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Abstract

Let [Xn,n > 1) be independent identically distributed random variables with a common non-degenerate
distribution function F. For each n > 1, denote Mn = maxf.^ Xn). Under certain conditions on

F, there exist constants an > 0 and bn e K such that (Mn — bn)/an -> G. In this paper, we shall show
that [(Mn — bn)/an) exhibits ergodic behaviour under additional conditions on F.
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1. Introduction

Let {Xn, n > 1} be a sequence of independent identically distributed random variables
with EX, = 0 and EX^ = 1. For each n > 1, set Sn = £?=i xt- T h e n f o r x e K

lim ^ - 1 1 —k- < x I = —= / e~'2/2 dt almost surely.

This is known as the almost sure central limit theorem, and was proved first by
Brosamler [1] and Schatte [8]. Recently, the related problems have attracted much
attention (see Lacey and Philipp [6], Schatte [9-11]).

It was shown in Cheng et al. [2] that the above phenomenon holds also for extreme
values (see Lemma 2 in Section 2). In this paper we consider the general problem
related to maxima (see below).

We assume throughout that [Xn, n > 1} are a sequence of independent identically
distributed random variables with a common non-degenerate distribution function F.
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[2] Ergodic behaviour of extreme values

For each n > 1, denote

Mn = max{Zi,... ,Xn}.

Suppose there exist constants an > 0 and bn e R. such that

171

(1.1) (Mn - bn)/an -* G

where G is a non-degenerate distribution function. Then we say G is an extreme value
distribution and F is in the domain of attraction of G (notation: F e D(G)).

It is well known that G must be one of the following three types:

G(x) = *„(*) =

G(JC) =

[0
ifx>0,
if A: < 0;

lexp{-(-^)°} if x < 0;

GOO = AOO = e\p[-e-"} forx e IR,

where a > 0 (see [7, Proposition 0.3]). Furthermore an and bn can be chosen as

(1-2)

and

(1.3)

wherexF := sup{x : F0O < 1} and !/(*) := inf{v : 1/(1 - F(y)) > *} .
It is important to have necessary and sufficient conditions for a distribution to belong

to the domain of attraction of an extreme value distribution. Some characterisation
theorems can be found in [7, Chapter 1]. For example, F e D(Oa) if and only if

,. U{tx)

U(n)
xF - U(n)

U(ne) - U(n)

0 if

xF if

if
if

i f

G(x

G(x

G(x)
G(x)

G(x)

= 4>«0O,

= *«(*),

= A(x),

a(x),

(x),

U(t)
= xi/a forallx>0

(notation: U e RVl/a).
Assume that (1.1) holds. If there exists a positive sequence [rn,n > 1} with

T m a t

lim
1

rkf
/ A/f A \ /*

I k~ k )= If (x)G(dx) almost surely
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(with D : = { ; c : O < G(x) < 1}) holds for a class of functions/, then we may say
that the sequence {{Mn — bn)/an] has ergodic behaviour. It is natural to consider the
case where rn = n~Y with 0 < y < 1. Unfortunately, for y € (0, 1), the above
equation is not true even for the indicator function (see Cheng et al. [2]). Hence we
only consider the case y = 1, that is the logarithmic means. In the present paper, the
following results are obtained (proofs are given in Section 2).

THEOREM 1. Suppose (1.1) holds for G = 4>a, F(O-) = 0, and an and bn are
defined by (1.2) and (1.3). Assume f is an almost everywhere continuous function
which is defined on (0, oo). If there are constants B > 0, 8 € (0, a) and x > 0 such
that

(1.4) |/(JC)| < B(x0+x-r) forallx>0,

then

(1.5) l i m 7—77 J2-f( " " " ) = / / ( * ) * « ( < / * ) almost surely.
N^oo log Af ^ n \, «n / JO

REMARK 1. Condition (1.4) ensures that \ f™f (x)<t>a(dx)\ < oo. Indeed, (1.5)
still holds if we replace (1.4) by assuming that there are constants fi e (0, a) and
T e (0, I /a) such that

1/ (*)l < B(*^ + ex~T) for all * > 0.

REMARK 2. Assume (1.1) holds for G = Oa, a n d / is an almost sure continuous
function/ which is defined on (—oo, oo). If there are constants B > 0 and /S 6 (0, a)
such that

\f (x)\ < B(\x\ + iy forget ,

then (1.5) holds.
Note that since

we have

/
Jo

1 ^ AA0

(1.6) lim V —2- = T(l - B/a) almost surely.
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THEOREM 2. Suppose (1.1) holds for G = * a , and an and bn are defined by (1.2)
and (1.3). Assume g is an almost everywhere continuous function which is defined on
(—oo, 0). If there are constants B > 0, ft e (0, a) aw<i r > 0

(1.7) I s O O I ^ W + l*!1) forallx<0,

then

(1.8) lim V] -g ( — - ) - / g(x)Va(.dx) almost surely.

REMARK 3. Assume (1.1) holds for G = tya, and g is an almost everywhere
continuous function which is defined on (—oo, oo). If there are constants B > 0 and
P > 0 such that

\g(x)\ < fl(|jc| + iyforjc € K,

then (1.8) holds.
Note that since for any positive integer fl

/ "
J — c

we have

1 N S MM \0

(1.9) lim V „ = ( - l / r ( l + /J/a) almost surely.
N^OO log AT jr( naZ

THEOREM 3. Suppose (1.1) holds for G = A, and an and fen are defined by (1.2)
and (1.3). AiiM/ne /i is an almost everywhere continuous function which is defined on
(—oo, oo). If there are constants B > 0 ana" /} > 0 swcn

(1.10) \h(x)\ < B(]x\ + I)" forxeK,

then

1 N 1 / M — ft \ Z"00

(1.11) lim y-ht— 'L)= h(x)A(dx) almost surely.
N-^oologN j^n \ an J J^

REMARK 4. Under the conditions of Theorem 3, if /J is a positive integer, then

(1.12) lim —— y ( M" " / ^ = ( - i y r w ( l ) almost surely,

where r w ( l ) denotes the £-th derivative of the gamma function at x = 1.
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REMARK 5. According to [7, Proposition 2.1], if (1.1) holds, then under additional
conditions on the left tail of F, we have

(1.13) lim E

if G(JC) = *„(*),

( - l ) ' r ( l+ /8 / cO if G(JC) = *„(*),

if G(JC) =

where an and bn are denned by (1.2) and (1.3), and in the last two equations, fi should
be positive integer. Thus by (1.6), (1.9) and (1.12) we have

1 ^ (Mn-bnyhm > = 1 almost surely.
M^OO log N^nUMH-bn)i>

REMARK 6. It is obvious that (1.1) holds for constants a'n and b'n which satisfy

[«>„-> 1
\(b'n-bn)/an-+0

as n - • oo, where an and bn are defined by (1.2) and (1.3) (see [7, Proposition 0.2]).
Moreover, Remark 2, Remark 3 and Theorem 3 hold for above constants a'n and b'n.

2. Proofs

For every measurable function / let

S(/) = {x : / is continuous at*}.

The proofs of our theorems are mainly based on the following lemmas. The proof of
Lemma 1 below is very standard and we omit it.

LEMMA 1. Assume {Z, Zn, n > 1} is a sequence of random variables with distri-
bution functions {G, Gn,n > 1}. Assume {Zn} converges in distribution to Z, that
is

(2.1) lim Gn{x) = G(x), forx e S(G).
n—»oo

If I is a real-valued almost everywhere continuous function with respect to G, that is
Pr(Z e S(/)) = 1 and {/(Z), l(Zn), n > 1} is uniformly integrable (for definition of
uniformly integrable, see [3, page 93]), then

(2.2) lim U(Zn) = E/(Z).
n—•oo
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LEMMA 2. Assume (1.1) holds. Then

(2.3) Pr I lim sup

175

lognj^k \ ak )
= 0 = 1

1 (/I) denotes the indicator function of set A, and an and bn are defined fry (1.2)
(1.3).

PROOF. See Cheng etal. [2].

Next we are going to prove our theorems. Set

•

(2.4) &i = | co : lim sup

From Lemma 2 we know

(2.5)

1 f 1 (Mn-bn\
\ d I
\ « /

= 0

Pr(£2,) = 1.

Assume {Wj,j > 1} is a sequence of independent random variables with common
distribution function 4>i. It is easily seen that {C/(l/(l — ®i(Wj))),j > 1} is
a sequence of independent random variables which have the same distributions as
{Xj,j > 1}. For the sake of simplicity, we assume that Xj = f/ (1/(1 - <J>i(W,))),
forj > 1. Using the well-known inequalities for regular variation and n-variation (see
Geluk and de Haan [4, Proposition 1.7.5 and Proposition 1.19.4]), we may concentrate
on dealing with {W,,; > 1} (see (2.9) and (2.13) below).

For 1 < m < n, set W(n, m) = maxn_m+i<,<n Wj. Obviously, Wnm/m has
distribution functional, and Mn = C/(l/(l — 4>i(W(/z, n)))) forn > 1. We also have

(2.6) W(n, n) -*• oo almost surely as n -> oo.

PROOF (of Theorem 1). Put .5 = (P/a + l)/2andd2 = (a + /3)/(2/3). Thencf > 1
and 5 € (0,1). Throughout the proof we use C to denote a positive constant, and we
let 0(1) refer to almost surely.

We write

) 1 ^ 1
co : lim sup > -

N^oo log N j-( n f — < oo

First we show that

(2.7) Pr(fi2) = 1.
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Write 5W = (tog AT)"1 £*=i n~x\f {Mn/an)\
d. Then (1.4) implies

I 1 y* I /t/(l/(l-

log N^n\ U(n)
,»))))\n

) )

Since U € RV\/a, Potter-bound inequality (see Geluk and de Haan [4, Proposi-
tion 1.7.5]) implies that there exists t0 > 0 such that

EM <

for all / > t0 and x > 1. Since U(x) is non-decreasing, we have

C/(l/(l -<&,(W(n,/!)))) 2
TTT-: < 1 +

for all n > r0. Hence

(2.8) S<,2) = 0(1)
1 N 1

log

since 1 — 4>i( W(n, n)) ~ (lV(n, «))"' holds almost surely from (2.6).
Note that for each N > 2, there exists m > 2 such that 2m~' < Â  < 2m, and

n

1 -A 1 /W(/i,n)Ni i

(m- 1 ) ^ 2 ^ ^

1 x̂

(m-l)log2frrn^_,n
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2s+l *WX2^20\*

2/ J

- ̂ ~\ E 2̂  ( P )
2^+1 / m \ m 1

= ^ T T (E< W ( 2 ' ' 2'-1)' + (W(1' 1 } ) 1 E 27i

Since [(W(2', 2'~l)2l~')s, i > 1} is a sequence of identical and independent random
variables with finite means E W*, by the strong law of large numbers we have

1 ^U / W(2' 2'~l)\s

(2.10) V l .' — - ) - • EWf almost surely.
m - 1 jrf \ 2 )

Therefore, by (2.8), (2.9) and (2.10) we have Sjf = 0(1). In order to prove (2.7), we
only need to show that

(2.11) 5 ^ = 0(1).

Using Potter-bound inequality, for some tx > 0 and C > 0

(2.12) - ^ > Cxd/a

holds for all t > t,, tx > t\ and x < 1. From (2.6), 1 — 4>i(W(«, n)) ->• 0 almost
surely. Hence,

Pr ( 1 - * , ( W(n, « ) ) > - , infinitely often) = 0.

It is easy to check from (2.12) that

1 - 1
«(1) A X A *- i v \*-f V* - 1 \ ' ' \'-J • - / / / / 1 -| f * --* *

" = log N j^( ~n V f/(«) ' ' "* * '»"-- - " ~ '

+ 0
1 N 1E 1

E "(n(1 - *
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+
logN frtn \W(n,t

For N > 2, 2"1"1 < N <2m, it may easily be proved that

C
( 2 '1 3 ) logiV ^ n VW(n,n)j ~ m-\ j-( \ W{2>, 2>~

which is bounded almost surely by the strong law of large numbers since
{(«/ W(n, n))d2r/a} is a sequence of identical and independent random variables with
finite means E(Wi)-d2r/a. Thus, (2.11) is proved. This completes the proof of (2.7).

Setft = Q,nn2. From (2.5) and (2.7) we have Pr(£2) = 1. PutAT(N) = ^ = i l/n-
Fix a; e Q and write

Then [FN] is a sequence of distribution functions. Let Zw have distribution FN and Z
has distribution Oa. Since K(N)/\ogN ->• 1 as N -> oo, we have

lim sup|Fv(jc) — $a(;c)| = 0.

Note that

1 f l (Mn\ K(N) [°° KO
N

By the definition of £2 we know that {/ (Z), / (Zw), W > 1} is uniformly integrable.
Thus by Lemma 1

This proves (1.5). •

PROOF (of Theorem 2). Put Ys = l/(xF - Xj) for j > 1. Then max,^^ Yj =
l / ( x f - M J a n d

Put f (x) = g(-x ') for x > 0. Then (1.4) is satisfied because of (1.7). Using
Theorem 1 we have (1.8). D
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PROOF (of Theorem 3). Note that (1.1) implies

l i m T,, •, 777T = 1°8X f o r all x > 0
»-oo U(te) - U(t)

(see de Haan [5, Theorem 2.4.1]), using the known inequality for n-function (see
Geluk and de Haan [4, Proposition 1.19.4]), for every e > 0, there exist C > 0 and
t2 > 0 such that

U(tx) - U(t)
U(te) - U(t)

< C(xe +x~e)

for all t > h and tx > t2. Following the lines of proof of Theorem 1, we have
(1.11). •
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