and $E_{2}$. If we define $j: S \rightarrow T_{1}+T_{2}$ by $x j=\overline{\left(x j_{1}, x j_{2}\right)}$ then $j$ is a section and the 2-cocycle induced by $j$ is $\alpha_{1}+\alpha_{2}$. Therefore

$$
\begin{aligned}
\left(\left[E_{1}\right]+\left[E_{2}\right]\right) \Sigma & =\left(\left[E_{1}+E_{2}\right]\right) \Sigma=\left[\alpha_{1}+\alpha_{2}\right]=\left[\alpha_{1}\right]+\left[\alpha_{2}\right] \\
& =\left(\left[E_{1}\right]\right) \Sigma+\left(\left[E_{2}\right]\right) \Sigma .
\end{aligned}
$$

Hence $\Sigma$ is a homomorphism.
Theorem 4.4. $\Sigma: \operatorname{Ext}(S, A) \rightarrow H^{2}\left(\mathbf{C}, A^{1}\right)$ is an isomorphism of abelian groups.

Proof. To show that $\Sigma$ is a monomorphism, assume that $E=(T, \pi, i)$ is an extension of $A$ by $S$ such that $([E]) \Sigma=0$. Then there exists a section $j: S \rightarrow T$ such that the 2 -cocycle $\alpha$ induced by $j$ is of the form $\alpha=(\beta) d_{2}^{*}$ for some $D(S)_{0}$-map $\beta: S \rightarrow A$. Now define $\mu: S \rightarrow T$ by $(x) \mu=(x) j(-(x \beta)) i$. Then, for $x, y \in S$,

$$
\begin{aligned}
(x) \mu(y) \mu & =(x) j(-(x \beta)) i(y) j(-(y \beta)) i \\
& =(x y) j\left[(x, y) \alpha-(x) \beta A\left(J_{x, y}\right)-(y) \beta A\left(K_{x, y}\right)\right] i \\
& \quad \text { (by Lemma 4.2) } \\
& =(x y) j(-(x y) \beta) i \quad\left(\text { since } \alpha=(\beta) d_{2}^{*}\right) \\
& =(x y) \mu .
\end{aligned}
$$

Thus $\mu$ is a homomorphism. Further, $\mu \pi=1_{S}$. Hence $E=(T, \pi, i)$ is a split extension of $A$ by $S$ and so, by Theorem 3.3 of Loganathan (1982), [ $E$ ] is the zero element of $\operatorname{Ext}(S, A)$.

To show that $\Sigma$ is an epimorphism, let $\alpha: S \times S \rightarrow A$ be a 2-cocycle. Set

$$
T_{\alpha}=\left\{(x, a): x \in S, a \in A_{x^{*} x}\right\}
$$

and define a multiplication on $T_{\alpha}$ by

$$
(x, a)(y, b)=\left(x y,(x, y) \alpha+a A\left(J_{x, y}\right)+b A\left(K_{x, y}\right)\right) .
$$

Using Lemma 3.1 and (3.2), it is easily seen that the above multiplication is associative. The set $E\left(T_{\alpha}\right)$ of idempotents of $T_{\alpha}$ is

$$
E\left(T_{\alpha}\right)=\{(e,-(e, e) \alpha): e \in E(S)\}
$$

If $(x, a) \in T_{\alpha}$ then, for each $y \in V(x)$,

$$
\left(y,(-(y x, y x) \alpha-(y, x) \alpha) A\left(J_{y x, y}\right)-a A\left(J_{x, y} K_{y^{*} y, x y}\right)\right)
$$

is an inverse of $(x, a)$. Hence $T_{\alpha}$ is a regular semigroup. Define $\pi: T_{\alpha} \rightarrow S$ by $(x, a) \pi=x$. Then $\pi$ is an idempotent separating homomorphism from $T$ onto $S$ such that

$$
(\operatorname{Ker} \pi)_{e}=\left\{(e, a): a \in A_{e}\right\}, \quad e \in E(S)
$$

Define $i: A \rightarrow \operatorname{Ker} \pi$ by

$$
(a) i=(e,-(e, e) \alpha+a), \quad a \in A_{e}
$$

Then $E_{\alpha}=\left(T_{\alpha}, \pi, i\right)$ is an extension of $A$ by $S$. If we define a section $j: S \rightarrow T_{\alpha}$ by $(x) j=\left(x, O_{x^{*} x}\right), x \in S$, then the induced 2-cocycle is $\alpha$ so that $\left(\left[E_{\alpha}\right]\right) \Sigma$ is the cohomology class determined by $\alpha$. Thus $\Sigma$ is an epimorphism and hence an isomorphism.

By Proposition 3.2, $H^{2}\left(D\left(S^{I}\right), A^{1}\right)$ can be identified with its isomorphic image in $H^{2}\left(\mathrm{C}, A^{1}\right)$. We next characterize the subgroup of $\operatorname{Ext}(S, A)$ which corresponds to $H^{2}\left(D\left(S^{I}\right), A^{1}\right)$ under the isomorphism $\Sigma$.

An extension $E=(T, \pi, i)$ of $A$ by $S$ is called $I$-split if $\pi \mid I T: I T \rightarrow I S$ is an isomorphism of regular semigroups. If $E=(T, \pi, i)$ is an $I$-split extension of $A$ by $S$ then any extension which is equivalent to $E$ is itself $I$-split. Further, the subset $E(S, A)$ of $\operatorname{Ext}(S, A)$ consisting of all equivalence classes of $I$-split extensions of $A$ by $S$ is closed under taking sums and inverses. Hence $E(S, A)$ is a subgroup of $\operatorname{Ext}(S, A)$.

Theorem 4.5 (Loganathan, 1978). $\Sigma \mid E(S, A)$ is an isomorphism of abelian groups from $E(S, A)$ onto $H^{2}\left(D\left(S^{I}\right), A^{1}\right)$.

We first prove the following lemma.

Lemma 4.6. Let $\pi: T \rightarrow S$ be a homomorphism from a regular semigroup $T$ onto $S$ such that $\pi \mid I T: I T \rightarrow I S$ is an isomorphism. Let $(\pi, \pi): R P(T) \rightarrow R P(S)$ be the induced map, where $R P(T)$ and $R P(S)$ denote the set of all regular pairs in $T$ and $S$ respectively. Then there exists a section $\left(j_{1}, j_{2}\right)$ of $(\pi, \pi)$ satisfying the following conditions.
(i) If $e \in E(S)$, then $\left((e, e) j_{1},(e, e) j_{2}\right)=(\bar{e}, \bar{e})$, where $\bar{e}$ is the unique idempotent of $T$ such that $\bar{e} \pi=e$.
(ii) If $\left(y, y^{\prime}\right),\left(x, x^{\prime}\right)$ are regular pairs in $T$ such that $\left(y, y^{\prime}\right)=\left(e_{n} \cdots e_{0} x, x^{\prime} e_{0}\right.$ $\left.\cdots e_{n}\right)$ for some $E(S)$-chain $\left(e_{0}, \ldots, e_{n}\right)$, with $e_{0}=x x^{\prime}$ and $e_{n}=y y^{\prime}$, then

$$
\left(\left(y, y^{\prime}\right) j_{1},\left(y, y^{\prime}\right) j_{2}\right)=\left(\bar{e}_{n} \cdots \bar{e}_{0}\left(x, x^{\prime}\right) j_{1},\left(x, x^{\prime}\right) j_{2} \bar{e}_{0} \cdots \bar{e}_{n}\right)
$$

Proof. Consider the equivalence relation $\rho$ on $R P(S)$ defined by $\left(y, y^{\prime}\right) \rho\left(x, x^{\prime}\right)$ if and only if $\left(y, y^{\prime}\right)=\left(e_{n} \cdots e_{0} x, x^{\prime} e_{0} \cdots e_{n}\right)$ for some $E(S)$-chain $\left(e_{0}, \ldots, e_{n}\right)$ satisfying $e_{0}=x x^{\prime}$ and $e_{n}=y y^{\prime}$. (Note that $\left(y, y^{\prime}\right) \rho\left(x, x^{\prime}\right)$ if and only if $\left[I, y, y^{\prime}\right]$ $=\left[I, x, x^{\prime}\right]$ in $D\left(S^{I}\right)$.) Let $U$ be a transversal of $\rho$ such that $(e, e) \in U$ for all $e \in E(S)$. Define $\left(j_{1}, j_{2}\right): U \rightarrow R P(T)$ such that $(e, e) j_{1}=(e, e) j_{2}=\bar{e}$ for all $e \in E(S)$, and $\left(\left(x, x^{\prime}\right) j_{1} \pi,\left(x, x^{\prime}\right) j_{2} \pi\right)=\left(x, x^{\prime}\right)$ for all $\left(x, x^{\prime}\right) \in U$. We extend $\left(j_{1}, j_{2}\right)$ to $R P(S)$ as follows. Suppose that $\left(y, y^{\prime}\right) \in R P(S)$. Then there exists a unique $\left(x, x^{\prime}\right) \in U$ and an $E(S)$-chain $\left(e_{0}, \ldots, e_{n}\right)$, with $e_{0}=x x^{\prime}$ and $e_{n}=y y^{\prime}$, such that $\left(y, y^{\prime}\right)=\left(e_{n} \cdots e_{0} x, x^{\prime} e_{0} \cdots e_{n}\right)$. We define

$$
\left(\left(y, y^{\prime}\right) j_{1},\left(y, y^{\prime}\right) j_{2}\right)=\left(\bar{e}_{n} \cdots \bar{e}_{0}\left(x, x^{\prime}\right) j_{1},\left(x, x^{\prime}\right) j_{2} \bar{e}_{0} \cdots \bar{e}_{n}\right)
$$

Since $\pi \mid I T$ is an isomorphism, the above map is well defined. It is quite obvious from the definition of ( $j_{1}, j_{2}$ ) that it satisfies (i) and (ii).

Proof of Theorem 4.5. Suppose $E=(T, \pi, i)$ is an $I$-split extension of $A$ by $S$. We must show that $([E]) \Sigma \in H^{2}\left(D\left(S^{I}\right), A^{1}\right)$. To prove this, take any section $\left(j_{1}, j_{2}\right)$ of $(\pi, \pi): R P(T) \rightarrow R P(S)$ satisfying (i) and (ii) of Lemma 4.6. Let $j: S \rightarrow T$ be the section of $\pi$ defined by $(x) j=\left(x, x^{*}\right) j_{1}, x \in S$, and let $\alpha^{\prime}$ be the corresponding 2 -cocycle so that $\left[\alpha^{\prime}\right]=([E]) \Sigma$. Define $\alpha: F_{2} \rightarrow A^{1}$ implicitly by

$$
\left\langle\left[I, x, x^{\prime}\right],\left[x^{\prime} x, y, y^{\prime}\right]\right\rangle \alpha i=\left(x y, y^{\prime} x^{\prime}\right) j_{2}\left(x, x^{\prime}\right) j_{1}\left(y, y^{\prime}\right) j_{1}
$$

$\left\langle\left[I, x, x^{\prime}\right],\left[x^{\prime} x, y, y^{\prime}\right]\right\rangle \in X^{2}$. Then using Lemma 4.6 and the fact that $\bar{e}$ is the identity element of the group (Ker $\pi)_{e}$ it follows that $\alpha$ is well defined and $(\alpha) d_{3}^{*}=0$. We claim that $(\alpha) \varphi_{2}^{*}=\alpha^{\prime}$, implying that $([\alpha]) \varphi_{2}^{*}=\left[\alpha^{\prime}\right]=([E]) \Sigma$. To prove this take any $x, y \in S$. Put $e=x^{*} x, f=y y^{*}$, and $k=(x y)^{*} x y$. Then

$$
\begin{aligned}
(x, y)(\alpha) \varphi_{2}^{*} i= & \left(\left\langle J_{I, x}, J_{x, y}\right\rangle \alpha+\left\langle J_{I, y}, K_{x, y}\right\rangle \alpha\right) i \\
= & \left(x y, k y^{*} h x^{*}\right) j_{2}\left(x, x^{*}\right) j_{1}\left(e y, k y^{*} h\right) j_{1} \\
& \times\left(y k, k y^{*}\right) j_{2}\left(y, y^{*}\right) j_{1}(f k, k) j_{1}
\end{aligned}
$$

where $h \in S(e, f)$. Now by Lemma 4.6,

$$
\left(x y, k y^{*} h x^{*}\right) j_{2}=\left(x y,(x y)^{*}\right) j_{2}\left(x, x^{*}\right) j_{1} \bar{h}\left(x, x^{*}\right) j_{2}
$$

and

$$
\left(e y, k y^{*} h\right) j_{1}=\overline{e h} \bar{h} \overline{h f}\left(y k, k y^{*}\right) j_{1}=\bar{e} \bar{f}\left(y k, k y^{*}\right) j_{1} .
$$

It follows that

$$
(x, y)(\alpha) \varphi_{2}^{*} i=\left(x y,(x y)^{*}\right) j_{2}\left(x, x^{*}\right) j_{1}\left(y, y^{*}\right) j_{1}=(x, y) \alpha^{\prime} i .
$$

Hence $(\alpha) \varphi_{2}^{*}=\alpha^{\prime}$.
Next suppose $[\alpha] \in H^{2}\left(D\left(S^{I}\right), A^{1}\right) \subseteq H^{2}\left(\mathbf{C}, A^{1}\right)$ and let $\alpha$ be a representative of $[\alpha]$. Then $(x, y) \alpha=0$ for all $x, y \in I S$. It follows that the associated extension $E_{\alpha}=\left(T_{\alpha}, \pi, i\right)$ is $I$-split and $\left(\left[E_{\alpha}\right]\right) \Sigma=[\alpha]$.

Remark. If $S$ is an inverse semigroup then every extension of $A$ by $S$ is $I$-split. Hence $E(S, A)=\operatorname{Ext}(S, A)$ and $\Sigma \mid E(S, A)=\Sigma$. In this case, Theorem 4.5 is equivalent to Theorem 7.4 of Lausch (1975).

## 5. The group $H^{1}\left(D\left(S^{I}\right), A^{1}\right)$

In this section we interpret the group $H^{1}\left(D\left(S^{I}\right), A^{1}\right)$ in terms of automorphisms of extensions. We begin by describing the group $H^{1}\left(D\left(S^{I}\right), A^{1}\right)$. Since $\operatorname{Hom}_{D\left(S^{\prime}\right)}\left(C_{1}, A^{1}\right)=\operatorname{Hom}_{D(S)_{0}}(S, A)$, a 1 -cocycle $\beta$ can be considered as a $D(S)_{0}$-map $\beta: S \rightarrow A$ such that

$$
\begin{equation*}
(y) \beta A\left(K_{x, y}\right)-(x y) \beta+(x) \beta A\left(J_{x, y}\right)=0, \tag{5.1}
\end{equation*}
$$

for all $x, y \in S$. Since $\operatorname{Hom}_{D\left(S^{\prime}\right)}\left(C_{0}, A^{1}\right)=\lim _{D(I S)} A$, a 1-cocycle $\beta: S \rightarrow A$ is a coboundary if and only if there exists a $\sigma$ in $\lim _{\llcorner }{ }_{D(I S)} A$ such that

$$
(x) \beta=\left(x^{*} x\right) \sigma-\left(x x^{*}\right) \boldsymbol{\sigma} A\left(J_{x x^{*}, x}\right),
$$

for all $x \in S$. Hence $H^{1}\left(D\left(S^{\prime}\right), A^{\prime}\right)$ is the group of all $D(S)_{0}$-maps satisfying (5.1) modulo the subgroup of all $D(S)_{0}$-maps satisfying (5.2).

Let $E=(T, \pi, i)$ be an extension of $A$ by $S$. Let Aut $E$ denote the group of all automorphisms $\theta$ of $T$ satisfying $\theta \pi=\pi$, and ait $=a i$ for all $a \in A$. For each $\sigma \in \lim _{\sim}{ }_{D(I S)} A$ define $\theta_{a}: T \rightarrow T$ by

$$
\begin{equation*}
(t) \theta_{\sigma}=t(t \pi) \beta i, \tag{5.3}
\end{equation*}
$$

where $\beta: S \rightarrow A$ is the 1 -cocycle defined by (5.2), $\theta_{\mathrm{o}}$ is a homomorphism because

$$
\begin{aligned}
(t) \theta_{\sigma}(u) \theta_{\sigma} & =t(x) \beta i u(y) \beta i \\
& =t u\left((x) \beta A\left(J_{x, y}\right)+(y) \beta A\left(K_{x, y}\right)\right) i \quad \text { (by Lemma 4.2) } \\
& =t u(x y) \beta i \quad(\text { since } \beta \text { is a cocycle }) \\
& =t u(t u) \pi \beta i \\
& =(t u) \theta_{\sigma},
\end{aligned}
$$

where $x=t \pi$ and $y=u \pi$. Clearly $\theta_{\sigma} \pi=\pi$, and (a) $i \theta_{\sigma}=(a) i$ for all $a \in A$. Hence $\theta_{\sigma}$ is an automorphism of $T$ and $\theta_{\sigma} \in$ Aut $E$. Let

$$
V=\left\{\theta_{\sigma}: \sigma \in \underset{D(I S)}{\lim _{D}} A\right\} .
$$

We now will define a map $\eta$ : Aut $E \rightarrow Z_{1}\left(D\left(S^{I}\right), A^{1}\right)$, where $Z_{1}\left(D\left(S^{I}\right), A^{1}\right)$ denote the group of all 1-cocycles. Let $\theta \in$ Aut $E$. Since $\theta \pi=\pi$, by Lemma 4.1 we can associate with each $t$ in $T$ a unique element $a_{t}$ in $A_{(t \pi)^{*} t \pi}$ such that $t \theta=t\left(a_{t}\right) i$. If $t \pi=u \pi$ then $a_{t}=a_{u}$. Hence we obtain a $D(S)_{0}$-map $\beta: S \rightarrow A$ such that $(t \pi) \beta=a_{t}, t \in T$. If $t, u \in T$ then it follows from Lemmas 4.1 and 4.2 that

$$
a_{t u}=a_{t} A\left(J_{t \pi, u \pi}\right)+a_{u} A\left(K_{t \pi, u \pi}\right)
$$

Hence $\beta$ is a cocycle. We associate with $\theta$ the element $(\theta) \eta=\beta$. Clearly $\eta$ is a homomorphism of groups.

Theorem 4.6. Let $E=(T, \pi, i)$ be an extension of $A$ by $S$. Then the homomorphism

$$
\eta: \text { Aut } E \rightarrow Z_{1}\left(D\left(S^{I}\right), A^{1}\right)
$$

induces an isomorphism

$$
(\text { Aut } E) \mid V=H^{1}\left(D\left(S^{I}\right), A^{1}\right)
$$

Proof. If $\beta: S \rightarrow A$ is a 1-cocycle then the map $\theta: T \rightarrow T$, defined by $(t) \theta=$ $t(t \pi) \beta i$, is a homomorphism by Lemma 4.2. Further $\pi \theta=\pi$ and $(a) i \theta=(a) i$ for all $a \in A$. Hence $\theta \in$ Aut $E$. Obviously $(\theta) \eta=\beta$.

It is easy to see that $\theta \in V$ if and only if $(\theta) \eta$ is a coboundary. Hence $H^{1}\left(D\left(S^{I}\right), A^{1}\right)$ is isomorphic to the quotient group (Aut $\left.E\right) \mid V$.

## Acknowledgement

The author wishes to thank Professor V. K. Balachandran for this encouragement and help during the preparation of this work.

## References

A. H. Clifford and G. B. Preston (1961), The algebraic theory of semigroups (Math. Surveys 7, Amer. Math. Soc., Providence, R. I.)
H. Lausch (1975), 'Cohomology of inverse semigroups', J. Algebra 35, 273-303.
J. Leech (1975), 'G-coextensions of monoids', Mem. Amer. Math. Soc. 1, No. 157.
M. Loganathan (1978), Extensions of regular semigroups and cohomology of semigroups ( $\mathrm{Ph} . \mathrm{D}$. Thesis, University of Madras.)
M. Loganathan (1981), 'Cohomology of inverse semigroups', J. Algebra 70, 375-393.
M. Loganathan (1982), "Idempotent-separating extensions of regular semigroups with abelian kernel', J. Austral. Math. Soc. Ser. A 32, 104-113.
S. Mac Lane (1963), Homology (Springer-Verlag, New York, Berlin, Heidelberg.)
K. S. S. Nambooripad (1979), 'The structure of regular semigroups I', Mem. Amer. Math. Soc. 22, No. 224.
C. E. Watts (1965), 'A homology theory for small categories', Proc. Conf. on Categorical Algebra, La Jolla, California.

Ramanujan Institute for Advanced<br>Study in Mathematics<br>University of Madras<br>Madras-600 005<br>India


[^0]:    (c) 1983 Australian Mathematical Society 0263-6115/83 \$A2.00 +0.00

