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Abstract. The pentagram map, introduced by Schwartz [The pentagram map. Exp. Math.
1(1) (1992), 71–81], is a dynamical system on the moduli space of polygons in the
projective plane. Its real and complex dynamics have been explored in detail. We study the
pentagram map over an arbitrary algebraically closed field of characteristic not equal to 2.
We prove that the pentagram map on twisted polygons is a discrete integrable system, in
the sense of algebraic complete integrability: the pentagram map is birational to a self-map
of a family of abelian varieties. This generalizes Soloviev’s proof of complex integrability
[F. Soloviev. Integrability of the pentagram map. Duke Math. J. 162(15) (2013),
2815–2853]. In the course of the proof, we construct the moduli space of twisted
n-gons, derive formulas for the pentagram map, and calculate the Lax representation
by characteristic-independent methods.
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1. Introduction
1.1. Main result. The pentagram map is a discrete dynamical system on the space
of polygons in the projective plane. The map was introduced by Schwartz in 1992 for
convex polygons in the real projective plane [36], but the definition extends to polygons
in any projective plane. This paper describes the dynamics of the pentagram map in
projective planes over algebraically closed fields, including positive characteristic. Our
main result establishes algebro-geometric complete integrability of the pentagram map
over any arbitrary algebraically closed field of characteristic not equal to 2.

Definition 1.1. Let n ≥ 3 be an integer. A closed n-gon, or just n-gon, is an ordered n-tuple
of points (v1, . . . , vn) ∈ (P2)n in general linear position. The space of n-gons is a Zariski
open subset of (P2)n.

Definition 1.2. Let n ≥ 5. The pentagram map is a rational self-map of the space of
n-gons. The pentagram map sends an n-gon (v1, . . . , vn) to the n-gon (w1, . . . , wn),
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FIGURE 1. The pentagram map applied to a 9-gon.

where wi is the intersection of the diagonals vi−1vi+1 and vivi+1, and where we take
the indices cyclically modulo n; see Figure 1.

Since the construction is projectively natural, we get an induced rational self-map of the
moduli space of n-gons in P2 up to projective equivalence. From now on, by the pentagram
map, we mean this map on moduli space.

Schwartz, following computational evidence, conjectured that the real pentagram map
might be a rare example of a Liouville–Arnold discrete integrable system. This was proved
in 2010–11 by Ovsienko, Schwartz, and Tabachnikov [33, 34], leading to an explosion
of work on the pentagram map, including higher-dimensional generalizations [20, 24, 25]
and connections to cluster algebras [10, 11, 23], Poisson–Lie groups [9, 20], and integrable
partial differential equations [27].

Liouville–Arnold integrability is an extremely strong property which almost completely
describes the dynamics. Roughly, it means:
• the domain of the map (dimension ≈ 2n) admits a fibration by invariant submanifolds

of dimension ≈ n;
• each of these submanifolds may be identified with an open subset of a real torus

of dimension ≈ n, such that on each torus, some iterate of the pentagram map is a
translation.

In this paper, we study the closely related pentagram map on twisted polygons, also
introduced by Schwartz [37]. The main integrability theorems for the pentagram map on
closed polygons were proved first for twisted polygons [34, 43].

Definition 1.3. A twisted n-gon is a sequence (vi)i∈Z in P2 with the property that there
exists a projective transformation M ∈ PGL3, called the monodromy, such that, for all
i ∈ Z,

Mvi = vi+n. (1)

We also impose some non-degeneracy conditions; see Definition 3.1 for details. The
pentagram map on the parameter space of twisted n-gons sends (vi)i∈Z to (wi)i∈Z,
where wi is the intersection of the diagonals vi−1vi+1 and vivi+1; see Figure 4. For
any T ∈ PGL3 and twisted n-gon (vi)i∈Z, the twisted n-gons (vi)i∈Z and (T vi)i∈Z are
projectively equivalent. The moduli space of twisted polygons, denoted Tn, is the quotient
space of twisted polygons up to projective equivalence; we construct Tn as a variety in
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§3. Since the pentagram map on the parameter space of twisted polygons is projectively
natural, it descends to a rational self-map

f : Tn ��� Tn.

From now on, by the pentagram map, we mean this map f on the moduli space.

To motivate the definition, notice that the definition of the pentagram map on closed
polygons is combinatorially local, in the sense that each vertex of the image polygon
v depends only on four consecutive vertices of v. Thus, the pentagram map extends
to a self-map of the space of sequences (P2)Z, and n-gons correspond to n-periodic
sequences. Studying the pentagram map in this larger space is difficult because (P2)Z

is infinite-dimensional. The constraint in equation (1) defines a finite-dimensional domain
for the pentagram map. Closed n-gons are twisted n-gons that have monodromy M = 1.
We think of closedness as a global constraint on the geometry of a twisted polygon.

Our main theorem is an algebro-geometric version of discrete integrability which holds
in characteristic 0 and characteristic p.

THEOREM 1.4. Let k be an algebraically closed field.
(1) The moduli space Tn of twisted n-gons over k exists as an algebraic variety, and Tn

is a rational variety of dimension 2n.
(2) Assume that char k �= 2. Then, there exists a family of abelian varieties

A→ S

and a birational map

δ : Tn ��� A,

such that, via the identification δ, the fibers of A→ S are invariant subvarieties for
the pentagram map.

(3) The behavior of the pentagram map on A depends on the parity of n.
• Odd n: The fibers of A are Jacobian varieties of dimension n− 1, and δ identifies

the pentagram map with a translation by a section of A→ S.
• Even n: The fibers of A are pairs of Jacobian varieties of dimension n− 2. Via

the identification δ, the pentagram map sends each Jacobian isomorphically to
the other in its pair. The map δ identifies the second iterate of the pentagram map
with a translation by a section of A→ S.

By a family of abelian varieties over k, we mean a map of k-schemes A→ S such that
each fiber is isomorphic to an abelian variety. We do not assume any choice of zero-section
S → A.

Theorem 1.4 can in fact be made totally explicit. Our methods give equations for the
invariant subvarieties and the section that corresponds to the pentagram map.

The case of Theorem 1.4 with base field k = C is essentially due to Soloviev [43].
We extend the result to algebraically closed fields of any characteristic except 2. In fact,
we expect that, with some additional work, our proof would extend to characteristic 2;
see Remark 6.10.
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FIGURE 2. The first few thousand iterates of a real twisted 4-gon, depicted via a two-dimensional projection
from the eight-dimensional moduli space T4. Odd-indexed and even-indexed iterates alternate between two real

two-dimensional tori.

Remark 1.5. A natural next step would be to formulate a notion of algebraic complete
integrability over Spec Z. To explain this informally, while we study the pentagram
map over each field independently, it is also true that any algebraic dynamical system f
defined only using integers can be thought of as a self-map of some scheme over Spec Z.
The scheme Spec Z is a one-dimensional topological space, and each prime number
corresponds to a point of Spec Z. The codimension-1 fiber at prime p corresponds to the
dynamical system induced by f over Fp, and these fibers are all f -invariant. Of course,
integrable systems have a more refined invariant fibration than this, usually including some
‘degenerate’ leaves with interesting but non-generic dynamics. We propose that the bad
primes for an integrable system over Z, if any, should be thought of as degenerate leaves.
Thus, ‘generic’ properties of an integrable system over Z should hold at all but finitely
many primes.

Theorem 1.4 has strong consequences for the arithmetic dynamics of the pentagram
map over finite fields. For instance, the orbits of the pentagram map over a finite field Fq
are much smaller than one would expect for a randomly chosen rational self-map of P2n,
thanks to standard estimates for point counts on varieties over finite fields. Over Fq , at least
when q is odd, the domain Tn of the map has O(q2n) elements, but these can be divided
into invariant subsets of cardinality O(qn−1) or O(qn−2), depending on the parity of n.
On sufficiently generic invariant subsets, the well-defined orbits of the pentagram map
within an invariant subset all have the same period. Note that well-definedness of orbits
is an issue because the pentagram map is a rational map rather than a morphism, since
some degenerate polygons do not have well-defined images. A heuristic argument suggests
that almost all orbits of the pentagram map eventually produce degenerate polygons. We
formalize this idea in Conjecture 8.3.

Theorem 1.4 also tells us something about the real pentagram map. When n is even, a
typical non-periodic orbit of a twisted n-gon fills out at least two tori, by taking real parts
of A. We show an example in Figure 2.

A final application of Theorem 1.4 is to the pentagram map over Q. The logarithmic
height of a rational number is a measure of its arithmetic complexity, approximately equal
to the number of digits needed to write down the number in lowest terms; see [41]. One
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can extend this definition to rational points in projective space and ask about the height
growth along orbits of a dynamical system. Conjecturally, polynomial growth of height in
orbits is an indicator of integrability, but few theoretical results in this direction are known
[15]. In an experimental study, Khesin and Soloviev observed polynomial height growth
in orbits of some generalized pentagram maps, and exponential height growth in others,
providing heuristic evidence of integrability versus non-integrability [25]. We confirm
this empirical result for the standard pentagram map: for sufficiently generic orbits, the
logarithmic height growth is not just polynomial, but in fact linear (Corollary 7.6).

Remark 1.6. The methods of this paper should also apply to closed polygons, with
additional work. In that case, we expect an analog of Theorem 1.4 to hold with the
dimensions n− 1 and n− 2 replaced by n− 4 and n− 5. This was shown over C by
Soloviev [43].

1.2. Sketch of proof of Theorem 1.4. In the complex theory of integrability, both
algebraic and analytic methods are available. Working in characteristic p, we are restricted
to algebraic techniques. We follow the route of Lax representations and spectral curves.
Even though these techniques are classified as ‘analytic’ in some textbooks, e.g. [2], they
can be adapted to other algebraically closed fields.

The first step is to construct the moduli space Tn of twisted n-gons as an algebraic
variety (Theorem 3.6). The group PGL3 of projective transformations M has dimension 8,
so the parameter space of twisted n-gons has dimension 2n+ 8. Since the pentagram
map commutes with PGL3, it descends to the moduli space Tn of twisted n-gons up to
projective equivalence. The variety Tn is 2n-dimensional, and the pentagram map is a
rational self-map f. Since the projective equivalence class of M is f -invariant, we have at
least two algebraically independent integrals.

The main technique we use to construct the moduli space Tn is geometric invariant
theory (GIT), which supplies tools for taking quotients of varieties by infinite groups. The
construction of Tn is not specific to the pentagram map and could have other applications.
In fact, like Mumford’s moduli space of closed polygons [29], the moduli space Tn admits
a GIT semistable compactification with an explicit combinatorial description [47].

The next step is to compute formulas for the pentagram map. Then we derive a Lax
representation with spectral parameter, which is an embedding of the dynamics into a
matrix group. The formulas and Lax representation have already been derived in various
guises in the literature, but our setup is a little different than the usual one, so we include
full detail.

From this point, our proof follows the structure of Soloviev’s proof of complex
integrability of the pentagram map, modified to allow for positive characteristic [43]. The
characteristic polynomial of the Lax representation gives us a spectral curve. The next step
is to show that the spectral curve is an integral curve (in the scheme-theoretic sense) of
genus n− 1 when n is odd and n− 2 when n is even. These computations are technical in
nature.

Then we construct the direct spectral transform, the birational map δ : Tn ��� A of
Theorem 1.4. For the construction of δ, the argument in [43] goes through essentially
without changes.
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The brunt of the extra work in characteristic p is the computation of the genus of the
spectral curve, which is key to ensuring that the Jacobian has the right dimension. Since the
genus of the spectral curve can change after reducing modulo p, we need to make sure that
these curves have a kind of good reduction.

1.3. Road map. Section 2 describes related work. In §3, we construct the moduli space
Tn of twisted n-gons. In §4, we derive formulas for the pentagram map. In §5, we derive
the Lax representation. In §6, we analyze the spectral curve. In §7, we construct the direct
spectral transform, finish the proof of Theorem 1.4, and study height growth. In §8, we
formulate a conjecture that orbits of the pentagram map over a finite field almost always
hit the degeneracy locus of the map.

2. Related work
There are many classical examples of continuous-time integrable systems originating in
physics, but discrete-time examples are few and far between. Finding new examples is a
major research area [14].

The main antecedents of our result are the Liouville–Arnold integrability of the
pentagram map [33], Soloviev’s proof of complex integrability [43], and Izosimov’s study
of the pentagram map via difference operators [20].

The special case of our Theorem 1.4 where the base field k is C recovers the main
theorems of Soloviev [43, Theorems A, B]. However, the setup in the two papers is
different, as we now explain. When n is even, our Theorem 1.4 explains that the invariant
subvarieties generically have two irreducible components, each isomorphic to a Jacobian,
and the pentagram map sends each component into the other, isomorphically. The two
components correspond to two ways of marking certain special points on the spectral
curve, which come from making a choice of square root; see §§6 and 7. In contrast,
Theorem A of [43] states that ‘Each torus (Jacobian J (�)) is invariant for the pentagram
map.’ Theorem B of [43] describes the dynamics when n is even as ‘staircase-like,’ that
is, the pentagram map is not treated as a single-valued algebraic map, but rather depends
on time, alternating between two translations on a single Jacobian. The reason for the
discrepancy is that the two components of each invariant fiber have been identified in
[43], by forgetting the marking. The choice of square root (hence the marking) flips upon
application of the pentagram map, so the pentagram map is not a well-defined self-map of
the single Jacobian appearing in [43].

We also fill a gap in the proof of complex integrability [43, Theorem 2.9]. This theorem
concerns the singularities and genus of the generic spectral curve. To find the genus of
the generic curve in a family, one needs an upper bound on the genus together with
a ‘one-point calculation’ showing that the upper bound is achieved somewhere. This
one-point calculation plays a role somewhat like checking the rank of the Poisson structure
at a single point, as in [33]. The argument in [43, Theorem 2.9] does not include the
one-point calculation. Specifically, the proof asserts that the generic spectral curve, defined
by a plane equation R(k, z) = 0, is non-singular except at infinity. This is true, but difficult
to justify; non-singularity arguments usually depend on checking the non-vanishing of
a resultant, but here the joint resultant of R, ∂R/∂k, ∂R/∂z does in fact vanish, due to
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the singularity at infinity. We replace this assertion with several one-point calculations
in §6; see in particular the casework depending on characteristic and the data in
Tables 1 and 2.

There are many ways to generalize the pentagram map; see, for instance, [10, 20, 24].
The height growth in orbits of these generalized pentagram maps offers empirical evidence
of integrability versus non-integrability; see [25].

Theorem 1.4 describes the generic behavior of the pentagram map. Many special
classes of twisted n-gons have more idiosyncratic dynamics, including closed polygons
[34], Poncelet polygons [19], and axis-aligned polygons [13]. Most recently, Schwartz has
established a remarkable pentagram rigidity conjecture for the 3-diagonal map on centrally
symmetric octagons [38].

There is also a substantial literature connecting the pentagram map to other fields,
including cluster algebras [10, 11, 23], projective incidence theorems [39], Poisson–Lie
groups [9, 20], and integrable partial difference equations [33].

Our construction of the moduli space Tn of twisted n-gons follows an idea of Izosimov
to take an appropriate quotient of a space of difference operators. This idea is introduced
in [20, Proposition 3.3], where the identification is shown to be a homeomorphism. We
promote it to an algebraic isomorphism (Theorem 3.6).

Singularity confinement, a feature of many discrete integrable systems, was explored
in [12]. Singularity confinement is closely related to the existence of a partial com-
pactification on which the pentagram map becomes a morphism, which we construct in
Theorem 1.1.

The corner invariants coordinatize the space of twisted n-gons by cross-ratios.
Cross-ratios are a frequent source of compactifications in the theory of moduli spaces,
for instance, the Naruki cross-ratio variety [32].

Little is known in general about the dynamics of rational maps on Pn over finite fields;
see the survey [3, §18], and for arithmetic dynamics more generally, see [41]. Even in the
simplest case, polynomials on P1, we have only scattered pieces of the whole picture, and
rational maps in higher dimension are even more complicated. For reversible maps and
integrable systems, there are some probabilistic models for the statistics of the orbits [35,
42]. Our work is motivated by the need for concrete examples of rational maps over finite
fields for which the dynamics can be totally described.

Kanki’s thesis [21] collects some results on integrable systems over finite fields and,
taking a more arithmetic dynamical angle, suggests viewing integrability over finite
fields as a kind of p-adic singularity confinement, or ‘almost good reduction.’ The other
existing works on discrete integrable systems over finite fields focus on the construction
of cellular automata with solitonic properties. This is also a nice perspective for our
setting. Theorem 1.4 shows that the pentagram map over Fq defines an integrable cellular
automaton on an alphabet of q2 + q + 2 cell states, corresponding to the points of P2(Fq)

together with an extra state to represent degeneration of the map. The Toda molecule over
F2m is studied in these terms in [31]. The articles [4, 6, 8, 22] study the discrete KdV and
KP equations and the Hirota equation over finite fields as cellular automata. These articles
restrict attention to genus 0 and 2 spectral curves, with a focus on special solutions which
do not degenerate.
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These articles apply the formulas of integrable systems in characteristic 0 to finite fields.
We emphasize that discrete integrability in characteristic 0 does not imply the same over
characteristic p. While the conserved quantities still exist, their algebraic independence is
not guaranteed. The geometry of the spectral curve, its genus, and the application of the
Riemann–Hurwitz formula are all characteristic-dependent. Indeed, by restricting attention
to a subfamily of polygons where the spectral curve has worse singularities mod p, we can
force the loss of algebro-geometric integrability in that family. This means the focus of
proving integrability is on showing that the generic spectral curve has good reduction.

Ultradiscretization, or tropicalization, is a totally different idea for producing integrable
systems valued in finite sets; see [45].

Some other surprising connections between integrable systems and number theory in
finite characteristic are suggested in [44].

3. The moduli space of twisted n-gons
In this paper, we study the pentagram map on twisted polygons. The space of twisted
polygons is larger than the space of closed polygons, but is still finite-dimensional.

Definition 3.1. Let n ≥ 4 be a positive integer. A twisted n-gon is a Z-indexed sequence
(vi) in P2 with the following properties.
• There exists a projective transformation M ∈ PGL3 such that, for all i,

Mvi = vi+n.

• A non-degeneracy condition: in each 5-tuple of consecutive points

(vi , vi+1, vi+2, vi+3, vi+4),

no three points are collinear, except possibly vi , vi+2, vi+4.
The transformation M is called the monodromy of the twisted n-gon. By the
non-degeneracy condition, the monodromy M is unique. A closed polygon is a twisted
polygon for which M = 1. The set of twisted n-gons is denoted Un.

Remark 3.2. There is variation in the literature in the definition of twisted n-gon. We
chose our definition to get a convenient moduli space. The most frequently used definition,
from [33], only requires consecutive triples to be in general position. This definition is too
permissive for our purposes because then the geometric quotient does not exist. Another
common definition asks for all the points to be in general position. However, this is too
strict for our setting, since working over F̄p, there are no such sequences.

PROPOSITION 3.3. Let n ≥ 4. The set Un of twisted n-gons may be identified with a Zariski
open subset of (P2)n × PGL3 via the map

Un ↪→ (P2)n × PGL3,

(vi)i∈Z �→ (v1, . . . , vn, M),

where M is the unique matrix that sends the 4-tuple (v1, v2, v3, v4) to (vn+1, vn+2, vn+3,
vn+4).
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Proof. We need only show that this map is invertible on a generic subset of the variety
(P2)n × PGL3. This is straightforward: for a generic choice of (v1, . . . , vn, M), the points
v1, . . . , vn, Mv1, Mv2, Mv3, Mv4 are in general linear position, and thus so are any
consecutive five points in the sequence

(. . . , v1, . . . , vn, Mv1, . . . , Mvn, M2v1, . . . , M2vn, · · · ).
This sequence is a twisted n-gon that corresponds to (v1, . . . , vn, M), since it satisfies the
non-degeneracy condition of Definition 3.1.

The pentagram map is invariant under projective transformations. So, we study the
induced map on the moduli space of projective equivalence classes of twisted n-gons.
If we view Un as an open subvariety of (P2)n × PGL3, the PGL3-action on Un is given by

A · (v1, . . . , vn, M) = (Av1, . . . , Avn, AMA−1). (2)

Definition 3.4. The moduli space of twisted n-gons, denoted Tn, is the quotient variety
Un/ PGL3 for the action described by equation (2).

Definition 3.4 asserts the existence of a quotient in the category of varieties, but in
general, such quotients may not exist. The main theorem of this section, Theorem 3.6,
equips Tn with a variety structure. We explicitly describe the coordinate ring of the moduli
space Tn, and we check that the quotient map to Tn is geometric in the sense of geometric
invariant theory.

We briefly recall the basic notions and give a more detailed review in §3.1.
Informally, given a variety V and group G, a categorical quotient, denoted V//G, is a

variety V ′ and a map V → V ′ which has the typical categorical properties of a quotient.
Categorical quotients do not always exist, and even when they do, they may not reflect
the geometry of the orbits well. A categorical quotient V ′ = V//G is called a geometric
quotient if the points of V ′ classify G-orbits in V. When a geometric quotient exists, the
notions of orbit space and categorical quotient are essentially the same, so we can speak
of a variety structure on V/G.

We now recall the definition of Schwartz’s corner invariants, which have played an
essential role in the study of the pentagram map [37]. These functions were known to
define a full set of coordinates on Tn as a manifold over R; we extend this to show that they
generate the coordinate ring of Tn as a variety over k.

Definition 3.5. We define the cross-ratio of four points v1, v2, v3, v4 in P1 with v1 �= v3

and v2 �= v4 in a slightly non-standard way, as follows. Choose any affine coordinate such
that, computed in that coordinate, we have v1, v2, v3, v4 �∈ {0,∞}. Then the cross-ratio is
defined by the formula

[v1, v2, v3, v4] = (v1 − v2)(v3 − v4)

(v1 − v3)(v2 − v4)
.

One can check that the result is independent of the choice of affine coordinate. (Frequently,
one sees the reciprocal of this quantity defined as the cross-ratio.)
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vi−2 vi−1

vi

vi+1

vi+2

FIGURE 3. The left-corner invariant xi is defined as the cross-ratio of the four points on the pictured horizontal
line, and the right-corner invariant yi is defined as the cross-ratio of the four points on the pictured vertical line.
We can informally think of the corner invariants as providing coordinates for vi in the axes determined by vi−2,

vi−1, vi+1, and vi+2.

Given a twisted n-gon v = (vi) (see Figure 3), its left- and right-corner invariants,
denoted xi , yi , are defined by

xi = [vi−2, vi−1, vivi+1 ∩ vi−2vi−1, vi+1vi+2 ∩ vi−2vi−1],

yi = [vi+1vi+2 ∩ vi−2vi−1, vi−1vi ∩ vi+1vi+2, vi+1, vi+2].

These quantities are PGL3-invariant functions of v. We consider the morphism

Un→ (P1 \ {0, 1,∞})2n,

v �→ (x1(v), . . . , xn(v), y1(v), . . . , yn(v)).

We now present the main theorem of this section, which says that this morphism defines a
geometric quotient (that is, a variety with nice quotient properties).

THEOREM 3.6. The geometric quotient Tn = Un/ PGL3 exists, and there is an isomor-
phism of varieties

Tn
∼−→ (P1 \ {0, 1,∞})2n,

v �→ (x1(v), . . . , xn(v), y1(v), . . . , yn(v)).

We prove a more detailed version of this theorem, as Proposition 3.16, later in this
section. Theorem 3.6 implies that any algebraic, projectively invariant condition on twisted
n-gons can be expressed in terms of the corner invariants. For instance, one can show that
the points vi−2, vi , vi+2 are collinear if and only if xiyi = 1.

The real part of Tn was studied in [33], where it was shown that the corner invariants
provide a diffeomorphism to R2n. To do something similar algebraically, we have to take
the quotient of a variety by an infinite group, using GIT.

The proof of Theorem 3.6 is complicated. The motivating idea is as follows. In any
sequence of five points in the plane, we can describe coordinates for the third point in
terms of the first, second, fourth, and fifth points. Take consecutive subsequences of length
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five in the bi-infinite sequence defining a twisted n-gon. Because of the monodromy, the
resulting coordinates are n-periodic, thus giving 2n functions that coordinatize the space
of twisted n-gons.

Remark 3.7. The existence of the geometric quotient Tn follows immediately from the
main results of [47]. However, that proof does not produce the explicit coordinatization by
corner invariants, and we use that coordinatization to study the pentagram map.

Remark 3.8. Another coordinate system, the so-called ab-coordinates, has also been used
widely in the study of the pentagram map, for instance in [33]. These work well over R, but
their definition uses the isomorphism SL3(R) ∼= PGL3(R), and they are not well defined
over an arbitrary base field. Further, our proof of Theorem 3.6 explains the algebraic origin
of the corner invariants.

3.1. Background on geometric invariant theory. We cite some standard theorems in
geometric invariant theory. For a development of these ideas, see [7, Ch. 6].

Definition 3.9. Suppose that a group G acts algebraically on a variety V, with action
α : G× V → V . A categorical quotient is a variety V ′ and a G-invariant morphism
χ : V → V ′, such that, for every variety V ′′, every G-invariant morphism V → V ′′ factors
through χ uniquely. We denote a categorical quotient V ′ by V//G. The quotient depends
on the action, but this notation suppresses it. If we want to be specific about the action, we
write V//α. We will also use the notation V//G and V//α to refer to the variety without
the attached data of χ .

By a universal property argument, if a categorical quotient exists, it is unique up to
unique isomorphism. When we write V//G, the argument will always provide a specific
construction of the categorical quotient.

A geometric quotient, denoted V/G, is a categorical quotient V//G with the following
property: if v1, v2 ∈ V have the same image in V//G, then there exists some g ∈ G such
that g · v1 = v2.

Categorical quotients do not always exist, much less geometric quotients. However, for
a large class of groups, the geometrically reductive groups, categorical quotients of affine
varieties do exist. Any algebraic subgroup of a general linear group GLd is geometrically
reductive, regardless of base field.

THEOREM 3.10. (Nagata, Mumford) Let G be a geometrically reductive group acting on
an affine k-variety V. Let O(V ) be the k-algebra of global sections. Then the subalgebra
O(V )G of G-invariant functions is finitely generated over k. Let V ′ = Spec O(V )G. The
canonical morphism ψ : V → V ′ is a categorical quotient. Thus,

V//G ∼= Spec O(V )G.

The first claim, about finite generation, is due to Nagata [30]. The second claim is due
to Mumford [28]. For a proof, see [7, Theorem 6.1].

We use Gm to denote the multiplicative group scheme over k.
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Example 3.11. Consider Gm acting on A1 by t · v = tv. The categorical quotient A1//Gm

exists by Theorem 3.10, and O(A1)Gm = k, so the categorical quotient is a point. Since 0
and 1 are in different orbits, but have the same image, the quotient is not geometric.

3.2. The dual space. In this section, we prove Theorem 3.6. We describe a map which
takes a twisted n-gon to a kind of dual data: the list of relations satisfied by consecutive
sets of four points. The objects in the proof will be used again to derive formulas for the
pentagram map in §4.

We introduce two spaces Vn and Wn, along with actions α and β, which are closely
related to the action of PGL3 on Un. The existence of the geometric quotient Wn/β is
easier to establish, and we use its structure to show existence of the geometric quotient
Vn/α, which in turn gives us existence of Un/ PGL3 and the explicit description. The
relationships between the various objects are depicted in the following diagram.

(P2)n × PGL3 (A3)n × GL3 (A4)n

Un Vn Wn

Tn Un/ PGL3 Vn/α Wn/β G2n
m

χ




π

χ ′

′

∼ ∼

We now define

Vn ⊂ (A3 \ {0})n × GL3.

For all 1 ≤ i ≤ n, let vi be the projection to the ith copy of A3. Let M be the
GL3-coordinate. For all i > n, define vi = Mvi−n. Let Vn be the open subset
defined by the condition that, for all i with 1 ≤ i ≤ n, the five consecutive vectors
vi , vi+1, vi+2, vi+3, vi+4 are non-zero, and no three of them are coplanar, except possibly
vi , vi+2, vi+4. Observe that Vn consists of the elements of (A3 \ {0})n × GL3 which are
sent by projectivization to Un. Let π : Vn→ Un denote projectivization.

We embed Vn in the space of 3× (n+ 3) matrices via the map

⎡
⎣ | | | | | | | | |
v1 v2 v3 · · · vn−2 vn−1 vn Mv1 Mv2 Mv3

| | | | | | | | |

⎤
⎦.

Each set of four vectors in A3 satisfies some non-trivial relation. If no three of the vectors
are coplanar, then each coefficient in the relation is non-zero. Thus, given an element
θ ∈ Vn, there exist values ai , bi , ci , di ∈ k∗, such that θ is annihilated on the right by the
(3+ n)× n matrix
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

b1 a2

c1 b2

d1 c2

d2
. . .

an−1

bn−1 an

cn−1 bn

dn−1 cn

dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let

Wn = (G4
m)

n.

The variety Wn parameterizes matrices of the above form. Let the coordinates on the ith
copy of G4

m in Wn be ai , bi , ci , di . We extend these definitions to be n-periodic, by the
rule that for all i > n,

ai = ai−n, bi = bi−n, ci = ci−n, di = di−n.

We define 
 : Vn→Wn by

ai = det

⎡
⎣ | | |
vi+1 vi+1 vi+3

| | |

⎤
⎦, bi = − det

⎡
⎣ | | |
vi vi+2 vi+3

| | |

⎤
⎦,

ci = det

⎡
⎣ | | |
vi vi+1 vi+3

| | |

⎤
⎦, di = − det

⎡
⎣ | | |
vi vi+1 vi+2

| | |

⎤
⎦.

Set

G = Gn+1
m × GL3.

We set notation for the coordinate on each factor.
• For each i where 1 ≤ i ≤ n, let ηi be a coordinate on the ith copy of Gm.
• Let ξ be a coordinate on the (n+ 1)th copy of Gm.
• Let A be the coordinate on the GL3 factor.
We now define an action

α : G× Vn→ Vn. (3)

• For each i in 1 ≤ i ≤ n, the ηi coordinate scales vi .
• The ξ coordinate scales the GL3 factor of Vn.
• The A coordinate acts by

A · (v1, . . . , vn, M) = (Av1, . . . , Avn, AMA−1).
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After writing an element of Vn in matrix form, the scalings correspond to coordinate-
wise multiplication by various matrices.
• For i = 1, 2, 3, the ηi coordinate simultaneously scales columns i and n+ i. For each

i where 4 ≤ i ≤ n, the ηi coordinate only scales column i.
• The ξ coordinate scales columns n+ 1, n+ 2, and n+ 3.
• The A coordinate acts by change of basis.

We now define an action

β : G2n+1
m ×Wn→Wn.

We use the following coordinates on G2n+1
m .

• For each i where 1 ≤ i ≤ n, let κi be a coordinate on the ith copy of Gm.
• For each i where 1 ≤ i ≤ n, let ρi be a coordinate on the (n+ i)th copy of Gm.
• Let ε be a coordinate on the (2n+ 1)th copy of Gm.
Viewing Wn as a space of matrices, the action of each factor is by a coordinatewise
multiplication.
• For each i in 1 ≤ i ≤ n, the κi coordinate acts by scaling column i.
• For each i in 1 ≤ i ≤ 3, the ρi coordinate acts by simultaneously scaling rows i and

i + n. For 4 ≤ i ≤ n, the ρi coordinate acts by scaling row i.
• The ε coordinate acts by a coordinatewise multiplication by⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1
1 1
1 1

1
. . .

1
1 ε

1 ε ε

1 ε ε ε

1 1 1
1 1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Izosimov found formulas for the corner invariants of a twisted polygon in terms of
ai , bi , ci , di [19, Proposition 2.10]. Without referring to corner invariants, we prove that
those expressions, denoted x′i , y′i , generate the ring of invariants of β. We show later, in
Lemma 3.14, that these expressions agree with the corner invariants.

PROPOSITION 3.12. The geometric quotient Wn/β exists. It is given explicitly by

Wn/β = Spec k[(x′i )
±1, (y′i )

±1] ∼= G2n
m ,

with the natural projection

χ ′ : Wn→Wn/β,
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where for each i = 1, . . . , n,

x′i := ai−1ci−2bi−1
−1bi−2

−1,

y′i := di−2bi−1ci−2
−1ci−1

−1.

Proof. There are three parts to the proof: constructing a categorical quotient Wn//β,
calculating its coordinate ring, and showing that the quotient is geometric.

(1) To see that Wn//β exists, observe that Wn is an affine variety and that
(Gm)

2n+1 × GL3 is reductive. By Nagata’s theorem (Theorem 3.10), the spectrum of
the ring of invariants k[Wn]β is a categorical quotient.

(2) Let xi , yi be defined in the statement of the theorem. We claim that

k[Wn]β = k[(x′i )
±1, (y′i )

±1].

The x′i , y′i are invariants by inspection, so we just have to show that they generate the ring
k[Wn]β .

Each of the 2n+ 1 actions of Gm puts a grading on k[Wn]. Then k[Wn]β is the
intersection of the 0-graded part for each grading. Further, the invariant ring is generated by
monomials in the ai , bi , ci , di , because the ring of invariants for each grading considered
separately is generated by monomials. Now, we argue that every invariant monomial is
of the form

∏
i (x
′
i )
ei (y′i )

fi , where ei , fi ∈ Z. If μ is an invariant monomial, then we can
divide by an appropriate power of the xi and yi to get an invariant monomial that has
ai-degree 0 and di-degree 0. The resulting invariant is a monomial in just the bi , ci . Since
each κi-grading is 0, we have degci μ = − degbi μ. Since each ρi-grading is 0, we have
degbi μ = − degci−1

μ for i > 1, and degb1
μ = − degcn μ. Write

μ0 = b1b2 · · · bn
c1c2 · · · cn .

We have shown that μ is a power of μ0. And the ε-grading gives μ0 degree 1, so μ = 1.
Further, we claim the spectrum is G2n

m . This is true if the x′i , y′j are algebraically
independent. This is clear, since a distinct ai or di appears in the definition of each, and
these have no relations.

(3) To prove that the quotient is geometric, we must check that invariant functions
distinguish between orbits. Suppose w, w′ ∈Wn satisfy χ ′(w) = χ ′(w′). First, by an
ε-scaling, we can replace w, w′ by elements such that μ0(w) = μ0(w

′) = 1. Then, by
scaling with κ1, ρ1, . . . , κ2, ρ2, . . . , κn, we can replace w by an element such that

b1(w) = 1, c1(w) = 1, b2(w) = 1, c2(w) = 1, . . . , bn(w) = 1.

We do the same for w′. Since the scalings by κi and ρi hold μ0 invariant, we deduce that
cn(w) = cn(w

′) = 1 as well. An element of Wn with all bi , ci = 1 is determined by the
values of x′i , y′i , so w = w′.

PROPOSITION 3.13. If the points θ1, θ2 ∈ Vn are in the same α-orbit, then 
(θ1), 
(θ2)

are in the same β-orbit.
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Proof. Recall that we defined action α : G× Vn→ Vn just after equation (3) as the
product of actions by scaling by ηi , 1 ≤ i ≤ n, scaling by ζ , and conjugation by A. Thus,
we can reduce the claim to the cases that θ2 is obtained by applying just one of the ηi , ζ ,
or A actions.
• Suppose that θ2 is obtained from θ1 by ηi . Then 
(θ2) is obtained from 
(θ1) by

κi−3, κi−2, κi−1, κi , indices taken mod n, then applying the ρi-scaling by (ηi)−1.
• Suppose that θ2 is obtained from θ1 by applying A. Then 
(θ2) is obtained from 
(θ1)

by scaling every entry by det(A). This can be accomplished by scaling each column
individually with the κi .

• Suppose that θ2 is obtained from θ1 by applying ξ . Then 
(θ2) is obtained from 
(θ1)

by applying a coordinatewise multiplication by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1
1 1
1 1

1
. . .

1
1 ξ

1 ξ ξ2

1 ξ ξ2 ξ3

1 ξ ξ2

ξ ξ2

ξ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This can be achieved using κn−1, κn, and ε.

So far, we have described the invariants x ′i , y′i of the action β in purely algebraic terms.
In fact, they agree with the corner invariants.

LEMMA 3.14. [19, Lemma 2.10] The map χ ′ ◦
 takes an element v ∈ Vn to the corner
invariants of π(v).

Proof. The idea is to compute χ ′ ◦
 for a carefully chosen element of Vn that is
α-equivalent to v, then observe that α-equivalence does not change the corner invariants
or χ ′ ◦
, by Propositions 3.12 and 3.13. See [19, Lemma 2.10] or [46, Lemma 3.2.10] for
two different approaches to the computation.

PROPOSITION 3.15. Let θ , θ ′ ∈ Vn. If 
(θ), 
(θ ′) are in the same β-orbit, then θ , θ ′ are
in the same α-orbit.

Proof. We may use moves in α to assume that θ and θ ′ agree in v1, v2, v4, v5. Let u, u′ be
the image of θ , θ ′ in Un, respectively. By Propositions 3.12 and 3.14, the corner invariants
of u and u′ agree. We claim that u3 = u′3. Indeed, the value of the corner invariant x3(u)

determines the point of intersection of u3u4 with u1u2, which gives us a line on which
u3 must lie. The value of y3(u) similarly picks out a second line on which u3 must lie.
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This determines u3. Thus, we know the relative positions of each consecutive group of five
points in u, which determines all of u.

Finally, we prove the following more detailed version of Theorem 3.6.

PROPOSITION 3.16. The geometric quotients Un/ PGL3 and Vn/α exist, and are
isomorphic. The dualization map 
 descends to an embedding

Vn/α ↪→Wn/β,

and there is an isomorphism

Vn/α ∼= (P1 \ {0, 1,∞})2n.

Proof. Let W◦n ⊂Wn be the subset where all x′i , y′i �∈ {0, 1}. The geometric quotient

Wn/β ∼= G2n
m

restricts to a geometric quotient

χ ′ : W◦n → (P1 \ {0, 1,∞})2n.

Consider the map


′ : W◦n → Vn,

where 
′(w) has v1, v2, v3 at the standard basis vectors, and each remaining vector vi for
4 ≤ i ≤ n is determined recursively by the relation

ai−3vi−3 + bi−3vi−2 + ci−3vi−1 + di−3vi = 0.

We formally compute vn+1, vn+2, vn+3 in the same way, and then define M to be the matrix
[vn+1vn+2vn+3].

Define

χ : Vn→ (P1 \ {0, 1,∞})2n,

v �→ (x1(v), . . . , xn(v), y1(v), . . . , yn(v)).

We claim that χ satisfies the necessary universal property to be a categorical quotient
Vn/α. The argument is the following elementary diagram chase.

We know that

χ ◦
 = χ ′,

χ ′ ◦
′ = χ .

Suppose that we are given a variety V ′ and an α-invariant map ν : Vn→ V ′. We want to
show that there exists a unique map

ν′ : (P1 \ {0, 1,∞})2n→ V ′

such that

ν′ ◦ χ = ν.
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Evidently,

ν ◦
′

is β-invariant, so from the universal property of the categorical quotient W◦n/β, there exists
a unique map ν′ such that

ν′ ◦ χ ′ = ν ◦
′.
Then composing each side of the equation with 
 on the right gives the desired equation

ν′ ◦ χ = ν.

Further, if some other ν′′ satisfies

ν′′ ◦ χ = ν,

then composing with 
′ on the right gives

ν′′ ◦ χ ′ = ν ◦
′,
so again by the universal property,

ν′′ = ν′.

Suppose that v, v′ ∈ Vn, and suppose χ(v) = χ(v′). Then 
(v) and 
(v′) are in the
same β-orbit. So, by Proposition 3.15, we know that v and v′ are in the same α-orbit.

Now that we know that the geometric quotient Vn/α exists, we compute it another way.
Since the Gm factors act by scaling the A3 and the GL3, we can write Vn/α as

Un/ GL3.

Since scaling is trivial on Un,

Un/ GL3 ∼= Un/ PGL3.

This concludes the proof of Proposition 3.16.

Proof of Theorem 3.6. Immediate from Proposition 3.16.

4. Formulas for the pentagram map
Definition 4.1. Fix n ≥ 4. The pentagram map on parameter space is the rational map

F : Un ��� Un

that sends a twisted n-gon (vi)i∈Z to the twisted n-gon (wi)i∈Z, wherewi is the intersection
of the diagonals vi−1vi+1 and vivi+1. See Figure 4. The map F respects the action of PGL3

on Un defined by equation (2).
The pentagram map on moduli space, or just pentagram map, is the rational map

f : Tn ��� Tn
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FIGURE 4. The pentagram map F on parameter space. The exterior bold line is part of the input twisted polygon,
and the interior bold line is part of its image by the pentagram map.

induced on the moduli space of twisted n-gons up to the PGL3-action in equation (2). In
other words, the map f is the unique dominant rational map such that the following diagram
commutes:

Un Un

Tn Tn

F

f

We showed in Theorem 3.6 that

Tn ∼= (P1 \ {0, 1,∞})2n.

The coordinates on Tn are xi , yi for each i = 1, . . . , n. In these coordinates, the pentagram
map has a straightforward formula, which we apply in §5. Define

f ∗(xi) = xi ◦ f , f ∗(yi) = yi ◦ f .

This is just the usual algebro-geometric definition of pullback of a function by a rational
map.

PROPOSITION 4.2. [37] The pentagram map f : Tn ��� Tn can be written in coordi-
nates as

f ∗(xi) = xi+1
1− xiyi

1− xi+2yi+2
,

f ∗(yi) = yi+2
1− xi+3yi+3

1− xi+1yi+1
.

The condition 1− xiyi = 0 causes vanishing denominators in the formula of f. This
condition is equivalent to collinearity of the points vi−2, vi , vi+2.

These formulas were first published in [37], and a proof was given over R using
ab-coordinates in [33]; see also [19, §2.3]. Since the ab-coordinates are not well defined
over an arbitrary base field, we give a new field-independent proof of the formulas
following the matrix refactorization argument of Izosimov [20]. The remainder of this
section builds up to the proof of Proposition 4.2.
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Recall the definitions of Vn and Wn from §3. First, we explain how to view Wn as a
space of difference operators. We are working over an algebraically closed base field k. Let
kZ be the space of Z-indexed sequences in k. Let � : kZ→ kZ be the left shift operator,
defined on each σ ∈ kZ by

(�σ)i = σi+1.

Each s ∈ kZ defines a scalar operator on kZ, via the rule

(sσ )i = siσi .

A third-order difference operator is a map kZ→ kZ of the form

a + b� + c�2 + d�3,

where a, b, c, d are scalar operators. Note that scalar operators generally do not commute
with �, since

(� ◦ s(σ ))i = si+1σi+1 and (s ◦�(σ))i = siσi+1.

Any element of Wn can be identified with a third-order difference operator by reading
off the sequences ai , bi , ci , di . Specifically, the space Wn is a subset of (kZ)4, and we
identify each element (ai , bi , ci , di)i∈Z of Wn with a third-order difference operator via

(ai , bi , ci , di)i∈Z←→ (ai)+ (bi)� + (ci)�
2 + (di)�

3.

Given any third-order difference operator D = a + b� + c�2 + d�3, we define two
associated third-order difference operators

D+ = a + c�2,

D− = b� + d�3.

Note that D = D+ +D−.
We extend the action of a difference operator on kZ coordinatewise to the set (k3)Z of

sequences in k3. Thus, each third-order difference operator defines a map Vn→ (k3)Z.

LEMMA 4.3. [20] Let u ∈ Dom F , let v ∈ Vn be a lift of u, and let D ∈Wn annihilate v.
Then,

D−v = F(u) as elements of Un.

Proof. Observe that (F (v))i lies in the plane spanned by vi , vi+2 and also in the plane
spanned by vi+1, vi+3. We have

D−v = b�v + d�3v = −av − c�2v,

so (D−v)i lies in the desired spans. Since D is in Wn, we know (D−v)i is non-zero. The
two planes intersect in a unique line, by the non-degeneracy condition on twisted n-gons.
Thus, the image of D−v in Un is F(u).

The next theorem presents the pentagram map as a matrix refactorization.
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THEOREM 4.4. [20] Suppose that u ∈ Dom F . Let v be any lift of u to Vn. Let D ∈Wn

annihilate v. Then there exists D̃ ∈Wn such that

D̃+D− = D̃−D+. (4)

Further, for each lift ṽ ∈ Vn of F(u), there is a choice of D̃ such that

D̃(ṽ) = 0.

Proof. First, we check that the factorization

D̃+D− = D̃−D+ (5)

is possible. We start by looking for a solution D̃ in the space of all n-periodic third-order
difference operators (so some of the ai , bi , ci , di may be 0). Equation (5) imposes 3n
homogeneous linear conditions on 4n variables, so by linear algebra, there is a non-trivial
solution.

Next we show that

D̃(ṽ) = 0.

Our initial choice of D̃ annihilates D−v, by the following calculation:

D̃v = (D̃+ + D̃−)D−v since D̃ = D̃+ + D̃−,

= D̃+D−v + D̃−D−v

= D̃−D+v + D̃−D−v using equation (5),

= D̃−(D+ +D−)v

= D̃−Dv since D = D+ +D−,

= D̃−0 since Dv = 0 by assumption,

= 0.

We claim that D̃ belongs to Wn. We note that D− has every consecutive 4-tuple in
projective general position by the assumption that u ∈ Dom F . Since D̃(D−v) = 0 and
D̃ �= 0, all the ai , bi , ci , di are non-zero, so D̃ is in Wn.

By Lemma 4.3, we have that D−v and ṽ have the same image in Un, so D−v and ṽ

are the same up to rescaling vectors. Then we can rescale D̃ using the row-scalings ρi of
the action β to produce a difference operator which annihilates ṽ, and the modified D̃ still
satisfies equation (4).

Now we calculate a formula for the pentagram map on Tn.

Proof of Proposition 4.2. Let u, D, D̃ be as in the statement of Theorem 4.4. Let a, b, c, d
be the sequences of coordinates of D, and let ã, b̃, c̃, d̃ be the sequences of coordinates
of D̃. Let σ ∈ kZ be defined by

σi =
{

0 if i �= 6,

1 if i = 6.
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Applying equation (4) to σ , we obtain the following system of equations:

c̃1d3 = d̃1c4,

c̃3b5 + ã3d3 = d̃3a6 + b̃3c4,

ã5b5 = b̃5a6.

The same equations hold after a change in index, by symmetry. We use the appropriate
shifts of the first and last equations to eliminate ãi and d̃i from the middle equation, and
rearrange to obtain

b̃3

c̃3
= b̃3

c̃3
= b5 − (d5a6/c6)

c4 − (a4d3/b3)
.

Taking the reciprocal and multiplying by

ã4

b̃4
= a5

b4

gives

ã4c̃3

b̃3b̃4
= a5c4

b4b5

(
1− (a4d3/c4b3)

1− (d5a6/b5c6)

)
.

Then by Proposition 3.12,

f ∗(x5) = x6
1− x5y5

1− x7y7
.

Symmetry gives the formula for xi in general, and the formula for yi comes from a similar
calculation.

5. The Lax representation
We now derive a Lax representation for the pentagram map. The Lax representation
supplies the invariant functions that define the invariant fibration of the pentagram map.

Informally, a Lax representation is an embedding of the domain of a dynamical
system into a space of matrices such that the dynamical system is carried out via matrix
conjugation.

5.1. The idea. The pentagram map is a discrete algebraic dynamical system

f : Tn ��� Tn,

so in our setting, the Lax representation is a space Matd(k) of d × d matrices over k (for
some d ≥ 1) and a function

T : Tn ��� Matd(k)

such that, for any v ∈ Dom f , the matrix T (f (v)) is conjugate (similar) to T (v). Then
the coefficients of the characteristic polynomial of T (v) are functions on Tn which are
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invariant for f. One can do even better by identifying a function P : Tn ��� GLd(k) which
carries out the conjugation, that is, such that

T ◦ f = PT P−1.

This construction supplies up to d invariant functions. More may be obtained from a
Lax representation with spectral parameter. This construction replaces Matd(k) with
Matd(k(ζ )), where ζ is an indeterminate. Then, the characteristic polynomial may be
viewed as a bivariate polynomial, so there are more coefficients and thus more invariant
functions. Of course, some of these invariant functions may be constants, and they may
also be algebraically dependent, so even after a Lax representation with spectral parameter
is found, some work is required to establish the existence of a fibration by low-dimensional
subvarieties.

Formulas for T and P may be easily checked by carrying out the requisite matrix
multiplication. However, deriving the right formulas may be very difficult and requires
some deeper sense of why the dynamical system is integrable. Soloviev found formulas for
an algebraic Lax representation with spectral parameter for the pentagram map in Mat3(C)
[43]. One hopes for a conceptually motivated proof, and [18] has almost what we need, but
the argument uses coordinates which are only well defined over R. Trying to push the
same argument through over C results in invariants which are only well defined up to a
third root of unity. In this section, we derive the Lax representation using corner invariants
as coordinates, so the argument works over any algebraically closed field k.

Before formally going through the proof, we sketch the idea. A Lax representation
(without spectral parameter) can be found by tracking the monodromy of a twisted
n-gon v. The monodromy is a linear transformation, so it does not come with a preferred
choice of coordinates. The Lax representation (without spectral parameter) describes the
monodromy in a basis defined by the first few vertices of v. To introduce a spectral
parameter, we observe a property of the pentagram map known as scaling invariance.
Namely, there is an action of Gm on Tn, defined by

ζ · (x1, . . . , xn, y1, . . . , yn) = (ζ−1x1, . . . , ζ−1xn, ζy1, . . . , ζyn.)

Inspecting the formulas of Proposition 4.2, we see that the pentagram map commutes with
this action. This provides a deformation of the pentagram map, and following through the
same construction for the deformation, we obtain matrices with the spectral parameter.

Remark 5.1. Another method of obtaining the 3× 3 Lax representation is to go through
the ‘dual’ n× n Lax representation found by Izosimov in [20]. Indeed, writing down the
eigenvectors of Izosimov’s representation requires a recursive calculation equivalent to
equation (8) below. Thus, a proof of algebraic integrability from the n× n Lax representa-
tion would ultimately lead through the same equations, resulting in the same spectral curve.
However, there is a conceptual difference between the two approaches. The 3× 3 Lax
representation follows more directly from the geometric definition of the pentagram map
on twisted polygons, but it does not explain the origins of scaling invariance. Izosimov’s
method allows for a far-reaching generalization of scaling invariance to a much wider class
of generalized pentagram maps.
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5.2. The Lax representation via corner invariants. We let ζ be a formal indeterminate.

Definition 5.2. A projective zero-curvature equation with spectral parameter is the
following data: for each i ≥ 1, two functions

Li : Dom f → P(Mat3(k(ζ ))) and Pi : Dom f → PGL3(k(ζ )),

such that, for all t ∈ Z,

Li,t+1 = Pi+1,tLi,tPi,t
−1.

Definition 5.3. A projective Lax representation with spectral parameter is, for each i ≥ 1,
two functions

Ti , Pi : Dom f → P(Mat3(k(ζ )))

such that

Ti,t+1 = Pi,t Ti,tPi,t
−1.

In this situation, the functions Ti are collectively called a projective Lax function with
spectral parameter and the function Pi is called the associated function.

Now we give explicit formulas for functions Li , Pi , Ti as in Definitions 5.2 and 5.3 that
are associated to the pentagram map. For any i ∈ Z, we define

Li , Pi : Tn ��� P(Mat3(k(ζ )))

by

Li(ζ ) =
⎡
⎣1/xi+2 −1/xi+2 0

1/ζ 0 −1/ζ
yi+2 0 0

⎤
⎦, (6)

Pi(ζ ) =
⎡
⎣ 1− xi+2yi+2 0 −(1− xi+2yi+2)

xi+1yi+1(1− xi+2yi+2) −(1− xi+1yi+1) −(1− xi+2yi+2)

0 ζyi+2(1− xi+3yi+3) 0

⎤
⎦. (7)

Note that Li and Pi are n-periodic in i, since xi and yi are n-periodic in i. We also
introduce an optional time index t ∈ N≥0. We set

Li,t = Li ◦ f ◦t , Pi,t = Pi ◦ f ◦t , Ti,t = Ti ◦ f ◦t .
Also for any i ∈ Z, we set

Ti = Ln−1+i . . . Li+1Li . (8)

THEOREM 5.4. [43, Theorem 2.2] Suppose that k is an algebraically closed field. Let Li ,
Pi , and Ti be defined respectively by equations (6), (7), and (8). Then we have

Li,t+1 = Pi+1,tLi,tPi,t
−1, (9)

Ti,t+1 = Pi,t Ti,tPi,t
−1. (10)
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Thus, the functions Li and Pi define a projective zero-curvature equation with spectral
parameter for the pentagram map, and Ti is a projective Lax function with spectral
parameter, with associated function Pi .

This Lax representation appeared as [43, Theorem 2.2], where the proof is the
brute-force calculation that the matrix equations (9) and (10) follow from equations (6)
and (7). That approach requires foreknowledge of the hard-to-guess equations (6) and (7).
Below, we give a new proof that leads naturally to these formulas. We first show that
equations of the form of equations (9) and (10) must hold for some matrices Li and Pi ,
then deduce the right definitions for Li and Pi as a consequence.

This argument generalizes to other pentagram-like maps. In particular, it explains the
origin of the complicated formulas in the Lax representation of the 3D pentagram map
[24, Theorem 6.3].

Proof of Theorem 5.4. We use the hypothesis that k is algebraically closed to define the
moduli space Tn of twisted n-gons (Theorem 3.6). Without loss of generality, set t = 0.

Suppose that v ∈ Dom f . We set the notation v′ = f (v).
Define a 4-arc to be a 4-tuple of points in general position. Given any pair of 4-arcs,

there is a unique projective transformation mapping the first to the second. So, we can
define projective transformations by specifying the image of a single 4-arc. We call this
4-arc the source 4-arc and we call its image the target 4-arc. Since v ∈ Dom f , consecutive
4-tuples in v′ are 4-arcs.

For each i ∈ Z, we now define three projective transformations

�i , �′i , �i : P2 → P2

by

�i := (vi+1, vi+2, vi+3, vi+4) �→ (vi , vi+1, vi+2, vi+3),

�′i := (v′i+1, v′i+2, v′i+3, v′i+4) �→ (v′i , v′i+1, v′i+2, v′i+3),

�i := (v′i , v′i+1, v′i+2, v′i+3) �→ (vi , vi+1, vi+2, vi+3).

Then,

�−1
i+1 ◦�−1

i = �′−1
i ◦�−1

i , (11)

because both sides are projective transformations such that

(vi , vi+1, vi+2, vi+3) �→ (v′i+1, v′i+2, v′i+3, v′i+4).

We need to write the equality in equation (11) in terms of matrices, which requires
choosing bases. For each of the transformations �i , �i , �′i , we write a matrix Li , Pi , L′i
(respectively) for it, in the (unique) basis such that the given source 4-arc is located at

([1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1]).

When we rewrite equation (11) as an equality in P(Mat3(k)), we get

L−1
i P−1

i+1 = P−1
i L′−1

i . (12)
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We rearrange equation (12) to be in the form of a projective zero-curvature equation for
the pentagram map:

L′iPi = Pi+1Li .

The reversal of composition order is a consequence of the different choice of basis.
Now, we derive formulas for the matrices. For ease of notation, we just compute

formulas for L1 and P1, and the rest follow by symmetry.
Define vectors

e1 =
⎡
⎣1

0
0

⎤
⎦, e2 =

⎡
⎣0

1
0

⎤
⎦, e3 =

⎡
⎣0

0
1

⎤
⎦, e4 =

⎡
⎣1

1
1

⎤
⎦.

We wish to write a matrix in the basis e1, e2, e3 for the unique projective transformation
that takes ei to a representative e′i of the corresponding point in the target 4-arc, for each
i = 1, 2, 3, 4,. We can do this as follows.
(1) Calculate any choice of e′1, e′2, e′3 in the chosen basis as a function of the coordinates

ai , bi , ci , di .
(2) Find values μ1, μ2, μ3 such that, up to rescaling,

μ1e
′
1 + μ2e

′
2 + μ3e

′
3 = e′4.

If these are not obvious, we can find them by calculating some choice of e′4 in the
chosen basis and setting ⎡

⎣μ1

μ2

μ3

⎤
⎦ =

⎡
⎣ | | |
e′1 e′2 e′3
| | |

⎤
⎦
−1

e′4.

(3) By direct check, the following matrix has the desired property:⎡
⎣ | | |
μ1e
′
1 μ2e

′
2 μ3e

′
3

| | |

⎤
⎦.

(4) Scale the matrix in step (3) so that it is written in terms of the corner invariants xi , yi
instead of the ai , bi , ci , di . We can ease this computation by choosing a1 = b1 =
c1 = −d1 = 1, which is a choice consistent with our lift. We can also choose some,
but not all, of the other variables to be 1, by a rescaling.

First, we calculate L1
−1 and invert it to obtain L1. We can take

e′1 =
⎡
⎣0

1
0

⎤
⎦, e′2 =

⎡
⎣0

0
1

⎤
⎦, e′3 =

⎡
⎣1

1
1

⎤
⎦.

Next we write v5 in terms of v2, v3, v4. Since

v5 = − 1
d2
(a2v2 + b2v3 + c2v4),
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we can take

μ1 = a2, μ2 = b2, μ3 = c2.

Thus, up to scale,

L−1
1 =

⎡
⎣ 0 0 c2

a2 0 c2

0 b2 c2

⎤
⎦.

We want to find a matrix projectively equivalent to this one that is written in terms of
corner invariants. From Lemma 3.14, we know that the entry with a2 should be transformed
to match x0. So, dividing through by b2 and using the known values a1 = b1 = c1 = 1 and
d1 = −1, we obtain ⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 − c1c2

d1b2

a2c1

b1b2
0 − c1c2

d1b2

0 1 − c1c2

d1b2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Thus,

L1
−1 =

⎡
⎣ 0 0 −1/y3

x3 0 −1/y3

0 1 −1/y3

⎤
⎦.

We follow the same steps for P1
−1. This time we get

e′1 =
⎡
⎣b0

0
d0

⎤
⎦, e′2 =

⎡
⎣1

0
1

⎤
⎦, e′3 =

⎡
⎣ −c2

−c2 + a2

−c2

⎤
⎦,

μ1 = (a3d2 − c3b2),

μ2 = −(a3d2 − c3b2)b0,

μ3 = −(d0 − c0b0)c3.

Thus, up to scale,

P−1
1 =

⎡
⎣b0(a3d2 − c3b2) −(a3d2 − c3b2)b0 c2c3(d0 − c0b0)

0 0 (a2 − c2)(d0 − c0b0)c3

d0(a3d2 − c3b2) −(a3d2 − c3b2)b0 c2c3(d0 − c0b0)

⎤
⎦.

Dividing through by b0b2c3 and making the convenient choice c0 = 1 gives us the desired
form,

P−1
1 =

⎡
⎢⎢⎢⎢⎢⎣
−(1− x4y4) 1− x4y4

1
y3
(1− x2y2)

0 0 − 1
y3
(1− x2y2)(1− x3y3)

−x2y2(1− x4y4) 1− x4y4
1
y3
(1− x2y2)

⎤
⎥⎥⎥⎥⎥⎦.
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Taking projective inverses and using symmetry, we deduce the formulas

Li =
⎡
⎣1/xi+2 −1/xi+2 0

1 0 −1
yi+2 0 0

⎤
⎦,

Pi =
⎡
⎣ 1− xi+2yi+2 0 −(1− xi+2yi+2)

xi+1yi+1(1− xi+2yi+2) −(1− xi+1yi+1) −(1− xi+2yi+2)

0 yi+2(1− xi+3yi+3) 0

⎤
⎦.

The last step to prove the zero-curvature equation is to use the scaling invariance of the
pentagram map to bring in a spectral parameter. The map

xi �→ xi/ζ , yi �→ ζyi

commutes with the pentagram map. This map is an action of Gm on Tn. The matrices
appearing in equation (12) are functions of Tn, but we can extend them to functions
of Tn ×Gm by setting Li(v, ζ ) = Li(ζ · v) and Pi(ζ , v) = Pi(ζ · v). The projective
zero-curvature equation (12) still holds for these matrices because the pentagram map
commutes with the Gm-action. Suppressing the notational dependence on v, and rescaling
the matrices by ζ or 1/ζ as needed to get simpler formulas, we obtain the Lax
representation with spectral parameter appearing in the theorem statement.

Finally, we use the zero-curvature equation to get the Lax equation. Since Pi is
n-periodic in i,

Ti,t+1Pi,t = Li+n−1,t+1 · · · Li+1,t+1Li,t+1Pi,t

= Li+n−1,t+1 · · · Li+1,t+1Pi+1,tLi,t

...

= Pi+n,tLi+n−1,t · · · Li,t
= Pi+n,t Ti,t

= Pi,t Ti,t .

This concludes the proof of Theorem 5.4.

Remark 5.5. The Lax representation found by Soloviev differs from ours by some signs.
The matrix in place of our Li is⎡

⎣1/xi+2 −1/xi+2 0
1/ζ 0 1/ζ
−yi+2 0 0

⎤
⎦ =

⎡
⎣ 0 0 −1/yi+2

−xi+2 0 −1/yi+2

0 ζ 1/yi+2

⎤
⎦
−1

,

and the matrix in place of our Pi(z) is⎡
⎣ 1− xi+2yi+2 0 1− xi+2yi+2

xi+1yi+1(1− xi+2yi+2) 1− xi+1yi+1 1− xi+2yi+2

0 −ζyi+2(1− xi+3yi+3) 0

⎤
⎦.

This can be explained by a change of basis by diag(1, 1, −1), so there is essentially no
difference between the formulas.
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For an affine Lax representation, the natural next step is to deduce that the coefficients
of the characteristic polynomial are invariants. We have to modify this step slightly because
our Lax representation is projective.

Let Id3 denote the 3× 3 identity matrix. Choose a non-zero representative T̂0(ζ ) for
T0(ζ ) in Mat3(k[ζ±1]). We may view det(λ Id3 −T̂0(ζ )) as an element of k[Tn][λ, ζ±1].
The resulting expression is of the form

λ3 − γ1(ζ )λ
2 + γ2(ζ )λ− γ3(ζ ).

The rescaling T̂0 �→ lT̂0 induces the rescaling

l · (γ1, γ2, γ3) = (lγ1, l2γ2, l3γ3).

So, the coefficients of the γi are functions on Tn such that the scaling class of the triple
(h1, h2, h3) is invariant for the pentagram map. We can eliminate negative powers of ζ
by multiplying through by ζ n. Then we can normalize by scaling so that γ1(ζ ) becomes
monic. This puts the expression in the form

Q(λ, ζ ) ∈ k(Tn)[λ, ζ ].

Since Q is invariant under the pentagram map as a formal expression, the coefficients of
Q are rational functions on Tn which are invariant for the pentagram map. We would like
to say which terms appear in Q. This may be done with an inductive calculation using the
explicit formula for Li ; we refer to [34, Proposition 5.3] for the argument, and just state
the end result.

COROLLARY 5.6. Set the notation m = �n/2�. Then, for some Hi ∈ k(Tn) for 1 ≤ i ≤
2m+ 2, we have

Q(λ, ζ ) = λ3ζ n +
m−1∑
i=0

H1+iλ2ζ n+i−m − λ2ζ n +
m∑
i=0

Hm+i+1λζ
m−i −H2m+2.

Let

S = A2m+2
k = Spec k[h1, . . . , h2m+2].

We define

H : Tn ��� S,

v �→ (H1(v), . . . , H2m+2(v)).

The coefficients H1, . . . , H2m+2 in the expression Q(λ, ζ ) are rational functions on Tn
that are invariants of the pentagram map. Thus, the fibers of H : Tn ��� S are invariant
for the pentagram map.

6. The geometry of the spectral curve
In Corollary 5.6, we described a bivariate polynomial Q(λ, ζ ) with coefficients
H1, . . . , H2m+2 which are rational functions on Tn and invariant for the pentagram map.
In this section, we view Q(λ, ζ ) as the equation of a curve.
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We continue with the notation of Corollary 5.6. Set homogeneous coordinates
[X : Y : Z] on P2

S . When we dehomogenize, we denote the corresponding remaining
coordinates by the lowercase letters x, y, z. Thus, if we dehomogenize by setting Z = 1,
we write x = X/Z and y = Y/Z. (These are not to be confused with the corner invariants
xi , yj .)

Definition 6.1. For each n ≥ 4, we define the nth spectral curve to be the relative curve
�→ S in PNS cut out by the homogeneous polynomial

Q(X, Y , Z) = X3Yn +
m−1∑
i=0

hi+1X
2Yn+i−mZ1+m−i −X2YnZ

+
m∑
i=0

hm+i+1XY
m−iZn−m+2+i − h2m+2Z

3+n.

We may alternately view the relative curve �→ S as a family of curves indexed by S.

The spectral curve describes the eigenvalues in an algebraic 1-parameter family of linear
maps, since Q(λ, ζ , 1) equals the quantity Q(λ, ζ ) described in Corollary 5.6.

Because the defining polynomial of the spectral curve is invariant for the pentagram
map, we can think of the spectral curve itself as an invariant. In this section, we prove
some geometric properties of the spectral curve to be able to describe its Jacobian. The
results are collected in Proposition 6.2 and Theorem 6.4.

The spectral curve was defined (in a slightly different form) by Soloviev in [43] to prove
complex integrability over C; in this section, we extend that argument to any algebraically
closed field k, where char k �= 2. The argument proceeds by desingularizing a family of
curves and computing the genus of the generic fiber with the Riemann–Hurwitz formula.
Directly computing the genus of the generic fiber is difficult, so we compute the genus of
a carefully chosen special fiber, and then show that this special fiber has the same genus as
the generic fiber. As discussed in §2, our special fiber calculation fills a gap in [43].

Basic references for these techniques are as follows. For the resolution of curve
singularities, and the basic theory of zeroes and poles of rational functions on singular
varieties, see [26, Ch. 1]. For the basic theory of the Riemann–Hurwitz formula in arbitrary
characteristic, see [16, Ch. 4.2] or [40, Ch. 2].

By curve, we mean a projective, possibly singular algebraic variety of dimension 1 over
an algebraically closed field.

We prove various properties of the fibers of �→ S which hold on a Zariski dense subset
of S. Note that for any particular fiber, we may change coordinates to obtain a curve with
affine equation of the form

R(x, y) = x3yn −
m∑
i=0

Jix
2yn+i−m +

m∑
i=0

Iixy
m−i − 1,

where I0, . . . , Im, J0, . . . , Jm ∈ k. This simpler form is unique up to a choice of third
root of unity. We set

S′ = Spec k[I0, . . . , Im, J0, . . . , Jm].
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For short, we write k[I , J ] to mean k[I0, . . . , Im, J0, . . . , Jm]. We define a family of
curves �′ → S′ in P2

S′n
by the homogeneous equation

R(X, Y , Z) = X3Yn−
m∑
i=0

JiX
2Yn+i−mZ1+m−i +

m∑
i=0

IiXY
m−iZn−m+2+i − Zn+3=0.

A property of the fibers of �→ S is said to hold generically if, for all geometric points
s in some Zariski dense open subset of S, the property is true for �s . Properties of curves
which are stable under birational maps and which hold generically for fibers of �′ also
hold generically for fibers of �.

We refer to the affine plane defined by Z �= 0 as the main affine patch.
For any point s ∈ S′, we consider the special fiber �′s → Spec k. The geometry of the

curve �′s varies with s; depending on the choice of s, the special fiber may be reducible,
non-reduced, or have worse singularities and thus a lower genus than expected. The next
theorem describes the geometry of �′.

PROPOSITION 6.2.
(1) For all s ∈ S′, the only points of �′s outside the main affine patch are [1 : 0 : 0] and

[0 : 1 : 0], and these points are singular.
(2) Table 1 describes a map �′′ → �′. For generic s ∈ S′, the corresponding map

�′′s → �′s is a resolution of the singularities of �′s at [1 : 0 : 0] and [0 : 1 : 0] by
point blowups.

(3) Let

ζ : �′′s → P1

be the map induced by

�′ → P1,

[X : Y : Z]→ [Y : Z].

The image and ramification indices of the geometric points above [1 : 0 : 0] and
[0 : 1 : 0] are recorded in Table 1.

Proof. (1) To find the points that are outside the main affine patch, set Z = 0 and solve
for X and Y. The points [1 : 0 : 0] and [0 : 1 : 0] are singular by the Jacobian criterion for
smoothness.

(2) We start by desingularizing [1 : 0 : 0]. Dehomogenizing by X = 1, we obtain the
equation

R(1, y, z) = yn − J0y
n−mzm+1 − · · · − Jmy

nz

+ I0y
mz2+n−m + · · · + Imz

2+n − z3+n.

In the yz-plane, the singularity is at (0, 0), so we have prepared it for blowing up. We treat
[0 : 1 : 0] similarly. We use the standard algorithm for blowing up a point singularity in
the plane, and the results are as shown in Table 1. In characteristic 2, we have used the
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TABLE 1. A map �′′ → �′ generically resolving the singularities above [1 : 0 : 0] and [0 : 1 : 0], given in terms
of coordinate changes and local equations. We also record the geometric points above the singularities, and their
images and ramification by the map ζ .

P = [1 : 0 : 0], n odd

Coordinates y = ŷm+1ẑ, z = ŷmẑ

Equation 0 = ŷ − J0ŷẑ− · · · − Jmŷ
m+1ẑ+ I0ŷ

mẑ2 + · · · + Imẑ
2 − ŷmẑ3

Points above P O2 : (ŷ, ẑ) = (0, 0)
Image by ζ [0 : 1]
Ramification 2

P = [0 : 1 : 0], n odd
Coordinates x = x̂, z = x̂ẑ.
Equation 0 = 1− J0x̂

mẑm+1 − · · · − Jmẑ+ I0x̂
n−mẑ2+n−m + · · · + Imx̂

nẑ2+n − x̂nẑ3+n
Points above P W1 : (x̂, ẑ) = (0, 1/Jm)
Image by ζ [1 : 0]
Ramification 1

Coordinates x = x̂ẑm+1, z = ẑ.
Equation 0 = x̂3ẑm − J0x̂

2ẑm − · · · − Jmx̂
2 + I0x̂ẑ

n−m + · · · + Imx̂ẑ
n−m − ẑ

Points above P W2 : (x̂, ẑ) = (0, 0)
Image by ζ [1 : 0]
Ramification 2

P = [1 : 0 : 0], n even

Coordinates y = ŷm+1ẑ, z = ŷmẑ

Equation 0 = 1− J0ẑ− · · · − Jmŷ
mẑ+ I0ŷ

mẑ2 + · · · + Imẑ
2 − ŷmẑ3

Points above P O2, O3 : (ŷ, ẑ) = (0, ẑ0) for each of the two roots ẑ0 of Imẑ2
0 − J0ẑ0 + 1.

Image by ζ [0 : 1]
Ramification 1

P = [0 : 1 : 0], n even
Coordinates x = x̂, z = x̂ẑ

Equation 0 = 1− J0x̂
mẑm+1 − · · · − Jmẑ+ I0x̂

n−mẑ2+n−m + · · · + Imx̂
nẑ2+n − x̂nẑ3+n

Points above P W1 : (x̂, ẑ) = (0, 1/Jm)
Image by ζ [1 : 0]
Ramification 1

Coordinates x = x̂ẑm+1, z = ẑ.
Equation 0 = x̂3ẑm − J0x̂

2ẑm − · · · − Jmx̂
2 + I0x̂ + · · · + Imx̂ẑ

m − 1
Points above P W2, W3 : (x̂, ẑ) = (x̂0, 0) for each of the two roots x̂0 of Jmx̂2

0 − I0x̂0 + 1 = 0.
Image by ζ [1 : 0]
Ramification 1

separability of the polynomials Imα2 − J0α + 1 and Jmα2 − I0α + 1 to justify that there
are two roots.

(3) The images ζ(P ) and ramification indices of ζ may be determined from the local
equations in Table 1. For example, for the point above [1 : 0 : 0] when P is odd, the map
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ζ is ŷ in the given coordinates. The vanishing order of ŷ is the length of the module

k(I , J )[ŷ, ẑ](ŷ,ẑ)

〈ŷ, ŷ − J0ŷẑ− · · · − Jmŷn−mẑ+ I0ŷmẑ2 + · · · + Imẑ2 − ŷmŵ3〉
∼= k(I , J )[ẑ](ẑ)

〈Imẑ2〉 .

Evidently this module has length 2, so ŷ vanishes to order 2. So ζ has a zero there, and the
ramification index is 2.

Definition 6.3. We give names to certain geometric points on �′′. These may be thought
of as sections of �′′ → S in the case of points defined over S, or multisections in the case
of points not defined over S.
• Odd n: We name the preimages of [0 : 1] by ζ as follows. The point for which Z �= 0

is O1, and the point above [1 : 0 : 0] is O2. The points above [0 : 1 : 0] are W1 and
W2, as defined in Table 1. (Note that O1 is not in Table 1 because it does not lie above
the line Z = 0.)

• Even n: There are three geometric points which are preimages of ζ . The point where
Z �= 0 is O1, and the points above [1 : 0 : 0] are O2, O3. The points O2 and O3 are not
defined over the base S′. Fixing an algebraic closure of k(I , J ) allows us to give the
names O2 and O3 to the points above [1 : 0 : 0]. The points W1, W2, W3 are defined
similarly according to Table 1, and again W2 and W3 are not defined over the base S′.

THEOREM 6.4. Assume char k �= 2. For generic s ∈ S, the curve �s over k is integral, and
has geometric genus

g(�s) =
{
n− 1, n odd,

n− 2, n even.

We prove the theorem for �′s , and the result for �s follows immediately because
geometric genus is a birational invariant. We split the proof of Theorem 6.4 into lemmas,
which make up the remainder of this section.

The idea of the proof is to compute the genus of a special fiber. We have to choose
the special fiber judiciously, because (roughly speaking) if the fiber we choose has worse
singularities than the generic fiber, then the genus will be lower.

Definition 6.5. We call �′s a good fiber if it satisfies all of the following conditions.
(1) The k-scheme �′s is integral.
(2) The singularities at [1 : 0 : 0] and [0 : 1 : 0] of �′s are resolved by �′′s → �′s .

Equivalently, the following non-degeneracy conditions hold:

Im �= 0, Jm �= 0, J0
2 − 4Im �= 0, I0

2 − 4Jm �= 0.

(3) The curve �′′s is non-singular in the main affine patch. Equivalently, there are no
singularities of �′s in the main affine patch.

The next lemma shows that the generic curve’s genus can be computed by looking at a
good fiber, because a good fiber’s singularities are as mild as possible for the family �′.

LEMMA 6.6. Suppose that a good fiber �′s exists. Then generically, the fibers of �′ have
the same genus as �′s .
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Proof. Integrality is an open condition, because the locus of reducible polynomials of a
fixed degree is an algebraic subset of the space of all polynomials of that degree. Thus,
since �′s is integral, so is the generic fiber of �′.

We claim that for generic s′, we have

g(�′s) ≥ g(�′s′).

Since geometric genus is a birational invariant, it suffices to show

g(�′′s ) ≥ g(�′′s′).

For generic s′, the singularities of �′
s′ at [1 : 0 : 0] and [0 : 1 : 0] have the structure

described in Table 1. Denote arithmetic genus by ga . By the good fiber hypothesis,
g(�′′s ) = ga(�

′′
s ). Observe that �′s and �′

s′ are plane curves with the same degree, and
hence the same arithmetic genus. Combining this with the fact that the singularities of �′s
and �′

s′ at [1 : 0 : 0] and [0 : 1 : 0] have the same structure, we find

ga(�
′′
s ) = ga(�

′′
s′).

For any curve, the arithmetic genus is at least the geometric genus, so

ga(�
′′
s′) ≥ g(�′′s′).

Putting it all together proves the claim:

g(�′s) = g(�′′s ) = ga(�
′′
s ) ≥ ga(�

′′
s′) ≥ g(�′′s′).

Since all the curves in �′ have the same degree, the family �′ is flat, so the function
S′ → Z≥0, s �→ g(�′s) is lower-semicontinuous in the Zariski topology. Therefore, the
genus for generic s′ ∈ S must be exactly g(�′s).

The next lemma describes the essential idea of the strategy for calculating the genus of
a good fiber. To state it, we need more notation.

Consider the map ζ : �′′s → P1 from Proposition 6.2. Let � be the sheaf of relative
differentials on �′′s , where the structure map is ζ .

For any point P ∈ �′′s , we denote the length of � at P by len(�P ). For short, we also
write ω(P ) = len(�P ).

We denote the vanishing order of a function � ∈ K(�′′s ) at P by ordP �. If � has a pole
at P, then ordP � is negative.

We use the notation

Rx = ∂R

∂x
, Ry = ∂R

∂y
.

Note that the functions Rx , Ry are computed by dehomogenizing R so that Z = 1.
We also set the notation P∞ for the set of points of �′′s above the line Z = 0.

• Odd n: P∞ = {O2, W1, W2}.
• Even n: P∞ = {O2, O3, W1, W2, W3}.
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LEMMA 6.7. If �′′s is a good fiber, then

g(�′′s ) =
1
2

(
−4−

∑
P∈P∞

ordP Rx +
∑
P∈P∞

ω(P )

)
.

Proof. Because �′′s is a good fiber, it is a non-singular, integral curve. Further, since �′′s
is a good fiber, we have Im �= 0. Working in dehomogenized coordinates x, y, we see by
inspection that y is a uniformizer at

(x, y) = (1/Im, 0) ∈ �′s .
Therefore, ζ is separable. So the Riemann–Hurwitz formula applies to ζ . Since ζ is
degree 3, the Riemann–Hurwitz formula states

2g(�′′s )− 2 = (−2) · 3+
∑
P∈�′′s

ω(P ).

Breaking apart the sum and rearranging this formula gives

g(�′′s ) =
1
2

(
−4+

∑
P �∈P∞

ω(P )+
∑
P∈P∞

ω(P )

)
.

We compute the first sum another way. Suppose that P �∈ P∞. Then P is in the main affine
patch. Working in dehomogenized coordinates x, y, we can compute the module of relative
differentials at P explicitly:

�P =
(

k〈dx, dy〉
dy, Rxdx + Rydy

)
P

∼=
(
k〈dx〉
Rxdx

)
P

.

Thus,

ω(P ) = ordP (Rx).

Then, since the zeros and poles of a rational function have total vanishing order 0, we get∑
P �∈P∞

ω(P ) = −
∑
P∈P∞

ordP Rx .

This completes the proof of Lemma 6.7.

Now we come to the last step, which takes some luck. In each characteristic, we need
to find a good fiber and compute the vanishing order ordP Rx and ω(P ) for each point
P ∈ P∞. We split the job into cases depending on the characteristic and n.

For the remainder of the section, we set notation for the quantity which we claim is the
expected genus,

g(n) =
{
n− 1, n odd,

n− 2, n even.

LEMMA 6.8. Suppose char k �= 2 and char k � n. The curve �′s cut out by

R(x, y) = x3yn − x2yn − x − 1 = 0 (13)
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TABLE 2. Calculation of the genus of �′s .

n odd

P ω(P ) ordP Rx

O2 1 0
W1 0 −n
W2 1 −n

n even

P ω(P ) ordP Rx

O2 0 0
O3 0 0
W1 0 −n
W2 0 −n/2
W3 0 −n/2

is a good fiber, and its genus is g(n). This fiber corresponds to s ∈ S ′ defined by the
coordinates Im = −1, Jm = 1, and all other Ii , Ji = 0.

Proof. First, we check the three conditions for �′s to be a good fiber.
(1) Since char k �= 2, the Eisenstein criterion applies with reference to the ideal (x + 1),

so �′s is integral.
(2) Since char k �= 2, the quantities Im, Jm, I0

2 − 4Jm, J0
2 − 4Im are all non-zero. (3)

We claim that there are no singularities in the main affine patch. This follows from the
Jacobian criterion for smoothness. We need to show there are no simultaneous solutions
(x, y) of

R(x, y) = x3yn − x2yn − x − 1 = 0,
Rx(x, y) = 3x2yn − 2xyn − 1 = 0,
Ry(x, y) = n(x3 − x2)yn−1 = 0.

Since by assumption n �= 0 in our characteristic, we deduce from Ry = 0 that either
z = 0, k = 0, or k = 1. Looking at Rx , only the last case is possible, and in that case,
yn = 1. However, plugging this information into R, we have −2 = 0, which is false since
char k �= 2. Next, we compute the quantities ω(P ) and ordP Rx for each P ∈ P∞. We
list the results of the calculation in Table 2. To compute these quantities, first we compute
ω(P ) for each P ∈ P∞. We can inspect the equations in Table 1 to deduce the ramification
index e(P ) at each P ∈ P∞, and we find that e(P ) ≤ 2 for each P. So, by the assumption
that char k �= 2, the ramification at each P is tame. So ω(P ) = e(P )− 1.

Next, we compute ordP Rx for each P ∈ P∞.
• Let P = O2. First, we calculate

Rx = 3x2yn − 2xyn − 1.

We homogenize, then dehomogenize by X = 1. We obtain the local equation

Rx = 1
z2+n (3y

n − 2yn−mz1+m − z2+n).

We blow up (y, z) = (0, 0) according to the formula in Table 1. We compute the equation
of Rx in the coordinates ŷ, ẑ. We split into cases for n odd and even. Suppose that n is odd;
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then

Rx = 3ŷ − 2ŷm+1ẑ− ẑ2

ẑ2 .

Because ordP is a valuation, if one of these terms has smaller order than all the others,
then ordP Rx is computed by the order of that term. However, in this case, there are two
terms of least order:

ordP (ŷ/ẑ) = ordP (1) = 0.

We eliminate one term by adding the appropriate multiple of R; this leaves one term, 2, of
minimal order 0. Then, since char k �= 2, the vanishing order at P is 0.

However, suppose that n is even; then

Rx = 3− 2ŷmẑ− ẑ2

ẑ2 .

The coordinates of O2, O3 are (ŷ, ẑ) = (0, ±1), so we can see directly by plugging in
values that, since 2 �= 0, the function Rx has order 0 at O2, O3.

• We compute the order at P = W1. The equation of Rx in x̂, ẑ is

Rx = 3− 2ẑ− x̂n

x̂nẑ2+n .

The numerator atW1 = (0, 1) is 1. The order of the denominator is computed by examining
the local equation for R. We find that ẑ has order 0, and x̂ has order 1, so ordP Rx = −n.

• The argument for W2, W3 uses the same techniques, so we omit it.
Finally, we plug the quantities in Table 2 into Lemma 6.7.

LEMMA 6.9. Suppose char k �= 2 and char k | n. The curve �′s cut out by

R(x, y) = x3yn + x2yn−1 − x2yn + x − 1 (14)

is a good fiber, and its genus is g(n). This fiber corresponds to s ∈ S ′ defined by the
coordinates Im = 1, Jm−1 = −1, Jm = 1, and all other Ii , Ji = 0.

Proof. The structure of the proof is identical to that of Lemma 6.8, but the computations
are different. First, we check the three conditions for �′s to be a good fiber.

(1) We claim �′s is integral. If it were not, thenR(x, y)would factor in k[x, y], and since
R is cubic in x, there would be a factor linear in x. Since �′s contains no points of the form
y = 0 in the main affine patch, this line would be of the form x = c for some constant
c ∈ k. However, this cannot happen, since if R(c, y) were identically 0, then examining
coefficients, we would have both c = 0 and c = 1.

(2) Since char k �= 2, the quantities Im, Jm, I0
2 − 4Jm, J0

2 − 4Im are all non-zero.
(3) We claim that �′s is non-singular in the main affine patch. To see this, observe that a

singularity (x, y) would satisfy

Ry(x, y) = −x2yn−1 = 0,
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since char k | n. So if (x, y) is a singularity, then x = 0 or y = 0. However, for such points,
we have

Rx(x, y) = 3x2yn − 2xyn−1 − 2xyn + 1 = 1 �= 0.

The values of ω(P ) and ordP Rx coincide with the numbers in Table 2. The computa-
tion is nearly identical, so we omit it.

Remark 6.10. We briefly explain how the polynomials of equations (13) and (14) were
found. The first is

R(x, y) = x3yn − x2yn − x − 1 = 0.

We tried various polynomials that had few terms and this was the simplest one that we
found that had small genus. However, this polynomial is not suitable for the case when the
the characteristic of k divides n, because then the y-derivative Ry(x, y) is identically 0,
and the Jacobian criterion reveals extra singularities in the main affine patch. Thus, for this
case, we use the polynomial

R(x, y) = x3yn + x2yn−1 − x2yn + x − 1.

Characteristic 2 is more difficult than the others because a hypothesis in the definition of a
good fiber (Definition 6.5) reduces to

I0, Im, J0, Jm �= 0

in characteristic 2. Thus, a good fiber needs to have at least six monomials in its defining
equation, which makes calculating the singularities with the Jacobian criterion very
complicated. This is the reason for the hypothesis on characteristic in Theorem 1.4.

Finally, we collect these results to prove Theorem 6.4.

Proof of Theorem 6.4. Combine Lemmas 6.6, 6.8, and 6.9.

7. The spectral transform
We now describe the construction of the direct spectral transform, the birational map

δ : Tn ��� A

of Theorem 1.4. The idea is that a twisted n-gon v can be reconstructed from the
Lax matrices Ti(v, ζ ), and matrices can be reconstructed from their eigenvalues and
eigenvectors, at least generically. The eigenvalues correspond to the three points of the
spectral curve �H(v) above ζ . Each eigenvalue has an associated eigenvector (up to scale),
and these fit together into a line bundle on �H(v).

In fact, Soloviev’s argument over C in [43] goes over to our setting with only cosmetic
changes, so we just formulate the statements we need and appeal to [43] for the proofs.

Let �→ S be the spectral curve (Definition 6.1). The map �→ S is projective, flat,
and finitely presented, since it is a family of projective plane curves of the same degree. By
Theorem 6.4, the fibers are integral schemes of dimension 1 over an algebraically closed
field. Then by [5, Theorem 8.2.1], the relative Picard scheme Pic�/S exists and has the
structure of both a k-variety and an S-scheme.
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The map H : Tn ��� S gives a dense, Zariski open subset T ◦n ⊂ Tn the structure of
an S-scheme. For each v ∈ T ◦n , the special fiber �H(v) is a degree-3 curve. The points
(λ, ζ ) of �H(v) in the main affine patch parameterize eigenvalues λ of T0(v, ζ ). The map
ζ : �H(v)→ P1 is generically 3-to-1, so there is a unique λ-eigenvector ψ (up to scale)
of T0(v, ζ ) associated to a generically chosen point (λ, ζ ) on �H(v). The eigenvector’s
coordinates are rational functions of λ, ζ , and v. Because ψ varies algebraically in λ and
ζ , and �H(v) is a projective curve, we can extend ψ in a unique way to a line bundle on the
normalization. Since T ◦n is an S-scheme, the family of line bundles ψ is represented by a
T ◦n -point on Pic�/S . So there is a corresponding map

� : T ◦n → Pic�/S .

LEMMA 7.1. For any algebraically closed field k and for generic v in T ◦n , the line bundle
ψH(v) has degree g(n)+ 2.

Proof. Over C, this follows from the fact that the ramification points of ζ on � are
generically simple; a proof is given in [43, Lemma 3.4]. We extend this to any characteristic
by observing that the degree of a line bundle defined over Z is preserved by base change.
More formally, let SZ = A2m+2

Z
, and consider the subscheme � of P2

SZ
cut out by the affine

equation Q(λ, ζ ) = 0 defining the spectral curve. Define (T ◦n )Z similarly. The scheme
Pic�Z/SZ exists, and the eigenvector bundle is a map from G2n

m to Pic�Z/SZ . Since the
eigenvector bundle has degree g(n)+ 2 for C-points, it must send the generic point of
(T ◦n )Z into Picg(n)+2

�Z/SZ
.

Definition 7.2. For each n ≥ 4, we define a relative abelian variety A, the spectral data,
and a rational map

δ : Tn ��� A,

the spectral transform. The definitions of A and δ depend on the parity of n, as follows.
• Odd n: Let A = Picn+1

�/S , and let δ = �. The points O1, O2, W1, W2 were defined as
sections of �′ → S′; see Definition 6.3. By abuse of notation, we let O1, O2, W1, W2
denote the corresponding sections of �→ S. The morphism δ on T ◦n extends to a
rational map

δ : Tn ��� A.

• Even n: In this case, we need to mark the points O2, O3, W2, W3 appearing in Table 1.
Extend the base S by adjoining a root x̂0 of x̂2

0 − h1x̂0 + hn and a root ẑ0 of hn+1ẑ
2
0 −

hm+1ẑ0 + 1. (These correspond to the roots of the polynomials Jmẑ
2
0 − I0ẑ0 + 1

and Imx̂
2
0 − J0x̂0 + 1 appearing in Table 1.) This defines a generically 4-to-1 cover

Smark → S, and by pullback, we define a family �mark → Smark. The members of
this family are spectral curves with a marking of the points O2, O3 and W2, W3. We
define

A = Picn
�mark/Smark .

The latter relative Picard scheme exists by the same condition we used for Pic�/S .
Recall that xi , yi denote the corner invariants, which are coordinates on Tn. The map
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H factors through Hmark : T ◦n → Smark, by choosing

x̂0 =
q∏
i=0

x2i , ẑ0 =
q∏
i=0

y2i .

So T ◦n has the structure of an Smark-scheme. Define

δ : T ◦n → Pic�mark/Smark

to be the map induced by pulling back �. Then δ defines a rational map

δ : Tn ��� Pic�mark/Smark .

THEOREM 7.3. Assume that char k �= 2. Then the spectral transform δ : Tn ��� A of
Definition 7.2 is a birational map.

Proof. The construction of the rational inverse of δ, the inverse spectral transform, is
carried out over C in [43, §3.2]. It runs for several pages and works almost verbatim for
our setting. The structure of the argument over C is as follows. First, describe the divisor
of ψH(v) on �H(v), for generic v, by an explicit calculation of the vanishing order for each
point in P∞. Second, the genus of the spectral curve (for generic s ∈ S) is g(n)+ 2, so the
Riemann–Roch theorem can be used to show that there is only one such divisor in each
linear equivalence class. Third, show that a Lax matrix is determined by the data of its
eigenvalues and eigenvector divisor.

Now we adapt the argument to the field k. For the first step, the divisor calculations
are the same for any algebraically closed field k, by inspection of the (many) formulas in
[43, Appendix]. Note that the divisions by two that appear in this argument are not used
in the divisor calculations, but rather to construct the universal symplectic form, so they
are not relevant to the present argument. The limits which appear in the calculation are
just the leading terms appearing in certain Laurent expansions, so these calculations are
all algebraic. We need to work with corner invariants xi , yi instead of ab-coordinates, but
we get the same results.

For the second step, the genus of the generic spectral curve is g(n) if char k �= 2, by
Theorem 6.4.

The third step, the reconstruction of the Lax matrix, is algebraic in nature and makes
sense for any algebraically closed base field.

While the genus of the spectral curve �s for generic s ∈ S is g(n)+ 2 by Theorem 6.4,
it does not follow that the genus of �H(v) for generic v is g(n)+ 2. In fact, there are loci
in S that correspond to spectral curves of lower genus, such as the image of H by the
subset of Tn consisting of closed polygons. One way to resolve this issue is to show that
the pentagram invariants (the coordinates of H) are algebraically independent, so H is
dominant; this was done over C in [37]. The argument we use here constructs an explicit
birational inverse for δ. Comparing the dimensions of T ◦n and A, we obtain algebraic
independence of the pentagram invariants as a corollary.
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COROLLARY 7.4. The invariants of f are algebraically independent over any field k for
which char k �= 2.

Finally, we describe the effect of the pentagram map f after birationally identifying Tn
with A via δ.

THEOREM 7.5. Let k be an algebraically closed field, and assume char k �= 2.
• Odd n: Let

τ : A→ A

denote translation by the section [−O1 +W2] ∈ Pic0
�/S . Then as rational maps,

f = δ−1 ◦ τ ◦ δ.

• Even n: Let

τ : A→ A

denote translation by the section [−O1 +W2] ∈ Pic�mark/Smark . Let ι be the map on A
induced by the involution on Smark interchanging the marked roots. Then as rational
maps,

f = δ−1 ◦ τ ◦ ι ◦ δ.

Proof. The proof is carried out over C in [43, §4]. The same argument works without
changes over any algebraically closed field for which the result of Theorem 7.3 holds, again
making the necessary change of replacing ab-coordinates with corner invariants.

We now have the pieces of our main theorem.

Proof of Theorem 1.4. Theorems 3.6, 7.3, and 7.5.

We end this section with an application of Theorem 7.5 to arithmetic complexity,
partially confirming an empirical observation made in [25, §5]. Let k = Q̄, and let

hWeil
Tn : Tn(Q̄)→ R

be a (logarithmic) Weil height function on Tn relative to some chosen divisor; see [17]
for background. In [25, Figure 3], it is observed that the growth of hWeil

Tn appears to be
polynomial. In fact, for sufficiently generic polygons, the height growth is linear.

COROLLARY 7.6. Let n ≥ 4, and let v ∈ Tn(Q̄) be a twisted n-gon defined over Q̄ that is
in the domain of δ and the image of δ−1. There is a constant C = C(v) > 0 depending
on v, such that, for all t ∈ N such that f t (v) is defined, we have

hWeil
Tn (f t (v)) ≤ Ct .

Proof. First, assume n is odd. Let A be the fiber of A→ S containing δ(v). According to
Theorem 7.3, there exists a point a ∈ A such that, for any twisted n-gon w with δ(w) ∈ A,
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we have

f (w) = δ−1(δ(w)+ a).

By functoriality of Weil heights, the pullback of hWeil
Tn to A is a Weil height on A, which we

denote hWeil
A . Thus, for all t ∈ N such that f t (v) is defined, we have

hWeil
Tn (f t (v)) = hWeil

A (δ(v)+ ta).

The growth of the right side is well known to be at most linear in t. For completeness, we
give the argument here. Since A is an abelian variety defined over Q, it admits a canonical
height ĥA : A→ R; see [17, Ch. B.5] for all the properties we use. There exists a constant
C0 such that, for all a0 ∈ A, we have

|ĥA(a0)− hWeil
A (a0)| ≤ C0.

Further, for any m ∈ N,

ĥA(ma) = mĥA(m).

Finally, the parallelogram law implies that there is a constant C1 independent of w such
that, for all a0 ∈ A, we have

hWeil
A (δ(v)+ a0) ≤ 2hWeil

A (a0)+ C1.

Thus,

hWeil
A (δ(v)+ ta) ≤ 2hWeil

A (ta)+ C1

≤ 2(ĥA(ta)+ C0)+ C1

≤ 2t (ĥA(a)+ C2)

for some sufficiently large constant C2, completing the proof for n odd.
Now let n be even. The proof above shows that the height growth of the second iterate

f 2 is linear. Since the growth is linear for the orbits of f 2 starting from both v and f (v), the
orbit of f starting at v also has linear growth; just take the larger of the two constants.

8. A collapse conjecture for the pentagram map over finite fields
Theorem 1.4 shows that the same algebro-geometric structure underlies the pentagram map
over various fields. However, the implications for the dynamics over C and F̄p could not
be more different. In this section, we sketch an argument that a randomly chosen twisted
polygon in F̄p, upon iteration, is likely to enter the degeneracy locus of the pentagram map.
Geometrically, this corresponds to some iterate of the map being a degenerate polygon.
This section may be read independently of the proof of Theorem 1.4.

Definition 8.1. Given a rational map φ : V ��� V , let Iφ ⊂ V denote the indeterminacy
locus of φ. Given N ∈ N, if v ∈ IφN , we say the Nth iterate ofφ at v is undefined and write
formally

φN(v) = ∗.
Otherwise, the point φN(x) is the Nth iterate of x.
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The orbit of a point v ∈ V is the set of iterates of v, valued in V ∪ {∗}. We also use the
term orbit to refer to the sequence of iterates of v, rather than the set they form.

A preperiodic point is a point v such that, for some values M �= N in N, the iterates
φM(v) and φN(v) are defined and φM(v) = φN(v). A periodic point of period N is a
point v such that φN(v) = v.

Note that, if we were to use the inductive definition of orbit

φ0(v) = v, φN+1(v) = φ(φN(v)),

then each orbit would terminate after hitting the indeterminacy locus. Definition 8.1 makes
it possible, in certain cases, to talk about the behavior of an orbit even after meeting the
indeterminacy locus.

Example 8.2. Consider the Cremona involution on P2. In homogeneous coordinates, the
map is defined by

φ : P2 ��� P2,

[X : Y : Z] �→ [YZ : XZ : XY ].

Since φ2 is the identity, every point is periodic with period 1 or 2. The point v = [1 : 0 : 0]
is in Iφ , and

Oφ(v) = v, ∗, v, ∗, . . . .

Let w ∈ P2 be any point such that X = 0 and Y , Z �= 0. Then,

Oφ(w) = w, v, w, v, . . . .

Thus, different choices of w give orbits which pass through the same point v but then
‘remember’ information from earlier in the orbit.

Our definition of orbit, Definition 8.1, is unusual at first glance, but it is well suited for
the algebraic dynamics of rational maps, as we now explain.

In real and complex dynamics, it is common to restrict the domain so that a rational
map φ : V ��� V becomes a function, set theoretically. This means throwing away all
points with an iterate in Iφ . We call the remaining subset the dynamical domain, denoted
DynDom(φ). Formally, writing φ−N for the N-fold inverse image,

DynDom(φ) := V \
∞⋃
N=0

φ−N(Iφ).

Over R and C, if φ is dominant, then since Iφ has measure 0, we end up deleting a set
of measure 0 to obtain DynDom(φ). This leaves a nice measure space on which to study
the generic dynamics of the system.

Over countable algebraically closed fields, such as Q̄ and F̄p, there is a potential
problem in setting up the dynamical domain: a countable union of proper subvarieties
can contain all the points of the domain. However, it turns out that the dynamical domain
is never empty over F̄p. By work of Hrushovski, DynDom(φ) is Zariski dense in V; see
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[1, Corollary 2]. Nevertheless, on the level of points, the dynamical domain could still be
very small. To measure the size of the dynamical domain, one can study the fraction of
orbits which degenerate while going up a tower of finite fields.

In the survey of arithmetic dynamics [3], Conjecture 18.10b states that the dynamical
domain is large in the sense that, for any rational map φ : Pn ��� Pn over Fq ,

lim
r→∞

# DynDom(φ) ∩ Pn(Fqr )
#Pn(Fqr )

= 1.

However, computer experiments and Theorem 1.4 suggest that the pentagram map is a
counterexample.

Conjecture 8.3. Let p be a prime, and let f denote the pentagram map on the moduli space
of twisted n-gons over F̄p. Then,

lim
r→∞

# DynDom(f ) ∩ Tn(Fpr )
#Tn(Fpr )

= 0.

From the formulas for the pentagram map in Proposition 4.2, homogenizing via
the scaling invariance, one obtains an explicit map φ : P2n−1 ��� P2n−1 with the same
property.

If we are right about Conjecture 8.3, then the dynamical domain is badly behaved over
finite fields, similar results might hold for other discrete integrable systems. However, our
main theorem shows that a birational change of domain can almost completely remove
the dynamical indeterminacy of the map. The situation here is reminiscent of the notions
of good reduction versus potential good reduction in arithmetic dynamics. It would
be interesting to see whether more general maps admit conjugacies that improve their
dynamical domains.

8.1. Plausibility argument. We now explain how Theorem 1.4 provides heuristic
evidence for Conjecture 8.3.

For simplicity, let n be odd. Let S be the base of the family A of abelian varieties
in Theorem 1.4. Fix p and consider various powers q = pr . Each Fq -point of S gives
us an f -invariant subvariety of Tn defined over Fq . Some of the Fq -points of Tn belong
to invariant subvarieties defined over smaller finite fields than Fq , but we claim these
are relatively rare. Let q = pr . For each proper subfield Fp! of Fq , we see O(p(n+1)!)

members of A defined over Fp! , each containing O(p(n−1)r ) points over Fq . However,
these make up only a small fraction of the O(p2nr ) points in Tn(Fq).

The pentagram map is undefined at a point if the construction of the image polygon
results in a degenerate n-gon; this occurs if some set of points of the form vi , vi+1, vi+2 or
vi , vi+2, vi+4 are collinear.

Let A be a member of A defined over Fq . We claim almost all the Fq -points eventually
hit If ∩ A. To see this, observe that the degeneracy locus has codimension 1, so it should
cut a codimension 1 subset out of each invariant fiber. So If ∩ A contains O(1/q) of the
Fq -points of A. The group of points of a random Jacobian over Fq is usually close to being
cyclic, so the order of a random translation on a random Jacobian is close to the order of
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the whole group. Thus, tracking the motion on the Jacobian, A(Fq) should be roughly one
orbit under f, so hitting a degeneracy point is highly likely.

To formalize the above argument, some substantial work would be needed to understand
the intersections If ∩ A, to understand the randomness of the Jacobians and the transla-
tions, and to make sure that the degeneracy locus is not collapsed by δ.
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