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Abstract. We give an example of a compact metric space X and a strictly ergodic
homeomorphism T of X with invariant probability /x such that for every x e X the
set {yeX: (x,y) is not generic for fi X/A} is countable.

1. Introduction
The purpose of this note is to establish the following result.

THEOREM 1. There exists a compact metric space X and a strictly ergodic homeomorph-
ism of X with invariant probability /J. with the property that for every xeX the set
{ye X: (x, y) is not generic for fiXfi} is countable.

Here generic means right and left generic, i.e. for both TxT and T"1 x r 1 .
The example we shall provide is a topological version of the classical weakly-

mixing map of Chacon which is described below and also in [4] and [5]. We shall
see that in this example there is a countable set of exceptional points, consisting of
a pair of orbits, which may be described as those points which are asymptotic to
some other point. We then have the following more precise statement.

THEOREM 1'. For Chacon's example ifx and y are on different orbits and at least one
is non-exceptional then (x,y) is generic for product measure.

Theorem 1 answers a question posed to us by S. Glasner. He had the following
application in mind: if (X, T) satisfies the condition of theorem 1 and in addition
the measure theoretic system #f = {X, fi, T) has minimal self-joinings (see [10]), then
any other measure theoretic system °U is either disjoint from $? or is an extension
of a symmetric Cartesian power of $f"° of %C, that is the usual Cartesian power $f"
restricted to the sigma-algebra of sets invariant under co-ordinate permutations. It
was later discovered [6] that this 'universal disjointness' result holds for any d£ with
MSJ. Glasner [2] has given another proof of this fact.

Glasner [3] has given another application of theorem 1. A topological system
(Q, T) is called ajjine if Q is a compact convex subset of a locally convex space
and T is an affine homeomorphism of Q. A map (j>:{X, T)-»(Q, T) is called an
ajfine embedding if (Q, T) is affine, 4> is continuous, 1-1 and equivariant and
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co (4>(X)) = Q. (X, T) is said to be absolutely extremal if for every x e X and every
affine embedding <f>:X-* Q, <j>(x) is an extreme point of Q. In [3] it is shown that
any strictly ergodic (X, T) which is POD (see [1]) and satisfies theorem 1 is absolutely
extremal, thereby providing weakly-mixing examples of absolutely extremal systems.
Chacon's example is in fact strictly ergodic and POD. The POD property is observed
in [4] and it also follows from theorem 1' once one has a precise description of the
exceptional points. [5] contains a simple direct proof.

Some further comments are in order. Theorem 1' implies 2-fold minimal self-
joinings and may be viewed as a strong version thereof. A similar strong version of
fc-fold minimal self-joinings follows easily from theorem 1' and fc-fold minimal
self-joinings.

THEOREM 2. For Chacon's example if at most one ofxu x2,..., xk is exceptional and
no two are on the same orbit then (xu x2,...,xk) is generic for fik.

Theorem 1' implies that if (x, y) are on different orbits and not both are exceptional
then the past and future limit sets of (x, y) are both X x X This may be viewed as
a definition of topological minimal self-joinings, modulo exceptional points (not to
be confused with the weaker definition studied in [8]). This definition can be extended
in a natural way to fc-fold topological minimal self-joinings and turns out to be
satisfied by Chacon's example and to have consequences quite analogous to
(measure-theoretic) minimal self-joinings. This will be the subject of a future paper
by the first author.

In both the topological and measure-theoretic settings one can ask for examples
without exceptional points. For example, is there a uniquely ergodic topological
system (X, T) with the property that, for any x, y on different orbits, (x, y) is generic
for /x X/x? has dense orbit? For discrete time symbolic systems such as Chacon's
example one has an obstacle in the existence of forward asymptotic points so we
certainly cannot ask for randomness (topological or measure-theoretic) in both past
and future. Passing, however, to flows, it can be seen, using results of Ratner [9],
that in any horocycle flow (X, T,) defined by a discrete co-compact, maximal,
non-arithmetic subgroup of SL (2, R) when x and y are on different orbits the past
and future limit sets of (x, y) are X xX. One may then ask whether (x, y) is generic
for product measure and also for fc-fold statements. For discrete time systems we
do not know whether it is possible to have past and future limit sets of (x, y) equal
to X x X whenever x and y are on different orbits.

Most of the present work was done while A. del Junco was visiting the Technische
Hogeschool Delft in the Netherlands. A del Junco was supported in part by NSF
Grant MCS-8003038.

2. Chacon's example
This will be defined as a subshift of {0, 1}Z using a simple block structure. Define
finite blocks Bu B2,... inductively by setting

Bo = 0, B, = 0 0 1 0, Bk+] = Bk Bk 1 Bk.
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We refer to Bk as a k-block and denote its length by hk. We let X<={0, 1}Z consist
of all those sequences x such that each finite segment of x is a segment of Bk for
some fc. X is evidently a closed shift-invariant subset of {0, 1}Z. T denotes the shift
homeomorphism on X.

By a spaced concatenation of fc-blocks we mean a concatenation of fc-blocks with
a single 1 interposed between some of the fc-blocks. The following lemma tells us
that in a spaced concatenation of fc-blocks we see fc-blocks only where we put them.

LEMMA I. In a spaced concatenation of k-blocks, k-blocks occur only at the natural
positions, that is, one never sees

Bk Bk

or 1
Bk Bk Bk Bk

Proof. We use induction starting with fc= 1. If B, occurs in a spaced concatenation
x of 1-blocks its single 1 must be either the 1 of the 'genuine' 1-blocks in x or else
a 1-block spacer. In the first case we are done and the second is evidently impossible:

161 0 1 0
0 0 1 0 1 0 0 1 0 '

B, Bt

Now suppose Bk+1 occurs in a spaced concatenation x of fc+ 1-blocks, x is also in
a natural way a spaced concatenation of fc-blocks. By induction the component
fc-blocks of Bk+I must appear in natural positions in x and this can only happen if
Bk+I itself occurs naturally. •

There is a natural way to produce sequences in x by a nesting procedure as follows.
Choose a sequence £e{l ,2 ,3} N which we may call the nesting instruction. Now
start with a Bo, consider it as the £(l)th Bo in a B,, which in turn is considered as
the f(2)th B, in a B2 and so on. In this way the Bk's expand to define an infinite
sequence £*, which is well defined only up to a shift, f* will be a doubly infinite
sequence unless f(i) = 3 eventually in which case $* is a left infinite sequence which
we denote B_aD, or £(i) = 1 eventually which yields a right infinite sequence denoted
Boo. We can now give a precise description of X.

LEMMA 2. X consists (up to shifts) of all the doubly infinite sequences £*, £e {1, 2, 3}^
and. the sequences B-^B^, and B.^IB^,.

Proof. In a doubly infinite £* any finite segment is covered by a Bk, so £* € X. In
B-ooBoc any finite segment is covered by BkBk which appears in Bk+l. In B.^IB,*,
any finite segment is covered by Bk\Bk which also occurs in Bk+l.

Now suppose xeX. Observe that for each fc we can find in x a spaced concatena-
tion of fc-blocks covering any given finite segment 17 of x To see this expand 17 on
either side by hk to get a larger segment 77*. Now 17* appears in some BK and hence
in all BK for K sufficiently large. But for K > fc, BK is a spaced concatenation of
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fc-blocks. Hence in 77* we see a spaced concatenation of fc-blocks which must
cover 77.

We have thus what might be called local fc-block structure in x and lemma 1 tells
us that this structure is unique. Now suppose we have any fc-block 77 in x. Then
there is a spaced concatenation of fc+1-blocks in x covering 77 and by uniqueness
77 must be a component fc-block of one of its fc+ 1-blocks. In this way we obtain
a nested sequence of fc-blocks in x so x is either a f * or x contains a Boo or a B-x.
If x contains a Bx, this B^ is preceded either by a 0 or a 01 since no x e X contains
two l's in a row. In the first case this 0 is contained in a nested sequence of fe-blocks,
none of which can overlap the Bx by uniqueness, so x = B_O0Bcx,. In the second case
we find similarly that x = B_CO\BOD. In the same way if x contains a B-x, x = B^ooBco
or x = B_0OlB0O. •

We call the countably many sequences of the form B_00BOC and B ^ l Bx exceptional.
For x e X, x 5* B.col B^ the Oth coordinate in x is contained for sufficiently large fc
in a unique fc-block called the time 0 k-block. For x = B .^ IB^ we will also speak
of the time 0 fc-block by first shifting if necessary, which will not affect any of our
arguments.

Using lemma 2, each x e X is, for every fc, an (infinite) spaced concatenation of
fc-blocks. It is then an easy exercise to establish the strict ergodicity of (X, T). All
we shall need to know about the invariant measure /LA is that it gives the same
measure to each fc-block level, a fc-block level being a set consisting of all x e X
whose Oth coordinate lies at some given position in a fc-block.

3. Proof of theorem V

We now fix once and for all an (x, y) satisfying the hypotheses of theorem 1'. We
regard the pair (x, y) in {0, 1}Z x{0,1}Z also as a single sequence in ({0, 1}2)Z.

By an n-block overlap with shift i, \i\<hm we mean the finite ye({0,1}2)*1""1'1

defined, if /" > 0, by the picture

-Bn

1

and, if i < 0, by

- Bn
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We call y a right overlap when i>0 and a left overlap when i<0. By the
complementary overlap of y, denoted y, we mean the overlap with shift i — hn sgn (<)•

Given any finite segment y of (x, y) the non-normalized distribution of right
fc-block overlaps, denoted f{y, k), is the measure on [0, hk-l] which counts for
each i e [0, hk - 1] the number of fc-block overlaps with shift i which occur in y. If
y is the overlap of the time 0 n-blocks in x and y we denote by yn whichever of y
and y is a right overlap and set

AI ;•» /(%., k) j f{ymk)
d{n,k) = — , x , ,,- , MI, d{n,k) = -\\fhm k)+f(ym k)\\' v ' ' \\f{ym k)+f(ym k)\\'

We denote by d,(n, k) and d,(n, k) the corresponding quantities for left fc-block
overlaps.

We denote the length of a finite sequence y by |y|. We note here that our
assumptions on (x, y) imply that |-yn| -*oo and |yn|-»oo. For if either were not the
case we could then find a subsequence n, and an / such that the time 0 «,-block in
x begins at coordinate j(n,) and some «,-block in y begins at j"(n,) + /. When x is
not exceptional its time 0 n-blocks grow to cover all of x so we can conclude that
x = T'y contradicting our assumption on (x, y).

Let us say that a probability measure P on Z is e, h-locally flat if it is within e
(distance measured in total variation norm) of an average of probabilities each of
which is uniform on some interval I of length greater than h contained in the support
of P. We denote the normalization of a measure v by v. The following lemma is an
important reduction in our proof of theorem 1'.

LEMMA 3. In order to prove theorem 1' it suffices to establish:

(*) For alls, h, K there exists N such that for n> N there exists k> Kwithhn> e~xhk

such that if v is any of the measures d(n, k), d(n, k), dt{n, k) di(n, k) then:
(i) v is supported on J c [b, hk — b] with \J\ < eb; and
(ii) either \\ v\\ < e or v is e, h-locally flat.

Proof. Given a finite segment £ of (x,-^), £ induces an empirical joint distribution
of Z-block levels. To describe it, relabel the co-ordinates of (x, y) as follows: if a
co-ordinate sits in an /-block label it 0 , . . . , h, - 1 according to its position in the
/-block, otherwise label it h,. Then as a finite sequence in ([0, /i(]

2)'fl, $ induces an
empirical distribution on [0, / i ( - l ] 2 , which we denote //,(£ /). To prove theorem 1'
our task is to show that given e, /, for any sufficiently long segment f of (x, y) which
contains time 0, /i(£ /) is within e of uniform on [0, h, - I]2. We first claim that in
fact it suffices to establish:

(**) For all e, I there exists N such that for n > N /*(%,, /) is e-close to uniform
unless 1%,1/fc,, < e, and the same for yn.

To see the sufficiency of (**) let £ be a large segment of (x, y) containing 0 and
then choose hn of order e|£| (this is possible since /in+, ~3/in) so that, except for a
fraction about e of its length, £ is made up of a number j of the order of e"1 right
and left n-block overlaps {a,} and {/3J respectively. Each a, (resp. /?,-) is a shift of
ya (resp. yn) by not more than j , since the shifts of adjacent right (resp. left) overlaps
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differ by at most 1. Since l^l^oo and | -yn | -*• oo, by making |£| large enough we may
assume that./ is small compared to |-yn| and |fn|, so that \at\ and |/3,| are essentially
the same as \yn\ and \yn\ respectively.

Now /*.(£ /) is within e of an average of d(ah I) and d(j8,, /) and in this average
the a, have total weight about \yn\/hn. If \yn\/hn < e the a, make only a negligible
contribution. But assuming (**) if \yn\/hn > e, n(ym I) is e-close to uniform, whence
/LA (a,, /) is also close to uniform since a, is a shift of yn by at most j . Making the
same remarks for ft) and yn we see that all the non-negligible nioti, /) and /*(£» I)
are close to uniform so /t(£ 1) is itself close to uniform. This establishes the sufficiency
of (**).

To show that (*) implies (**) we proceed as follows. For notational convenience
we replace e in (**) by e'. Given e', / choose TV so that (*) holds for an e, h, K
yet to be specified and then choose n> N. We show that (**) holds for ym as the
argument is the same for yn. Suppose, then, that \yn\/hn 2 e'. Condition (i) of (*)
ensures that each full fc-block in the x part of yn gives rise to exactly one right and
one left fc-block overlap in yn. Thus,

\\d(n,k)\\>l-^-rj>e'-V,

where the error 77 is of the order of hk/\yn\ plus the frequency of fc-block spacers.
Since |%,| > e'hn > e'e~xhk, the first contribution to the error can be made small by
making e small while the second will be small if fc is sufficiently large. Thus we can
ensure that \\d(n, fc)||> e'/2> e and the same for dt(n,k), so both d{n,k) and
di(n, fc) are e, /i-locally flat.

Condition (i) of (*) ensures that all the right fc-block overlaps in yn have the
same length up to an e relative error and the same for the left overlaps. If e is
sufficiently small and fc is sufficiently large, it follows that n(yn, I) is as close as we
like to an average of the measures

Id (n , fc ) ( i>(« ,0 (1)
i

and

0 (2)

where at and ;8, denote respectively the right and left fc-block overlaps with shift i.
So it suffices now to show that the measure (1) (the argument is the same for (2))

is close to uniform on [0, ht — I]2. Since d(n, fc) is e, ft-locally flat it is within e of
an average A = £. a-pj where each pj is a uniform probability on an interval of length
at least h. Thus (1) is within e of

'• j i

So finally it suffices to show that each Vj = J,iPj(i)ti(ah /) is close to uniform on
[0, fcj — I]2. Note first that both marginals of fi(ah I) are close to uniform for (i) of
(*) guarantees that |af|> b> e~x\J\> e~\ so |a,-| can be made large compared to h,
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by making e small. Thus also both marginals of p} are close to uniform. It remains
to show that the conditionals of v} are close to uniform. For this we just have to
require that h be large compared to hh so that each /-block position in y scans
across a large number of /-blocks in x, tlius seeing the different /-block positions
with approximately equal probabilities. •

The remainder of our efforts are devoted to establishing condition (*). We will do
this for d(n, k) and d(n, k) as the argument is the same for left fc-block overlaps.
We will use the following lemma to obtain local flatness. Its proof is left as an exercise.

LEMMA 4. Given e, h there exists 17 > 0 such that if P is any probability distribution
on Z which is an average of an increasing and a decreasing distribution with max t P(i)<
77 then P is e, h locally flat.

We regard d{n,k) and d(n, k) as measures on Z, supported on [0, hk - 1] and denote
their Fourier transforms by

4>n(z)=l d(n,k)(i)z'
i<=Z

and

#(z)=I d{n,k){i)z\

We also set

We now obtain a formula for OjS+i in term of <J>*. Suppose, for example, that we
see in x and y the following pattern of time 0 H-blocks and n +1 -blocks.

time 0 Bn

x: —

y-

time 0 Bn

Assuming that /(%,, k) and f(y*, k) have no mass at 0 or hk - 1 and denoting by S
the left shift on Z we see that

yn,k) + Sf(%, k)
f(y»+i,k)=f{ymk)

Thus
y-+i, k)\\ = | |3/(7n, k) + 2f(ym k) + Sf(ym k)\\

so

d(n + I, k) = d(n, k) + ±(d(n, k) + Sd(n, k))
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and

We now summarize the matrices governing the transition from 3>* to 4>*+i corre-
sponding to all possible pictures of time 0 n-blocks and n + 1 -blocks, assuming that
d(n, k) and d(n, k) have no mass at 0 or h^ — 1. By abuse of notation the symbols
A,, A2 etc. represent situations as well as the corresponding matrices even though
the matrices corresponding to different situations may be equal. (We will need to
distinguish situations A{ and A2 but not the two types of D situations.)

A2 i A, i
i i

c :

B

D D

/ I |(l+Z-')

\(\+z-'. . («,- z-')

J

There are six more situations A\, A'2, B', C, D' and E' corresponding to reversing
the roles of x and y in Au A2, B, C, D and E. This has the effect of replacing M{z)
by/M(z"')/where *

' • [ : a-
Thus we have

A\ = A'2 = E;

B'(z) = z-'£(z);
C' = D, D'=C;

We denote by Mn the matrix governing the transition from 3>£ to <J>*+1. We will say
that « is k-admissible if each d(«' , fc), fc< n ' s M has no mass at 0 or /J*-I, SO that
<£>£ = M n _ , . . . MfcO*. For each fixed value of z we shall regard these matrices as
operators on C2 and use their L,-norm. Recall that

a b
c d
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Note that all matrices have norm bounded by 1 and that C and D have norm
bounded away from 1 when z is bounded away from 1. Also AE and EA have
norms similarily bounded away from 1. We'll refer to C, D, AE and EA as flattening
products, since they decrease ||O*(z)||,.

In order to apply lemma 4 we will need some monotonicity of d(n, k) which is
a consequence of the following lemma. We will say a distribution on Z is of type
A (i) if it is symmetric about i, increasing on ( —oo, i] and decreasing on [i, oo). We
will say it is of type A (i + j) if it is symmetric about i + {, increasing on (-oo, i] and
decreasing on [i'+ 1, oo).

LEMMA 5.1fn is k-admissible then

(d(n,k)\
\d(n,k))

always has one of the following symmetry configurations for some i:

A(i) \ / A ( / - | )

(i + * ) / ' \ A(i)

Proof. This holds trivially when n •= k because d(k, k) is a point mass and d{k, k) = 0.
We then simply check that it persists through application of any of the transition
matrices. •

Remark. If we are working with dt(n, k) and dt(n, k) then of course J((fc, k) is a
point measure while d,(k, k) = 0.

In view of lemmas 4 and 5, in order to establish (*) it suffices to show that
(t) given e, K if n is sufficiently large there is a k > K such that n is k-admissible,

hn>e~]hk, d(n,k) and d(n,k) are supported on J<=[b,hk-b] with |/ |<eb,
max d(n, k) < e and max d(n, k) < e.

Recall that there are only six possibilities for the matrices Mn: A, zA, C, D, E and
z~'£. We group the sequence Mu M2,. . . into maximal runs of one of the following
types:

A's and zA's, (situations A{, A2, B, E')\
E's and z~'£'s, (situations A\, A'2, B', E);
a single C;
a single D.

We now claim that:

(1) there are infinitely many runs;
(2) each pair of consecutive runs contains a flattening product;
(3) the product of each run contains entries which are polynomials in z and z"1

of degree 1.

(1) follows from our assumptions on (x, y) as follows. Suppose to the contrary that
the sequence Mn eventually consisted only of A's and B's (the 'dual' case of E's,
B"s is handled identically). Observe that within a run of situations Au A2, B and
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E' the only possible transitions are given by

-A2

Thus we would in fact have that either E' holds eventually, which is impossible,
since it means that |yn| is eventually constant, or A, holds eventually which would
also mean that |yn| is eventually constant. (Recall that |fn|-»oo.)

(2) is obvious: if neither of the runs in a pair is a C or D then one must be a
run of A's and zA's, the other of fj's and zE's so we get a flattening product at the
junction.

To see (3) observe that any power of A has entries which are of degree 1 in z~'
and that any run of A's and zA's can have at most one zA in it.

We have seen that for all e > 0 there exists C(e) < 1 such that if M is a flattening
product and |argz|>e then | |M| | ,<C(e). (We choose -7r<arg z< n.) To prove
(t), given e, K choose M so that

C(e/10)M<e/10, 3 M > e - \

and then choose K'> K so that for fc> K'

mm(\yk\,\yk\)>2M + 2.

Finally, take N so large that the interval [K', TV- 1] contains at least 2M full runs.
Now fix n > TV and choose k as large as possible so that [k, n — 1] contains 2M

full runs, so certainly k>K and n>k + M so hns:3Mhk2:e~lhk. The product
Mn_, • • • Mk is contained in 2M + 2 full runs so by (3) its entries have degree at
most 2M + 2 in z, z~'. Since k>K' d{k,k) and d(k, k) have no mass in the left or
right 2M + 2 places of [0, hk - 1] so it follows that n is k-admissible. Moreover for
|arg z| > e/10 we have

| |Mn_,---Mf c | | 1<C(e /10)M<e/10,

since the sequence Mk,..., Mn_, contains at least M consecutive pairs of full runs,
each of which contains a flattening product. Thus for |arg z\> e/10

Finally, denoting normalized Lebesgue measure on {|z| = l} by dz we have for
any i

d(n,k)(i)=\ \z-'4>k
n(z)dz\is\ \<f>k

n{z)\dz
J|z|=l J|z|=l
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<f ||$^(z)|Uz<[ (e/10) dz+\
J|z|=l J|argz|>c/10 J|arg z|=Sc

[ \ \dz
J|z|=l J|argz|>c/10 J|arg z|=Sc/10

e 2e 1
< 1 < e.

10 102TT

Similarly J(«, k)(i)<e. This completes the proof of (t) and hence of theorem 1'.

•
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