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Let / : X —> F be a map and let e': Y-^tiSY be the usual embedding. 
Then we prove the following results. 

THEOREM 1. c a t / = cat(e'/), w c a t / = w ca.t(e'f) if Y is an H-space. 

THEOREM 2. conil/ = w S cat(e'/) ^ 2 wcat(e'/) ^ wcat(V/) , /̂zer<? 2 w 
^ e suspension functor. If we take X = Y and f = lx, this result yields 
conil X g w cat e', a resw// ûfee /0 Ganea, Hilton, and Peterson (4). 

THEOREM 3. Suppose that Y is {m — 1)-connected and 

dirnX g 2m (conil/ + 1) - 2. 

7%ew conil/ = w S cat (Vf) = 2 w cat(e'/) = w cat(e'/). 

THEOREM 4. Suppose that Y is {m — l)-connected, where m è 2. 77&en i/ 
dim F ^ m (conil F + 2) — 2,we have cat F = conil F = w cat er = w cat F. 

THEOREM 5. n i l / ^ 1 if and 0?z/;y if feV\ 2QX V 2ŒX —> F extends to 
2ŒX X 212X, w/£ere e: 2QX —» X is /Ae projection. 

In this paper we shall work in the category ^"of spaces with base point and 
having the homotopy type of countable CW-complexes. All maps and homo-
topies shall be with respect to base points, and for simplicity we shall use the 
same symbol for a map and its homotopy class. Given spaces X, F we denote 
the set of homotopy classes of maps from X to F by [X, F]. We have an 
isomorphism r: [2X, F] —» [X, OF], where 2 and 0 are the suspension and 
loop functors, respectively. We denote r(lsx) by e' and T~1(1QX) by e. 

1. For convenience, we recall some notions from Peterson's theory of 
structures (5). We shall follow the definitions and notation of (2). Let ^ 
be a category. By a right structure & over *$ we mean (R, P, T; d, j), where 
R, P, and T are covariant functors from Çf to ^\ d is a natural transformation 
from R to P, a n d / is a natural transformation from T to P. Given an object 
X of *if, we say that X is ^-structured if there exists a map <j>: RX —» TX 
such that j ( X ) 0 ~ d(X). We may assume t h a t / is a natural fibration. Given 
a right structure ^ = (R, P, T; d, j) over ^ , we have a right structure 
2 ^ = (2R, 2P , 2T ; 2d, 2/) over 9", where 2 is the suspension functor. 
Clearly, if X G ^ can be ^-structured, it can be 2^?-structured. Given a 
category ^ , we have a category (if2 of pairs. An object of ^ 2 is a map 
/ : X -> F of Ç?, and given objects / : Xi -+X 2 , g: Yx -> F2 of Çf2, a map 
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(u, v): f —>g is a pair of maps u: X± —> Yh v: X2 —» F2 such that gu = *//. 
We have covariant functors D0, Di. <€*-><€ given by D0(f) = F, £>i(/) = X, 
where / : X —> F. Furthermore, given (w, v): f —> g, we have Z>0(w, ») = z/, 
Di(u,v) — u. We have a natural transformation G\D\ —> Do given by 
G(f) = / , where / € ^ 2 . Given a right structure system SI = (P, P , P; J, j ) 
over fé7, we have a right structure system 

^ 2 = (RDlyPDo, TDo; (dD0)(RG)JD0) 

over ^ 2 . Given an object / G ^ 2 , we shall say that / is «^-structured if 
/ is «^-structured. I t is easily seen that if / : X —» F is an object of cif2

1 and 
X is «^-structured or F is «^-structured, t h e n / is «^-structured. 

Let 3? = (R, P, T; d, j) be a right structure over 9*. We may consider 
j : P —>P as a natural fibration. Let q: P-+Q be the cofibre of / and let 
j w : TW—>P be the fibre of q. Then we have an associated weak structure 
3&w = (R, P , Tw; d, jw) over *$. If X Ç ^ , we say that X can be weakly 
«^-structured if X can be «^-structured. I t is easily seen that if X 6 *$ 
can be «^-structured, then it can be weakly «^-structured, and that X can be 
weakly «^-structured if and only if q(X)d(X) cm *. 

We now consider the ?z-cat structure C^n over J?7"". We have: 

^ = ( l d , n \ : T i ; A , j ) , 

where Id is the identity functor of &~, EPjiî is the cartesian product functor, 
Ti is the "fat wedge" functor, A is the diagonal natural transformation, and 
j is the natural transformation induced by the inclusion of the fat wedge into 
the cartesian product. Thus, given a space X, cat X ^ n if there is a map 
0: X -» Pi(X, . . . , X) such that j 0 ~ A: X -> Z n + 1 . Given a m a p / : X -> F, 
we have c a t / S n ii there exists a map 0: X —> Pi (F , . . . , F) such that 
j<£ ~ A/: X —> P*+1. Furthermore, w c a t / ^ ^ if qAf cm *, where 

ff: P>+* -> Al i î F 

is the projection onto the smash product. Similarly, S w e a t / ^ n if and 
only if there exists a map <j>: 2X —> 2 r w ( F ) such that 

( S j w ) 0 ~ S ( A / ) : 2 X - > 2 F - H . 

It is easily seen that 2w c a t / ^ w c a t / ^ ca t / . Furthermore, w 2 c a t / ^ n 
if and only if 2(gA/) ~ *, and hence w 2 c a t / ^ S w c a t / . Finally, given 
spaces X, F and a map / : X —> F, we have an H'-map 2/: 2X ~ > 2 F . We 
shall write conil/ for conil 2 / ; see (1) for definitions. We observe that in the 
above if we take / = identity map, then the structures for / are just the 
structures for the space involved. 

2. L e t / : X —> F, g: F—» Z be maps. Then it is easily seen that 
cat(gf) ^ min{cat/, cat g} and wcat(gf) ^ min{wcat/ , wca tg} . 
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THEOREM 1. Let f: X —» Y be a map, where Y is an H-space. Then c a t / = 
cat (Vf), w c a t / = w cat (Vf), where e': Y —» Œ2 Y is the embedding. 

Proof. We need only show that c a t / ^ cat(V/), w c a t / ^ w cat (Vf). Since 
Y is an H-space, there is a map 7: 122F—• Y such that yef ~ l r . Then 
c a t / = cat (ye'f) ^ cat (Vf) and w c a t / = w cat (70/) ^ wcat(e ' / ) . 

THEOREM 2. LeJ/: X —> F 5 e a wa^. 77&e» 

conil/ = w S catfc'/) g 2 w cat(e'/). 

Proof. The fact that w 2 cat(e'/) ^ 2 w cat(e'/) follows from the definition 
of these structures. We need only show that conil/ = w 2 cat(e'/). Suppose 
that w 2 cat (Vf) ^ w. Then we have: 

/ n+l 

( A ! 2 ( g A e ' / ) ^ * : 2 X - > 2 l A 02 F 

Let c': SF—> V^t î 2 F be the cocommutator map of weight (n + 1) for 2 F. 
Then we can form a map c': F ^ 1 -* fi(Vltî 2 7) such that c'A = r(c ') ; 
see (4). Since 2(gAe'/) c^ *, applying r we have £22(#A)e'/~ *. Consider the 
following diagram, where each square is homotopy-commutative: 

X 

if 
A n n+l 

Y-^Yn+1-^ A F 

S22F >S22(Fn+1) >122( A FJ 
02A 122̂  v *-i / 

We then have that e'qAf ~ *. Using (4, Lemmas 4.1* and 4.2fc), it follows that 
c ' A / ~ *, that is, r (c ' ) / — *. Hence, c'(2/) ~ *. Hence, conil/ ^ w. This 
proves that conil/ g w 2 cat(e'/). The proof that w 2 cat(e'/) ^ conil/ is 
exactly the same, using again (4, Lemmas 4.1^ and 4.2*). 

Remark. If we take / = l x , we have conil X = w 2 cat ef ^ 2 wr cat e' g 
w cat e' ^ cat e'. In (4), it is shown that conil X S w cat e'. Our paper is 
motivated by an attempt to obtain a suitable modified form for the dual of 
StashefFs criterion; see (4; 6). The exact dual of StashefFs criterion would 
read: conil X ^ 1 if and only if cat ef ^ 1. This is false, as shown by an 
example in (4). 

THEOREM 3. Let f: X —» F be a map, and let Y be (m — 1)-connected. If 
dim X S 2m(conil/ + 1) — 2, then conil/ = w 2 c a t « f ) = 2 w cat(e'/) = 
wca t (Vf). 

Proof. W7e need only show that w cat(e'/) ^ conil/ under the restriction 
on dim X. Suppose that conil/ ^ n. Then c'(2/) ~ *, where c': 2 F - » V " t Î 2 F 
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is the cocommutator map of weight (n + 1) for SF . Using the map c' above 
such that c'A = r(c'), we then have that c'Af^ *. Using (4, Lemma 4.2*) 
and the same diagram as in Theorem 2 above, we have that 2(qAe'f) ~ *. 
The dimension restrictions now shows that 

[ n+l "] T / n+1 \ ~ | 

X, A OSFj -> I SX, Si A O S F j ! 
is an injection. Hence, qAe'f ^ *, that is, w cat(e/) ^ n. Hence, w cat(e'/) ^ 
con i l / . 

COROLLARY. If X is (m — l)-connected and dim X ^ 2m(conil X + 1) — 2, 
2/&e# conil X = w S cat £r = S w cat e' — w cat e'. 

THEOREM 4. Le£ Y be (m — 1)-connected, where m è 2. If 

dim F g w (conil F + 2) - 2, 
we have: 

cat F = conil F = w cat e' = w cat F. 

Proof. If dim F ^ m (conil F + 2) — 2 and w ^ 2, then we have dim F ^ 
2m (conil F + 1) — 2. Hence, by above, we have conil F = w cat e'. Clearly, 
we now have that Hy(Y) = 0 for y > m (conil F + 2) — 2. Hence, by 
(4, Theorem 4.3*;), cat F S conil F. Hence, we now have cat F ^ conil F g 
w cat ef ^ w cat F ^ cat F. This proves the result. 

Remark. We now give a form of StashefFs criterion for maps. We recall that 
StashefFs criterion states that nil X S 1 if and only if eV: SOX V SOX -» X 
extends to SOX X SOX, where e: SOX -> X is r ^ W ) . 

Let / : X —> F be a map. We shall write n i l / for nil 0/. Then we have the 
following theorem. 

THEOREM 5. n i l / g 1 if and only if feV: SOX V SOX —» F extends to 
SOX X SOX. 

Pnw/. We note that nil / g 1 if and only if (Û/)c ~ *, where c: OX X OX -> OX 
is the basic commutator map for OX. Let ii, i2\ SOX —» SOX V SOX be the 
inclusions in the first and second coordinates, respectively. Then we have a 
generalized Whitehead product [ih i2] G [S(OX A OX), SOX V SOX]. Now, 
feV extends to SOX X SOX if and only iifeV[ii, i2] = 0, that is, if and only if 
\fe,fe] = 0. Now, we have a generalized Samelson product ( , ): [OX, OF] X 
[OX, OF] -> [OX A OX, OF]. This satisfies the relation 

r[fe,fe]= (r(fe), r(fe) ) = (0/, 0/). 

Hence, feV extends if and only if (0/, 0/) = 0, that is, if and only if 
g#(0/, 0/) = 0, where q: OX X OX -> OX A OX. WTe note that q* is a 
monomorphism. Now q* (0/, 0/) = c($f X 0/) = (0/)c, where the last c 
stands for the basic commutator map OX X OX —> OX and the first c stands 
for the basic commutator map O F X O F — > 0 F . Thus,/eV extends if and only 
if n i l / ^ 1. 
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