CONILPOTENCY AND WEAK CATEGORY
C. S. HOO

Let f: X — ¥V be a map and let ¢': ¥ —QZY be the usual embedding.
Then we prove the following results.

TureoreM 1. cat f = cat(e’f), wcatf = wcat(e’f) if Y s an H-space.

THEOREM 2. conil f = w Z cat(e’f) £ Z wcat(e’f) = w cat(ef), where 2 is
the suspension fumctor. If we take X =Y and f = lx, this result yields
conil X < wcateé', a result due to Ganea, Hilton, and Peterson (4).

THEOREM 3. Suppose that ¥ is (m — 1)-connected and
dim X =< 2m(conil f + 1) — 2.
Then conil f = w = cat(e’f) = = wcat(ef) = w cat(ef).

THEOREM 4. Suppose that Y is (m — 1)-connected, where m = 2. Then if
dimY £ m(conil ¥V 4+ 2) — 2, wehavecat ¥ = conil ¥ = wcate = wcat Y.

THEOREM 5. nilf £ 1 if and only if feV: ZQX V 2QX — V extends to
QX X 20X, where e: QX — X is the projection.

In this paper we shall work in the category .7 of spaces with base point and
having the homotopy type of countable CW-complexes. All maps and homo-
topies shall be with respect to base points, and for simplicity we shall use the
same symbol for a map and its homotopy class. Given spaces X, ¥ we denote
the set of homotopy classes of maps from X to ¥V by [X, Y]. We have an
isomorphism 7: [ZX, V] — [X, QY], where ¥ and Q are the suspension and
loop functors, respectively. We denote 7(1sx) by ¢’ and +~'(lgx) by e.

1. For convenience, we recall some notions from Peterson’s theory of
structures (5). We shall follow the definitions and notation of (2). Let ¥
be a category. By a right structure # over & we mean (R, P, T'; d, j), where
R, P, and T are covariant functors from % to 7, d is a natural transformation
from R to P, and j is a natural transformation from I" to P. Given an object
X of €, we say that X is #-structured if there exists a map ¢: RX — I'X
such that j(X)¢ ~ d(X). We may assume that j is a natural fibration. Given
a right structure £ = (R, P, T; d, j) over €, we have a right structure
S# = (IR, 2P, 2T; 2d, Zj) over ¥, where I is the suspension functor.
Clearly, if X ¢ % can be %#-structured, it can be Z%-structured. Given a
category %, we have a category %2 of pairs. An object of %2 is a map
fi X — Y of &, and given objects f: X1 — X, g: V1 — ¥V, of ¥2, a map
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(u, v): f— g is a pair of maps u: X1 — Vi, v: X, — ¥, such that gu = of.
We have covariant functors Do, D;: €2 — € given by Do(f) = ¥, Di(f) = X,
where f: X — Y. Furthermore, given (u, v): f— g, we have Do(u, v) = v,
Di(u,v) = u. We have a natural transformation G: D; — D, given by
G(f) = f, where f € ¥% Given a right structure system # = (R, P, T;d, j)
over ¥, we have a right structure system

R? = (RDy, PDy, TDy; (dDy) (RG), jDo)

over €. Given an object f € €2, we shall say that f is %-structured if
f is Ar-structured. It is easily seen that if f: X — ¥ is an object of €2, and
X is A-structured or Y is #-structured, then f is #-structured.

Let Z = (R, P, T; d, ) be a right structure over ¥. We may consider
j: T'— P as a natural fibration. Let g: P — Q be the cofibre of j and let
Juw: Tw — P be the fibre of ¢. Then we have an associated weak structure
Ry = (R, P, Ty; d, jo) over €. If X € ¥, we say that X can be weakly
A-structured if X can be A,-structured. It is easily seen that if X € ¥
can be #-structured, then it can be weakly % -structured, and that X can be
weaklyv #-structured if and only if ¢(X)d(X) =~ *.

We now consider the #-cat structure ¢, over.Z . We have:

n+1
%n = <Idyn y le Avj) y
i=1

where Id is the identity functor of 7, II%%] is the cartesian product functor,
T is the ““fat wedge' functor, A is the diagonal natural transformation, and
7 is the natural transformation induced by the inclusion of the fat wedge into
the cartesian product. Thus, given a space X, cat X = » if there is a map
¢: X = T:1(X,...,X) such that j¢ ~ A: X — X**1, Givena map f: X — ¥,
we have catf = n if there exists a map ¢: X — I'1(Y,..., V) such that
jo >~ Af: X — Y™+ Furthermore, wcatf = »n if gAf~ *, where
g Vi ALY

is the projection onto the smash product. Similarly, 2 wcatf < » if and
only if there exists a map ¢: TX — 2T, (Y) such that

(Zju)d ~ S(Af): =X — SV,

It is easily seen that 2w catf = wcatf < catf. Furthermore, w 2 catf = »
if and only if Z(gAf) =~ %, and hence w Z catf < 2 wcatf. Finally, given
spaces X, Y and a map f: X — ¥V, we have an H-map Zf: ZX — Z7V. We
shall write conil f for conil Zf; see (1) for definitions. We observe that in the
above if we take f = identity map, then the structures for f are just the
structures for the space involved.

2. Letfi: X — YV, g: Y — Z be maps. Then it is easily seen that
cat(gf) < min{catf, cat g} and w cat(gf) < min{w catf, w cat g}.
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TrEOREM 1. Let f: X — Y be a map, where Y is an H-space. Then cat f =
cat(e’f), wcatf = wcat(e'f), where ¢’: ¥ — QZY is the embedding.

Proof. We need only show that cat f < cat(¢'f), wcatf < w cat(e’f). Since
Y is an H-space, there is a map v: @2V — ¥ such that ye’ >~ 1y. Then
cat f = cat(ye'f) < cat(e’f) and wcatf = w cat(ye’f) = w cat(ef).

THEOREM 2. Let f: X — Y be a map. Then
conil f = w Z cat(e’f) < = w cat(e’f).

Proof. The fact that w = cat(e’f) < = w cat(e’f) follows from the definition
of these structures. We need only show that conil f = w Z cat(e’f). Suppose
that w 2 cat(¢’f) < n. Then we have:

n+1
Z(gAe'f) ~#*:ZX — E( A QEY) .
i=1
Let ¢: Y — V%11 =¥ be the cocommutator map of weight (# 4 1) for = V.
Then we can form a map é&: Y"1 — Q(V2E1 2V) such that @A = (¢);
see (4). Since X (gAe'f) >~ *, applying = we have Q2 (gA)e'f >~ . Consider the
following diagram, where each square is homotopy-commutative:

X
I A et
yS oy 4, A v
i=1
le' e le’
n+1
QY —— oz (V) — 92( A 1/)
QZA Q=g i=1

We then have that ¢’qAf >~ . Using (4, Lemmas4.1,and 4.2;), it follows that
¢'Af >~ *, that is, 7(¢’)f >~ *. Hence, ¢'(Zf) >~ *. Hence, conil f < n. This
proves that conil f < w 2 cat(e’f). The proof that w = cat(e’f) =< conil f is
exactly the same, using again (4, Lemmas 4.1, and 4.2;).

Remark. 1f we take f = 1y, we have conil X = w Zcate’ < Zwcate =
wcate = cate'. In (4), it is shown that conil X < w cate’. Our paper is
motivated by an attempt to obtain a suitable modified form for the dual of
Stasheff’s criterion; see (4; 6). The exact dual of Stasheff’s criterion would
read: conil X = 1 if and only if cate’ = 1. This is false, as shown by an

example in (4).

THEOREM 3. Let f: X — Y be a map, and let 'V be (m — 1)-connected. If
dim X = 2m(conil f + 1) — 2, then conil f = w I cat(e’f) = = wcat(ef) =
w cat(e’f).

Proof. We need only show that w cat(e’f) = conil f under the restriction
on dim X. Suppose that conil f £ 7. Then ¢/ (Zf) ~ , where¢’: 2V — V2iisV
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is the cocommutator map of weight (# + 1) for £¥. Using the map ¢’ above
such that ¢’A = 7(¢’), we then have that ¢ Af ~ . Using (4, Lemma 4.2;)
and the same diagram as in Theorem 2 above, we have that Z(gAe'f) ~ *.
The dimension restrictions now shows that

n+1 n+1
2:':X, A\ QEY:I—%[EX, 2( N QEY):‘
i=1 i=1

is an injection. Hence, gAe’f >~ *, that is, w cat(¢’f) = n. Hence, w cat(e’f) <
conil f.

CoRrROLLARY. If X is (m — 1)-connected and dim X = 2m(conil X + 1) — 2,
then conil X = w Zcate’ = Z wcate = wcate'.

THEOREM 4. Let Y be (m — 1)-connected, where m
dim Y < m(conil ¥ + 2) —

= 2. If
2,
we have:
cat Y = conil ¥ = wcate = wcat V.

Proof. If dim ¥V < m(conil ¥ + 2) — 2 and m = 2, then we have dim ¥V <
2m(conil ¥ 4+ 1) — 2. Hence, by above, we have conil ¥ = w cat ¢’. Clearly,
we now have that H*(Y) =0 for v > m(conil ¥ + 2) — 2. Hence, by
(4, Theorem 4.3;), cat ¥ =< conil Y. Hence, we now have cat ¥ < conil ¥ =

wcate’ < wcat ¥ = cat Y. This proves the result.

Remark. We now give a form of Stasheff’s criterion for maps. We recall that
Stasheff’s criterion states that nil X < 1 if and only if eV: 20X V 20X —- X
extends to TQX X 2QX, where e: 20X — X is 7~ 1(lox).

Let f: X — Y be a map. We shall write nil f for nil @f. Then we have the
following theorem.

THEOREM 5. nilf =1 ¢f and only if feV: ZQX V ZQX — Y extends to
20X X ZQX.

Proof. We note that nil f < lifand only if (@f)c~ *, wherec: X X QX - QX
is the basic commutator map for @X. Let 71, 72: 2QX — 20X V ZQX be the
inclusions in the first and second coordinates, respectively. Then we have a
generalized Whitehead product [7;, 7] € [2(@X A QX), 20X V ZQX]. Now,
fev extends to ZQX X ZQX if and only if feV{iy, 75] = 0, that is, if and only if
[fe, fe] = 0. Now, we have a generalized Samelson product {, ): [2X, QY] X
[QX, Q7] — [QX A QX, QY]. This satisfies the relation

7(fe, fe] = (7(fe), v(fe)) = (of, Qf).
Hence, feV extends if and only if (Qf, @f) = 0, that is, if and only if
¢t (Qf, Qf) =0, where ¢: 2X X X — QX A 2X. We note that ¢f is a
monomorphism. Now ¢ {(Qf, Qf) = c(Qf X Qf) = (@f)c, where the last ¢
stands for the basic commutator map QX X QX — QX and the first ¢ stands

for the basic commutator map 2V X QV — QY. Thus, feV extends if and only
ifnilf < 1.
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