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Abstract
Low birth weight (LBW) and preterm birth (PTB) are primary factors contributing to morbidity and
mortality among children aged under 5, resulting in a range of short- and long-term health consequences
worldwide. Among the various risk factors, ambient air pollution poses a significant environmental risk and
is a key determinant of child health. The prevalence of LBW and PTB among under 5 children sampled from
the NFHS-5, 2019–2021, was combined with monthly PM2.5 data (2013–2021) obtained from the
Atmospheric Composition Analysis Group at Washington University. Multivariable logistic regression
models were used, and a stratified analysis was applied to understand the potential effect modifiers in LBW
and PTB. Further, the geographical variation of LBW and PTB spatial autocorrelation (Moran’s I) was used.
Geographically weighted regression and ordinary least square spatial regression were used to identify the
spatial heterogeneity associated with selected variables. The study comprises a total of 208,181 under
5 children. Out of these children, the LBW rate was 17.41%, and the rate of PTB was 12.42%. The in-utero
exposure to the mean concentration of PM2.5 was 56.01 μg/m3. The odds of suffering from LBW showed a
non-linear shift when PM2.5 levels rose from the first octile (<28.02 μg/m3) to the last octile (>93.84 μg/m3)
(adjusted odds ratio (AOR): 1.06, 95% CI: 1.01–1.12). While comparing the first octile of exposure to PM2.5

(>93.84 μg/m3) to the last octile, there was a 52% more likelihood of having PTB (AOR: 1.52, 95%
CI: 1.43–1.61) after accounting for all relevant factors. These findings highlight the urgent need for a
thorough strategy to control the air quality in India. Further, to reduce adverse birth outcomes, longitudinal
studies and other co-pollutants can consider assessing the possible mechanisms mediating the relationship
between maternal exposure and ambient air pollution.
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Introduction
The substantial morbidity and mortality rates associated with low birth weight (LBW) and
preterm birth (PTB) impose a significant burden on health, education, and social services, as well
as families (Petrou et al., 2001). To achieve the 2030 Agenda for Sustainable Development Goal
(SDG) #3, which is looking towards improving the health and well-being of individuals across all
age groups, it is vital to tackle worldwide issues concerning LBW and PTB (Kosciejew, 2020). Both
LBW and PTB have been widely used as markers of premature deaths, are associated with

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

Journal of Biosocial Science (2025), page 1 of 26
doi:10.1017/S0021932025100370

https://doi.org/10.1017/S0021932025100370 Published online by Cambridge University Press

https://orcid.org/0000-0001-5998-0363
mailto:jpp_pradhan@yahoo.co.uk
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0021932025100370
https://doi.org/10.1017/S0021932025100370


morbidity, and have significant implications for both short- and long-term health consequences
(Bukowski et al., 2007; Huang et al., 2020). Despite the World Health Organization’s (WHO)
continued efforts towards reducing the likelihood of adverse birth outcomes in 2020, around 13.4
million infants were born prematurely, and 19.8 million, which accounts for 14.7% of all newborns
worldwide, had low birthweight (WHO, 2020; Ohuma et al., 2023). Almost 20 million infants are
estimated to have a LBW (WHO, 2019), while about 15 million PTBs are predicted to occur
annually (Walani, 2020).

However, premature newborns are considerably more prone to encountering adverse outcomes
in comparison to those born at the expected gestational age (Ohuma et al., 2023). LBW is caused
by either intrauterine growth restriction or premature birth, or an integration of both factors
(Okwaraji et al., 2024). Additionally, Pusdekar et al. (2020) stated that gestational age predicts
neonatal and childhood mortality risk more accurately than LBW. Further, Marete et al. (2020)
reported that LBW is more prevalent in low- and middle-income countries (LMICs), particularly
in South Asia and sub-Saharan Africa. In contrast, PTB is also prevalent worldwide, accounting
for 10.6% of cases, with South Asia bearing about one-third of the burden (Jana, 2023). Based on
the findings of the OECD and WHO (2020), India has a greater prevalence of LBW and PTB as
compared to the neighbouring countries. The prevalence rate of LBW and PTB in India is 18%
and 13%, respectively, whereas Sri Lanka has a prevalence rate of 15.9% for LBW and 7.0% for
PTB. In comparison, China has LBW prevalence rate of 6.9% and a PTB prevalence rate of 5.3%,
while Nepal has LBW prevalence rate of 12.3% and a PTB prevalence rate of 5.3%.

LBW and PTB are associated with various socio-demographic risk factors, such as birth order,
teenage motherhood, maternal weight, anaemic mothers, inadequate visits to antenatal care, and
maternal education (Khanal et al., 2014; Bhaskar et al., 2015). Furthermore, the use of tobacco during
pregnancy and giving birth by a caesarean section are additional factors that can raise the likelihood
of premature birth and having a baby with LBW (Jeena et al., 2020). At the same time, research
evidence showcases the detrimental impact of exposure to air pollution during pregnancy resulting in
premature birth, LBW, and increased infant mortality (Pereira et al., 2014; Jacobs et al., 2017).

Among the different risk factors, ambient and household air pollution (AAP and HAP) are
important environmental threats that considerably impact child health globally. Growing
evidence suggests that around 90% of the world’s population is vulnerable to the harmful
consequences of air pollution, posing a substantial and persistent risk to global health.
Furthermore, 99% of the global population resides in regions where the WHO’s air quality
standards have not been met (WHO, 2019; Shaddick et al., 2020; Murray et al., 2020). Air
pollution causes one out of every nine deaths worldwide due to non-accidental diseases such as
chronic obstructive pulmonary disease, respiratory infections, ischaemic heart disease, and lung
cancer (Burnett et al., 2018; WHO, 2018), resulting in a significant economic burden (Di Renzo
et al., 2015). Whereas, out of the 6.7 million premature deaths annually, 4.2 million are caused by
ambient air pollution. The majority of premature deaths, accounting for 89%, were in LMICs
(Landrigan et al., 2018; WHO, 2019; Murray et al., 2020). According to the Institute of Health
Metric Evaluation (IHME), ambient air pollution is currently considered the second most
significant risk factor for early mortality in children aged under 5, surpassed only by malnutrition
(IHME, 2021). Additionally, research findings indicate that air pollution affects individuals
irrespective of geographic location (Burnett et al., 2018; WHO, 2018). However, the severity of
health consequences due to air pollution might vary across population groups. This is particularly
so for children, elderly, pregnant women, and their unborn offspring (Di Renzo et al., 2015; WHO,
2018). Although the fundamental causes of adverse birth outcomes remain ambiguous, there is
increasing evidence from previous research indicating that environmental factors may have a
substantial impact on adverse birth outcomes (Li et al., 2017).

Air pollution could contribute to a multifaceted combination of factors leading to increased
likelihood of LBW and PTB. The observed effect is caused by several mechanisms, such as
inflammation of placenta, poor foetal growth, oxidative stress, and impaired oxygen transport
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throughout the placenta, which can affect early-life child health and lead to growth failure among
under 5 children in several ways (Slama et al., 2008; Sinharoy et al.,2020; Desouza et al., 2022). The
association has been asserted by a time series study conducted in Iran (Sarizadeh et al., 2020), a
cohort study conducted in Europe (Pedersen et al., 2013), a cross-sectional study conducted in
Africa (Bachwenkizi et al., 2021), as well as studies conducted in India (Balakrishnan et al., 2019;
Goyal and Canning, 2021) and China (Liu et al., 2019). Among the various pollutants, prior
research has shown that fine particulate matter has greater spatial homogeneity than other
contaminants, which makes it a valuable indicator of individual exposure to compare with other
pollutants (Sarnat et al., 2005).

As a developing country, India has a considerably greater incidence of morbidity andmortality due
to air pollution than other countries (George et al., 2024). Despite the country’s progress in reducing
air pollution under National Clean Air Programme (NCAP), the long-term challenge of poor air
quality has an alarming impact, particularly on child health outcomes (Mondal and Paul, 2020;
Chowdhury et al., 2020). In this scenario, air pollution in India is rising due to a lack of sufficient road
infrastructure in the face of increasing urbanization, effective transportation management, and
spontaneous dispersal of industry (Kaur and Pandey, 2021). Studies suggest that in India, increased
levels of PM2.5 are primarily attributed to human activities such as industrial processes, commercial
biomass burning, road transport, fossil fuel combustion from power generation, the functioning of
brick kilns, incineration of waste, and the use of solid cooking fuel in the household (CPCB, 2010;
Pant et al., 2015; Gordon et al., 2018). As a result, India’s population-weighted annual exposure to
PM2.5 the predominant pollutant that affects human health is about 90 μg/m3, which is substantially
higher than the WHO Air Quality Guideline (AQG) level of 5 μg/m3 and India’s National Ambient
Air Quality standards (NAAQS) of 40 μg/m3 (WHO, 2024). Whereas, the levels of PM2.5 levels in few
cities are typically 5–25 times higher than the national average (Roy and Singha, 2021).

However, related to particulate matter air pollution, prior studies have largely discussed indoor
air pollution and its toxic effects on respiratory symptoms, asthma, and lung disease among
children aged under 5. Furthermore, exposure to air pollution by household solid cooking fuel and
its association with child growth failure in India (Mishra and Ratheford, 2007; Balietti and Dutta,
2017; Spears et al., 2019), but no study has estimated and compared the associations between
ambient PM2.5 with LBW and PTB of different gestation period of individuals (Mothers) and
geographical heterogeneity of birth outcomes in India. At the same time, previous studies (Goyal
and Canning, 2021; Desouza et al., 2022) assessed the average amount of exposure by computing
the mean concentration of PM2.5 over the total duration of pregnancy. Due to the high proportion
of non-urban population in India, air pollution is not only an urban problem but can also occur in
rural areas (Ravishankara et al., 2020). However, exposure to air pollution is expected to result in
long-lasting consequences similar to other health disorders across India (Balietti et al., 2022).
Therefore, the current research evaluates the association of ambient PM2.5 air pollution with the
incidence of LBW and PTB among children aged under 5 in India. Additionally, it is crucial to
consider the many ways in which household, maternal, child, and environmental level factors
contribute to the estimation of the causal link. Hence, to effectively work towards the sustainable
development goal of decreasing the incidence of LBW and PTB in children by 2025, it is essential
to comprehend and draw well-informed policy conclusions.

Value added of this study
Reducing the burden of childhood morbidity and neonatal mortality, LBW and PTB are
significant in promoting healthy lives and well-being for all ages. Beyond the various household,
child and maternal level factors, sufficient evidence from ambient particulate matter (PM2.5) as
environmental factors and its association with adverse birth outcomes, LBW and PTB of different
gestation periods of individuals is insufficient in the Indian context.
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Using remote sensing and Geographic Information Systems (GIS), this study combines the
monthly concentration of PM2.5 from different clusters with individual’s gestation period from
National Family Health Survey (NFHS-5) data sets. Furthermore, the spatial regression analysis in
the relationship of LBW and PTB with associated factors highlights that ambient PM2.5 is one of
the leading risk factors compared with child, maternal, and household level factors for adverse
birth outcomes in India.

Materials and methods
Study design

The data evaluated in this study have been derived from the most recent (5th) round of the National
Family Health Survey (NFHS) conducted between 2019 and 2021 under the Ministry of Health and
FamilyWelfare (MOHFW). The survey was conducted on a nationwide scale and employed a cross-
sectional methodology. The primary goal of the NFHS is to furnish reliable and more accurate data
on population and diverse health indicators. The survey was carried out in two phases. The first
phase was conducted from June 17th, 2019, to January 30th, 2020, while the second phase was
conducted from January 2nd, 2020, to April 30th, 2021. The sample design used in this study involves
two stages and is stratified based on rural and urban locales. The selection of main sampling units in
rural areas was based on villages, whereas census enumeration blocks were used in urban areas. The
probability proportional size method determined the sampling units. Within each cluster, a total of
22 households were selected using a method called systematic sampling. These clusters with
geographic location information are recorded as part of the survey process.Whereas, to maintain the
respondent’s privacy, rural cluster displaced up to 10 km and the urban cluster up to 2 kn.
Furthermore, the NFHS-5 (IIPS and ICF 2021) contains a comprehensive account of the techniques,
design, collected data, study participants, and other relevant information.

The NFHS-5 is a nationally representative survey that has collected data from 636,699
households. This sample consists of 724,115 women aged 15–49, 1,017,179 males aged 15–54, and
232,920 children. The current study focuses on births that occurred 5 years before the survey.
Information regarding children was obtained through the kids recode (KR), while data on
household conditions of the respondents was collected using household recode (HR).
Observations for children with missing birth weight data (n = 23,654) were excluded from
the sample. Hence, the overall sample size comprises 209,266 children. Additionally, observations
with missing values (0.54%) for the average total pregnancies PM2.5 exposure value (1,135) have
been excluded, resulting in a final sample size of 2,08,181 children (refer to Fig. 1).

Outcome variable
The study considers LBW and PTB as outcome variables. According to WHO, preterm newborns
as those born before 37 weeks of gestation, while LBW infants are those who weigh less than 2500
grams at birth (Darmstadt et al., 2023). The NFHS-5 collects birth weight data using two methods:
relying on the mother’s recall of her baby’s weight at the time of the survey and using any existing
record of the baby’s weight (IIPS and IYCF, 2021). Additionally, PTB is determined based on the
duration of gestation. Both outcome variables are binary, where ‘1’ indicates that the infants had
LBW/PTB, and ‘0’ indicates that the kid did not have LBW/PTB.

Exposure assessment
Due to insufficient ground monitoring stations for air pollution (PM2.5) across the Indian
subcontinent, researchers relied on high-resolution geographic data acquired from satellites.
These data were supplied by the Atmospheric Composition Analysis Group at Washington
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University. The dataset can be accessed by the public through the website https://sites.wustl.edu/aca
g/datasets/surface-pm2-5/. These data provided the monthly levels of PM2.5 are accurately measured
at a resolution of 0.01 × 0.01° (about 1 km × 1 km) by integrating satellite data, ground-based air
quality monitoring data, and pollution source modelling. To verify and compare with ground-based
surveillance, the prior estimations obtained from satellite data showed less accurate findings as
compared to the Indian subcontinent, whereas the most recent version of these satellite-driven data
exhibits a strong correlation (0.81) with ground-based monitoring data (Van Donkellar et al., 2016).
To evaluate air pollution as a risk factor, the Global Burden of Disease (GBD) study adapted the
same methodology (Brauer et al., 2016). PM2.5 data and geospatial information taken from the
standard DHS dataset for India NFHS-5 2019–21, including geocoded, were integrated to determine
the extent of PM2.5 pollution in India. Following that, the monthly PM2.5 concentrations from each
cluster in the dataset were then manually removed, merged with each individual from all clusters,
and used as the primary variable for measuring exposure. Taking the advantage of remote sensing
and geographic information system, this study revealed substantial variations in PM2.5

concentrations among different clusters in India. However, the mean PM2.5 exposures were
calculated for the actual duration of the respondent’s pregnancy, excluding the month of birth and
correlated with the reported length of pregnancy using monthly PM2.5 data.

Confounding variables and adjustments
This study examines the correlation between the level of PM2.5 and the incidence of LBW and
PTB, identifying various potential factors that may affect the outcome variables. These
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Figure 1. Flow chart of selected variables.
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determinants were present at the individual, maternal, and household levels. The selection of
confounders was performed through an extensive review of pertinent literature and theoretical
frameworks that demonstrate the association between PM2.5 and LBW and PTB in children
(Goyal and Canning, 2017; Goyal and Canning, 2021; Desouza et al., 2022). These determinants at
the children’s level include the sex of the child and birth order. The maternal-level factors include
the mother’s level of education, teenage motherhood, the underweight status of the mother (BMI
<18.5 kg/m2), mother’s age at birth, frequency of visiting antenatal care, and height of mothers.
The household-level factors encompass the type of residence, availability of improved drinking
water and sanitary facilities, use of unclean cooking fuel, and the wealth quintiles.

Statistical analysis
An analysis of descriptive statistics was conducted to provide insight into the characteristics of the
participants in the study. The prevalence of LBW and PTB among children was assessed using a
bivariate percentage distribution, considering confounding variables. The Pearson’s chi-square
statistic was employed to measure the discrepancies between observed and expected frequencies. The
sample weight was utilized to calculate the percentage distribution. Multivariate logistic regressions
were applied to evaluate the association between PM2.5 and the likelihood of experiencing LBW and
PTB in children under the age of 5. In this model, PM2.5 is evaluated as a continuous exposure and
categorized by octiles. However, only categorized PM2.5 exposure values were considered in model 1.
Model II was used to investigate the contribution of maternal level factors, and model III was
combined with all variables. After that, to show the best-fit model log-likelihood, Akaike information
criterion (AIC) and Bayesian information criterion (BIC) were used, while lower AIC, BIC, and
highest log-likelihood values show the best model. A stratified analysis by sex of the child and place of
residence was also used to find out an effect modifier in LBW and PTB. Additionally, to find out the
no-linear relationship between exposure level and adverse birth outcomes, a marginal effect analysis
with a 95% confidence interval was applied (Rodriguez, 2016; Gudayu, 2022). After running the
nonlinear model like multivariate logistic regression, the marginal effect of the exposure variable is an
appropriate way to find out how the probability change in the dependent variable occurs with one
unit change of exposure variable (Onukwugha et al., 2015; Norton et al., 2019).

The spatial autocorrelation (Global Moran’s I) was applied to identify the spatial distribution
(clustered, random, or dispersed) of LBW and PTB in India. To measure the spatial autocorrelation,
Moran’s I value explained through non-random distribution value ranges from –1 to +1 (Anselin,
1995). The value closer to ‘0’ indicates a random pattern, closer to ‘+1’ indicates a cluster pattern,
and closer to ‘–1’ explains a dispersed pattern (Chen, 2021). Subsequently, to assess the spatial
dependence between LBW and PTB using selected independent variables, ordinary least square
(OLS) regression was applied, followed by geographically weighted regression (GWR) analysis. The
OLS regression is a global statistical model that estimates the spatial relationship between the
explanatory variables and dependent variables along with Koenkar (BP) Statistics, Joint Wald
statistics, and Jarque-Bera Statistics, whereas GWR is a local statistic that estimates the different
regression of each observation in the entire data set (Noresah and Sanjay, 2020; Tebeje et al., 2024).
However, in the model comparison between OLS regression and GWR, the lowest AICs and highest
adjusted R2 were explained as the best-fit model for analysis. All these statistical analyses were
conducted using STATA MP version 14.0 and ArcGis 10.8.

Results
Descriptive statistics

Based on the analysis, this study estimated the level of exposure in utero from September 2013 to
April 2021. Table 1 displays the outcomes obtained from the analysis utilizing descriptive
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Table 1. Distribution of exposure level and descriptive statistics of study sample by health outcomes in India, NFHS-2021

Descriptive statistics of the study sample Prevalence’s

Variable Frequency Percentage (%) Low birth weight Preterm birth

Exposure level of PM2.5 μg m−3

<28.02 25,333 12.17 14.15 12.06

28.02–34.33 26,812 12.88 15.02 10.6

34.33–42.13 27,146 13.04 15.71 10.3

42.13–49.92 26,953 12.95 18.06 12.34

49.92–59.92 26,346 12.66 18.79 13.2

59.92–73.21 25,671 12.33 18 13.38

73.21–93.84 25,206 12.11 20.16 12.7

>93.84 24,714 11.87 19.63 15.02

χ2 615.44*** 388.74***

Sex of the child

Male 1,08,162 51.96 16.33 12.6

Female 1,00,019 48.04 18.59 12.22

χ² 184.57*** 6.83***

Birth order

First birth order 82,834 39.79 18.22 12.67

Birth order 2–3 1,01,279 48.65 16.8 12.34

Order 4 and above 24,068 11.56 17.18 11.87

χ² 64.88*** 12.15***

Teenage motherhood

Birth before 18 years 5,120 2.46 21.17 13.52

Birth between 18 and 19 years 7,025 3.37 19.6 12.8

Birth after 19 years 1,96,036 94.17 17.24 12.37

χ² 78.00*** 6.97**

Maternal BMI <18.5 kg/m2

Normal 1,64,998 81.44 16.44 12.28

Underweight 37,610 18.56 21.57 12.89

χ² 560.84*** 10.52***

Mother’s level of education

No education 40,847 19.62 19.64 12.91

Primary 25,816 12.4 19.34 12.2

Secondary 1,10,873 53.26 17.08 12.09

Higher secondary 30,645 14.72 14.02 13.1

χ² 461.05*** 34.44***

Mother’s age at birth

less than 20 years 23,731 11.4 19.89 13.12

(Continued)
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Table 1. (Continued )

Descriptive statistics of the study sample Prevalence’s

Variable Frequency Percentage (%) Low birth weight Preterm birth

20–29 years 1,43,409 68.89 17.41 12.44

30–39 years 38,764 18.62 15.91 11.89

More than 39 years 2,277 1.09 17.13 12.38

χ² 161.55*** 20.73***

Received of antenatal care

Inadequate visits (<4 times) 87,730 42.14 17.72 13.33

Adequate visits (>4 times) 1,20,451 57.86 17.19 11.75

χ² 10.23*** 116.88***

Mother’s use smoke, tobacco

Yes 12,118 5.82 15.87 8.64

No 1,96,063 94.18 17.51 12.65

χ² 21.311*** 168.63***

Maternal height

Tall (>150 cm) 1,28,186 63.16 15.86 12.43

Medium (145–150 cm) 51,760 25.5 19.08 12.4

Short (<145 cm) 22,999 11.33 22.17 12.2

χ² 679.58*** 0.94

Drinking water facility

Unimproved 13,245 6.36 16.68 10.66

Improved 1,94,936 93.64 17.46 12.53

χ² 5.30** 40.44***

Sanitation facility

Unimproved 52,014 24.98 19.61 12.44

Improved 1,56,167 75.02 16.68 12.41

χ² 232.10*** 0.03

Using of solid cooking fuel

Clean fuel 97,466 46.82 16.08 12.82

Unclean fuel 1,10,715 53.18 18.58 12.06

χ² 224.64*** 27

Residence 27.88***

Urban 43,717 21 16.51 12.51

Rural 1,64,464 79 17.65 12.39

χ² 31.59*** 0.44

Wealth quintile

Poorest 51,109 24.55 19.85 11.55

Poorer 48,430 23.26 18.05 12.58

(Continued)
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statistics. The mean birth weight of the study sample is 2812.50 grams. The prevalence of LBW is
17.24% (36,249 cases), and PTB is 12.42% (25,846 cases). The mean exposure to PM2.5 during
pregnancy is 56.01 μg/m−3, the mean exposure with LBW is 58.94 μg/m−3, and the mean exposure
with PTB is 59.06 μg/m3, all of which are 12 times higher than the WHO recommended level of
5 μg/m3. The exposure level is divided into octiles with corresponding child proportions in
Table 1, with each octile representing 12.5% of the sample as a whole. The reference group consists
of children exposed to PM2.5 levels in the lowest octile, which is below 28.02 m−3. The results
exhibit that there are different levels of risk for children, and those living with higher levels of
PM2.5 exposures are more likely to be LBW and PTB. The correlation between in utero PM2.5 and
LBW and PTB is represented in Table 2.

Out of 208,181 children under the age of 5, 51.69% were males and 48.31% were females.
Further, the sample was divided based on their area of residence. Around 79% of the total sample
lived in rural areas, whereas 21% resided in urban areas. In addition, 93.64% of children resided in
households with access to improved drinking water sources, and 7% of children lived in
households that relied on unimproved sources of drinking water, such as surface water, as their
main water source. It was observed that approximately a quarter of children resided in families
lacking improved sanitation facilities (24.98%). Only 57.86% of women were taken to adequate
ANC facilities. On the other hand, mothers age at birth less than 20 years was 11.4%. Further,
19.62% of mothers had no education, while only 12.4% had completed primary education.
Moreover, around 18.56% of mothers had a body weight below normal BMI, while over 5% were
teenage mothers, and based on birth records, 39.79% were experiencing their first childbirth.

The data shown in Table 1 indicate that over 17% of children below the age of five in India have
encountered a case of LBW, with 12% of these infants experiencing PTB in India. This table also
explains the distribution of the prevalence of child health outcome episodes and the
corresponding x2 tests. The occurrence of LBW and PTB was substantially associated with
exposure to PM2.5. However, LBW was particularly common among children as the level of PM2.5

Table 1. (Continued )

Descriptive statistics of the study sample Prevalence’s

Variable Frequency Percentage (%) Low birth weight Preterm birth

Middle 41,987 20.17 16.38 12.32

Richer 37,112 17.83 16.03 12.77

Richest 29,543 14.19 15.35 13.37

χ² 393.17*** 64.24***

PM2.5 mean exposure of entire pregnancy(μg m−3) 56.01

PM2.5 mean exposure of low birth weight (μg m−3) 58.94

PM2.5 mean exposure of preterm birth (μg m−3) 59.06

Health outcome (%)

Low birth weight

Normal birth weight 1,71,932 82.59

Less 2500 gm 36,249 17.41

Preterm birth

More than 37 week 1,82,335 87.58

Less than 37 week 25,846 12.42

***Significant at: P≤ 0.001, **Significant at: P≤ 0.01, * Significant at: P< 0.05.
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increased. The prevalence of LBW and PTB declined with enhanced levels of maternal education
and household affluence. The proportion of LBW and PTB was higher among infants of teenage
mothers. Additionally, the cases of LBW were more in the case of female infants, whereas PTB was
more prevalent among male infants. Among children with a known birth order, approximately
18.22% of those who were the firstborn had a LBW, and 12.67% were born preterm.

Multivariate regression analysis of predictor variables associated with LBW and PTB

Table 2 presents a concise overview of the outcomes of a multivariate logistic regression analysis,
which demonstrates the relationship between PM2.5 exposures and the occurrence of LBW and
PTB in children aged under 5. In model 1, which does not include adjusting for any confounders,
the relationship between PM2.5, LBW, and PTB remained significant. At the last model III was the
best-fitted model after accounting for all the factors upon controlling for variables such as PM2.5

exposure level, sex of child, birth order, teenage motherhood, BMI of mother, mothers age at birth,
visit of ANC, mother’s height, educational status of mother, type of residence, cooking fuel, type of
sanitation, and drinking water facility and household wealth quintile, a notable and favourable
correlation is observed between PM2.5 exposure and health outcomes.

Moreover, model I reflects that exposure levels up to 42.13 μg/m–3 have a less significant impact
on the chance of LBW and PTB compared to the reference group. After accounting for different
factors in model III, the odds ratio for LBW increased from 1.01 (CI: 0.96–1.06) with a concentration
of 42.13–49.92 μg/m−3 to 1.04 (CI: 0.99–1.10) with a concentration of 49.92–59.92 m–3 in the fifth
octile, and further increased to 1.06 (CI: 1.01–1.12) with a concentration of 93.84 μg/m−3 in the last
octile. However, the findings indicated a lack of consistency in the dimension of LBW, which
explains the existence of non-linear relationship between the variables. On the other hand, there was
a consistent association between exposure to PM2.5 at a level of 42.13 μg/m−3 and an increased risk
of PTB. Children in the fourth octile of exposure, with a range of 42.13–49.92 m–3, have a relative
risk of PTB of 1.27, with a CI of 1.20–1.36. The risk of PTB increases steadily from the first to
the fifth octile, with a risk ratio of 1.39 (95% CI: 1.31–1.48). The highest risk of PTB is observed in
the last octile, with a risk ratio of 1.52 (95% CI: 1.43–1.61).

Stratified analysis

Additionally, to find out the potential effect modifiers that vary LBW and PTB across different
subgroups, the association between maternal exposure to PM2.5 and LBW and PTB are presented
in Tables S1 and S2. For LBW, stratified by sex of the child, a more significant association was
observed among male children compared to female children. Similarly, stratified by place of
residence more significant was found in rural areas. On the contrary, for PTB stratified by sex of
the child, strong associations were observed among female children and the following subgroups:
mothers had the highest education level and rural areas. Besides that, stratified by place of
residence, higher exposure to PM2.5 and mothers’ level of education in rural had a significant
association.

Marginal effect analysis

Tables S3 and S4 show the marginal effect of LBW and PTB of maternal exposure to PM2.5 by
octile format. Overall, the results show that increasing the level of exposure to PM2.5 increases the
likelihood of LBW and PTB, although no linearity exists. For LBW, Table S3 represents that after
the third octile, it increased up to the fifth octile and then decreased in the sixth octile. After that,
from the sixth octile, it increased continuously (Figs 2 and 3). Whereas, for PTB, it has been
observed that after the second octile, the risk of PTB becomes more acute as the exposure to PM2.5

level increases.
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Table 2. Multivariate regression results showing the association between PM2.5 with LBW and PTB among under-5 children (n = 208,181), NFHS-2021

Determinants

Model I Model II Model III

Low birth weight Preterm birth Low birth weight Preterm birth Low birth weight Preterm birth

In utero PM2.5 exposure level Crude OR Crude OR AOR AOR AOR AOR

<28.02 ®
28.02–34.33 0.97 (0.92–1.02) 0.96 (0.90–1.02) 0.93** (0.88–0.98) 0.94 (0.88–1.01)

34.33–42.13 0.98 (0.93–1.04) 1.04 (0.97–1.11) 0.91*** (0.87–0.96) 1.03 (0.97–1.10)

42.13–49.92 1.11*** (1.05–1.17) 1.27*** (1.19–1.35) 1.00 (0.96–1.06) 1.27*** (1.20–1.36)

49.92–59.92 1.16*** (1.10–1.22) 1.41*** (1.33–1.50) 1.04 (0.99–1.10) 1.39*** (1.31–1.48)

59.92–73.21 1.07* (1.01–1.12) 1.37*** (1.30–1.46) 0.96 (0.91–1.01) 1.34*** (1.26–1.43)

73.21–93.84 1.22*** (1.16–1.28) 1.33*** (1.25–1.41) 1.10*** (1.05–1.16) 1.29*** (1.21–1.37)

>93.84 1.17*** (1.12–1.23) 1.58*** (1.43–1.67) 1.06** (1.01–1.12) 1.52*** (1.43–1.61)

Sex of child

Male ®
Female 1.19*** 0.97* (0.94–0.99)

Birth Order

First birth order ®
Birth order 2–3 0.87*** 0.98 (0.95–1.01)

Birth order 4 and above 0.84*** 0.96 (0.91–1.01)

Teenage motherhood

Birth before 18 years ®
Birth between 18 and 19 years 0.87*** (0.80–0.95) 1.00 (0.90–1.10) 0.88** 0.99 (0.89–1.09)

Birth after 19 years 0.90 (0.84–0.98) 0.98 (0.90–1.08) 0.93* 0.97 (0.88–1.06)

Maternal BMI <18.5 kg/m2

Normal ®
(Continued)
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Table 2. (Continued )

Determinants

Model I Model II Model III

Low birth weight Preterm birth Low birth weight Preterm birth Low birth weight Preterm birth

In utero PM2.5 exposure level Crude OR Crude OR AOR AOR AOR AOR

Underweight 1.29*** (1.26–1.33) 1.07*** (1.04–1.11) 1.28*** 1.08*** (1.04–1.12)

Mother’s level of education

No education ®
Primary 1.03 (0.99–1.07) 0.90*** (0.86–0.95) 1.05* 0.91*** (0.87–0.96)

Secondary 0.92*** (0.89–0.95) 0.87*** (0.84–0.91) 0.945** 0.89*** (0.86–0.93)

Higher secondary 0.75*** (0.72 0.78) 0.934** (0.90–0.98) 0.77*** 0.94* (0.89–0.99)

Mother’s age at birth

Less than 20 years ®
20–29 years 0.91*** (0.87–0.95) 0.92** (0.87–0.97) 0.96 (0.91–1.01) 0.92 (0.87–0.97)

30–39 years 0.87*** (0.83–0.92) 0.89*** (0.84–0.95) 0.97 (0.91–1.02) 0.92* (0.86–0.98)

More than 39 years 0.88*** (0.77–1.00) 1.04 (0.90–1.20) 0.97 (0.85–1.12) 1.09 (0.94–1.27)

Received of antenatal care

Inadequate visits (<4 times) ®
Adequate visits (>4 times) 0.98 (0.96–1.01) 0.85*** (0.83–0.87) 0.98 (0.96–1.00) 0.89*** (0.87–0.92)

Mother’s use smoke, tobacco

No ®
Yes 1.06 (0.99–1.13) 0.87*** (0.80–0.94) 1.06 (1.00–1.13) 0.92* (0.85–1.00)

Maternal height

Tall (>150 cm) ®
Medium (145–150 cm) 1.24*** (1.20–1.27) 1.04* (1.01–1.07) 1.22*** (1.19–1.25) 1.02* (1.00–1.07)

Short (<145 cm) 1.51*** (1.46–1.56) 1.01 (0.97–1.05) 1.47*** (1.42–1.52) 1.00 (0.96–1.04)

Drinking water facility

Unimproved ®
(Continued)
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Table 2. (Continued )

Determinants

Model I Model II Model III

Low birth weight Preterm birth Low birth weight Preterm birth Low birth weight Preterm birth

In utero PM2.5 exposure level Crude OR Crude OR AOR AOR AOR AOR

Improved 0.98 (0.93–1.04) 1.07* (0.93–1.04)

Sanitation facility

Unimproved ®
Improved 0.98 (0.95–1.00) 0.98 (0.95–1.00)

Using of solid cooking fuel

Clean fuel ®
Unclean fuel 1.02 (0.99–1.05) 0.92*** (0.89–0.95)

Residence

Urban ®
Rural 0.93*** (0.90–0.96) 1.12*** (1.09–1.17)

Wealth quintile

Poorest ®
Poorer 0.98 (0.94–1.01) 1.08*** (1.04–1.13)

Middle 0.90*** (0.86–0.94) 1.04 (0.99–1.09)

Richer 0.92*** (0.88–0.96) 1.09** (1.03–1.15)

Richest 0.86*** (0.82–0.91) 1.12*** (1.06–1.20)

Test for model fit

AIC 190917.8 152504.4 189537.6 152839.2 189042.4 152309.3

BIC 190999.5 152586.2 189680.7 152982.3 189369.4 152636.3

Log likelihood –95450.89 –76244.2 –94754.8 –76405.59 –94489.21 –76122.65

Note: AIC: Akaike information criterion, BIC: Bayesian information criterion, AOR: adjusted odds ratio, ®: Reference category, * Significant at: P< 0.05; **Significant at: P≤ 0.01, ***Significant at: P≤ 0.001.
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Spatial autocorrelation and OLS regression analysis

To understand the spatial pattern of LBW and PTB in India, spatial autocorrelation results were
reported in Figs. 4 and 5. It illustrates that the Moran’s Index value for LBW is 0.37 and PTB 0.16,
representing the clustering pattern in India. Based on selected explanatory variables related to
LBW and PTB, the OLS regression results are significant and explain about 16.7% (adjusted
R2 = 0.167) of LBW and 13.7% (adjusted R2 = 0.137) of PTB spatial variation persisting, with
non-existence of multicollinearity between predictors variables and birth outcomes (Tables S5
and S8).

To understand the spatial pattern of LBW and PTB in India, spatial autocorrelation results
were reported in Figs. 4 and 5. It illustrates that the Moran’s Index value for LBW is 0.37 and PTB
0.16, representing the clustering pattern in India. Based on selected explanatory variables related
to LBW and PTB, the OLS regression results are significant and explain about 16.7% (adjusted
R2 = 0.167) of LBW and 13.7% (adjusted R2 = 0.137) of PTB spatial variation persisting, with
non-existence of multicollinearity between predictors variables and birth outcomes (Tables S5
and S8).

Additionally, Table S6 revealed that joint F statistics and Joint Wald statistics are significant
(<0.01), which shows that the association between predictors variables and LBW is free from non-
stationary, and residuals are normally distributed, whereas Table S9 explains that in the case of
PTB, all four statistics, Jarque-Bera, Joint F, Joint Wald, and Koenkar statistics, are significant
(<0.01), which explains that residuals are not normally distributed due to non-stationary among
the data. However, compared between LBW and PTB among the five selected variables, only
district-level average of PM2.5 in the entire pregnancy received antenatal care less than 4 is
statistically significant in both cases, and child from the poorest quintile is significantly associated
with PTB. Therefore, the GWR model was considered for further analysis to give more strength
and appropriate estimates in the analysis.

GWR regression analysis

After analysing the OLS regression, GWR modelling was performed to find out the spatial
variation of predictor variables for LBW and PTB in India. Compared with the OLS model in
GWR, the adjusted R2 value was increased from 0.17 to 0.37, with the AIC value decreased from
4317.1 to 4127.74 in LBW; this shows that the GWRmodel enhanced by 20% and the difference of
AIC was 189.36 (Table 3). In contrast, for PTB, GWR R2 value increased from 0.14 to 0.24,
whereas the AIC value decreased from 4876.18 to 4794.94 (Table 3). Overall, Table 3 revealed that
the GWR model was improved than OLS regression both for LBW and PTB.

Additionally, the GWR model illustrates that the predictor variables were strongly and
negatively associated with LBW and PTB. In the case of LBW, Fig. 6(a)–(f ) explains that as the
gestational average of PM2.5 increased, the proportion of LBW increased in northeast India and
parts of Jammu and Kashmir. Related to inadequate visits of ANC, GWR coefficient was strong in
Jammu and Kashmir as well as Punjab and Himachal Pradesh. Furthermore, regarding the poorest
wealth quintile, the GWR coefficient was strong in parts of Tamil Nadu and Kerala. For mothers
who had no education, the GWR coefficient was moderately concentrated in the central and
middle part of India, and adverse birth outcomes from rural areas were strongly found in
northeast India and followed by the eastern part of India, whereas, the predicted LBW areas were
mostly concentrated in districts of Uttar Pradesh and Madhya Pradesh.

On the contrary, Fig. 7(a)–(f ) shows the results of spatial variations of GWR coefficient of five
predictor variables. The proportion of PTB with a gestational avg. of PM2.5 was more concentrated
in districts of West Bengal, Odisha, Bihar, and Jharkhand. The proportion of mothers who
had visited less ANC care the GWR coefficient was strongly found in Assam, Arunachal Pradesh,
and parts of Tripura. Similarly, the strong GWR coefficient for having the poorest wealth quintile
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with PTB was observed particularly in districts of Kerala and Tamil Nadu. Besides, for mothers
who had no education with PTB, a moderate positive association was identified in most of the
southern and eastern parts of Indian districts. In the same way regarding the GWR coefficient of
being a PTB child from a rural residence, a strong and positive association was found in most parts
of Gujrat, Kerala, and Ladakh. However, adjusted with five selected variables, Fig. 7 shows that the
potential concentration of PTB is significantly dispersed.

Discussion
Over the years, there has been a steady increase in the level of particulate matter air pollution
globally. Between 1998 and 2021, there was a significant increase of 67.7% in the annual level of
particulate matter air pollution, resulting in a decrease in average life expectancy by 2.3 years
(CPCB, 2022). Over the last 10 years, India’s PM2.5 levels have increased significantly by more
than 1μg/m3 per year (Dey et al., 2020). However, India’s average PM2.5 levels increased by 15%
between 1998 and 2019 (Srivastava et al., 2020). On an average, Delhi had the highest PM2.5

concentrations, but the number of cities in Uttar Pradesh with high PM2.5 levels was the most.
From this study, it was observed that the air quality was consistently deteriorating and getting
worse, reaching an average of 56.01 μg/m−3 in 2021.

Additionally, India was responsible for 59.1% of the worldwide rise in air pollution from 2013
to 2021 (Slater et al., 2022). Against this backdrop, a substantial quantity of cross-sectional
research has examined the association between PM2.5 and maternal exposure. Several suggested
pathways by which PM2.5 could cause PTB and LBW. Evidence suggests that pregnant women
exposed to particulate matter air pollution may be at increased risk of PTB due to acute

Figure 2. Marginal effect analysis of low birth weight by octile of gestational exposure to PM2.5.
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inflammation in the lungs and other organs (Liu et al., 2003). Furthermore, with a similar
mechanism, a recent study evaluated whether certain maternal health conditions and pregnancy
difficulties can influence the link between air pollution and poor birth outcomes (Laurent
et al., 2014).

The results demonstrated that there are direct and significant relationship between PM2.5

exposures and LBW and PTB. Although maternal exposure to particulate matter air pollution is
prevalent in India, only a few epidemiological studies have evaluated the outcome as an LBW and
PTB independently (Goyal and Canning, 2021; Dimitrova et al., 2022; Jana, 2023), while none of
these studies have considered both the outcomes in the same study. After accounting for several
confounding variables, the present study reveals a significant association between LBW and PTB,
as well as an increased risk of these conditions among under 5 children in India. It shows that
there is a lower chance of PTB exposed to PM2.5 levels up to 40μg/m3. Beyond that point, it rises
sharply to >93.84 μg/m3 (OR 1.58, CI: 1.48–1.67). But when it comes to LBW, it is uneven from
the first octile to the last octile. Similar to the previous study, the results of this study validate that
overall, increasing the pollution level has higher odds of LBW and PTB, followed by ‘National
Ambient Air Quality Standards’ (NAAQS), which has set a threshold value of 40 μg/m3 for PM2.5

in India (Adhikary et al., 2024). Whereas, a meta-analysis of polling estimates indicated that there
was an 11% increased likelihood of LBW (AOR 1.11, CI: 1.07–1.16), and a 12% chance of an early
delivery (AOR 1.12, CI: 1.06–1.19) for every 10 μg/m3 rise in ambient PM2.5 levels (Ghosh
et al., 2021).

Referring to the potential effect modifiers, the odds ratio for LBW and PTB are increased
compared with the multivariate regression model. Earlier studies showed that the likelihood of
LBW among female children (OR 1.19, CI: 1.17–1.22) is 19% more acute compared to males

Figure 3. Marginal effect analysis of preterm birth by octile of gestational exposure to PM2.5.
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(Bachwenkizi et al., 2022) As a result, LBW female children are at high risk to get disease in their
later life as compared to male counterparts (Zimmermann et al., 2015). Furthermore, compared to
the first birth order child, increasing the birth order of children reduces the chances of LBW.
Likewise, adjusting with other factors the study showed that increasing the mother’s level of
education reduces the risk of LBW. On the contrary, by lowering the mother’s BMI, they were at
more risk for delivering LBW infants.

The present study found that inadequate visits to ANC care increase the likelihood of being
PTB children compared with LBW children. Alignign with previous studies, it influences adverse
birth outcomes, including PTB (Alexander and Kotelchuck, 1996). Therefore, to reduce the
burden of PTB and LBW, increasing awareness of the ANC programme is one of the best public
health strategies (Pervin et al., 2020). The study also highlights that mothers who were in short
stature were more likely to be associated with LBW and PTB. However, it remains unclear,
whether tall stature reduces the risk of adverse birth outcomes or whether short stature has more
risk of either LBW and PTB (Chan and Lao, 2009; Han et al., 2012).

Figure 4. Spatial autocorrelation of low birth weight among under-5 children in India, NFHS-5.
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Similar to cohort research conducted on 1285 pregnant women in Tamil Nadu, India, which
reported that there was a 10 μg/m3 increase in gestation period PM2.5 after adjusting for the child’s
sex, the mother’s age, her BMI, her history of LBW children, the birth order, and the season of
conception. This study further reported a significant drop in birth weight by 4 gm odds ratio (CI:
1.08–6.76) decrease in birth weight and a 2% increase in the prevalence of LBW (OR 1.02, CI:

Figure 5. Spatial autocorrelation of preterm birth among under-5 children in India, NFHS-5.

Table 3. Model comparison between Ordinary least square regression and geographically weighted regression in India,
NFHS-2021

Model comparison

Low birth weight Preterm birth weight

OLS GWR OLS GWR

AIC 4317.1 4127.74 4873.18 4794.9

Adjusted R-squared 0.17 0.37 0.14 0.24

Note: AIC: Akaike information criterion, OLS: ordinary least square, GWR: geographically weighted regression.
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Figure 6. GWR coefficient of (a) district level ag. of PM2.5, (b) visit of antenatal care, (c) poorest wealth quintile, (d) mothers
with no education, (e) rural residence for LBW, and (f) predicted LBW in India.
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Figure 7. GWR coefficient of (a) district level ag. of PM2.5, (b) visit of antenatal care, (c) poorest wealth quintile, (d) mothers
with no education, (e) rural residence for PTB, and (f) predicted PTB in India.
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1.005–1.041) (Balakrishnan et al., 2018). Consistent with previous research, the findings suggest
that other factors, such as teenage motherhood, drinking water facilities, and forms of sanitation,
were not statistically significant among LBW infants (Nazari et al., 1995; Borkowski and
Mielniczuk, 2008). Earlier research, whereas advanced mothers age at birth (>35 years) is
associated with LBW, PTB, and stillbirths (Fall et al., 2015), the present study stated an uneven
significant relationship between maternal exposure to PM2.5 adjusted with other variables.

Based on earlier studies, related to PTB findings, the study suggests that mothers’ exposure to
PM2.5 can increase the chances of premature birth (Bachwenkizi et al., 2022; He et al., 2022). It
seems that the growth and development of the placenta are adversely affected by the exposure of
pregnant mothers to PM2.5 during the gestation period (Lee et al., 2011; Van den Hooven et al.,
2012). Results show that compared to male counterparts, female children are at low risk of PTB.
Similar to prior studies, multivariate analysis confirmed that male foetal is an independent risk
factor for PTB (Peelen et al., 2016).

Women with higher educational levels have lower chances of giving PTB in comparison to
women with lower educational levels. At the same time, it has been observed that the increased
risk of having PTB is higher in women with low BMI. Prior literature explained that infants of
teenagers are at high risk of poor infant outcomes (Carter et al., 2007). More specifically, the
results of this study determined that increasing the mother’s age at the time of birth reduces the
risk of PTB.

Studies suggest that children living in rural areas had a 13% higher chance of experiencing PTB
compared to those living in urban areas. Research revealed that households utilizing unclean
cooking fuel (OR 0.92, CI: 0.89–0.95) are less likely to experience PTB. Against this backdrop,
despite urban regions having better access to improved water sources, increased urbanization, and
industrialization in major cities, where pollution emissions from transportation and
manufacturers are more pronounced, the diverse socio-economic differences between rural
and urban areas can lead to these inequalities.

The study revealed that, based on spatial dependency with predictor variables, the variation of
LBW and PTB is significant. Similar to previous studies, spatial autocorrelation of LBW confirms
the spatial heterogeneity in India (Banerjee et al., 2020). Overall, it was depicted that different
explanatory variables of LBW and PTB (district level ag. of PM2.5, visit of antenatal care, poorest
wealth quintile, no education of mother, and rural residence) play a significant role in the entire
India. This indicates that existing variability of LBW and PTB across India could be due to
unequal availability and affordability of healthcare services, cultural practices, socio-economic
disparities, geographical barriers, and lack of awareness among mothers in the time of their
gestation period. Furthermore, the earlier studies predicted R2 map depicts that associated with
exposure to PM2.5 the potential area of LBW and PTB is also concentrated in places where the
exposure level of PM2.5 is higher (Jat and Gurjar, 2021; Jana et al.,2024).

However, the present study estimated the analysis based on octile categorization and
individual’s different gestation periods. Therefore, the disparities between these findings and this
analysis are attributable to the differences in the study design and methodology (Goyal and
Canning, 2021). However, not all studies have found a consistent relationship between LBW, PTB,
and maternal exposure to PM2.5. Multiple studies (Bonzini et al., 2010; Ghering et al., 2011;
Fleischer et al., 2014; Jacobs et al., 2017) have found no statistically significant relationship.
Aligning with prior studies, several factors could contribute to the unpredictable findings in
different studies on the association between PM2.5 exposure and maternal outcomes (Ho et al.,
2023). The utilization of suitable models and exposure assessment approaches is of utmost
importance (Fleischer et al., 2014; Xiao et al., 2018). Furthermore, when particulate matter was
chosen as a risk factor, various geographical areas with unique co-pollutants (PM10, PM2.5, NO2,
and O3) have exhibited varied results, particularly in LMICs with higher levels of air pollution
(Bchwenkizi et al., 2021). Therefore, more extensive research is required to elucidate these
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conflicting results, and mechanistic investigations are necessary to substantiate the present
findings, particularly in LMICs that face significant air pollution levels (Bchwenkizi et al., 2021).

Strengths and limitations of the study
The study comprehensively evaluates the association of PM2.5 with LBW and PTB in India. It is
the first of its kind to involve spatially connecting the NFHS-5 reported data with monthly PM2.5

data to estimate the individual-level in-utero exposures in different gestation periods after
controlling several confounding variables in India. Additionally, as ground monitoring stations
were insufficient, satellite-derived PM2.5 data were employed to provide spatial coverage of India.
This allows us to determine the way PM2.5 is connected with LBW and PTB at the individual level.
Moreover, the calculation of PM2.5 exposures depends on each individual’s gestation period,
depending on the information provided in the NFHS-5 regarding the duration of their pregnancy.
According to earlier research, the average gestation time for all mothers was predicted to be 9
months (Goyal and Canning, 2021; Goyal and Canning, 2017). Therefore, our method for
estimating exposure is more refined than earlier studies.

Despite the uniqueness and strengths of this study, it has certain limitations. The existing
exposure model was limited to considering PM2.5 as a pollutant, was unable to account for other
types of pollutants, and did not adjust the spatial noise of DHS location with PM2.5 data. Further
data on the duration of pregnancy and birth weight were obtained using report cards and the
mothers’ recalling basis, although, in NFHS datasets, there was no other available method to verify
the accuracy of reported data. It might, therefore, be subject to recall information bias. Moreover,
the trimester-wise exposure model was not applicable since the gestation time of each mother
differed. On the other hand, average exposures from conception to the date of birth were the only
ones that could be utilised for the actual duration of pregnancy. At last, individual’s information
with a missing value of PM2.5 indicates that this research has a measurement error.

Conclusion
The purpose of this study was to estimate the relationship between ambient PM2.5 and maternal
exposure. The study’s findings indicate that children aged under 5 had a significantly higher
likelihood of experiencing LBW and PTB when exposed to higher levels of fine particulate matter
(PM2.5) during pregnancy. These findings demonstrate the crucial significance of prenatal and
early-life exposure to air pollution for a child’s overall growth and health. This study will
contribute to significant policy reforms pertaining to the reduction of air pollution in India. The
findings of the study will encourage the extension of ground-based air monitoring throughout the
nation. Additional research is required to verify these results by examining various pollutants or
contaminants. Furthermore, conducting longitudinal studies to investigate the potential
mechanism mediating the association between ambient air pollution and maternal exposure
will add clarity to understanding the relationship among the above-mentioned constructs.
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