CONILPOTENCY AND WEAK CATEGORY

C. S. HOO

Let $f: X \to Y$ be a map and let $e': Y \to \Omega \Sigma Y$ be the usual embedding. Then we prove the following results.

THEOREM 1. $\operatorname{cat} f = \operatorname{cat}(e'f)$, w cat $f = \operatorname{w} \operatorname{cat}(e'f)$ if Y is an H-space.

THEOREM 2. conil $f = w \Sigma \operatorname{cat}(e'f) \leq \Sigma w \operatorname{cat}(e'f) \leq w \operatorname{cat}(e'f)$, where Σ is the suspension functor. If we take X = Y and $f = 1_X$, this result yields conil $X \leq w \operatorname{cat} e'$, a result due to Ganea, Hilton, and Peterson (4).

THEOREM 3. Suppose that Y is (m-1)-connected and

 $\dim X \le 2m(\operatorname{conil} f + 1) - 2.$

Then conil $f = w \Sigma \operatorname{cat}(e'f) = \Sigma w \operatorname{cat}(e'f) = w \operatorname{cat}(e'f)$.

THEOREM 4. Suppose that Y is (m-1)-connected, where $m \ge 2$. Then if dim $Y \le m(\text{conil } Y+2) - 2$, we have $\operatorname{cat} Y = \operatorname{conil} Y = \operatorname{w} \operatorname{cat} e' = \operatorname{w} \operatorname{cat} Y$.

THEOREM 5. nil $f \leq 1$ if and only if $fe\nabla \colon \Sigma \Omega X \lor \Sigma \Omega X \to Y$ extends to $\Sigma \Omega X \times \Sigma \Omega X$, where $e \colon \Sigma \Omega X \to X$ is the projection.

In this paper we shall work in the category \mathscr{T} of spaces with base point and having the homotopy type of countable CW-complexes. All maps and homotopies shall be with respect to base points, and for simplicity we shall use the same symbol for a map and its homotopy class. Given spaces X, Y we denote the set of homotopy classes of maps from X to Y by [X, Y]. We have an isomorphism $\tau: [\Sigma X, Y] \to [X, \Omega Y]$, where Σ and Ω are the suspension and loop functors, respectively. We denote $\tau(1_{\Sigma X})$ by e' and $\tau^{-1}(1_{\Omega X})$ by e.

1. For convenience, we recall some notions from Peterson's theory of structures (5). We shall follow the definitions and notation of (2). Let \mathscr{C} be a category. By a right structure \mathscr{R} over \mathscr{C} we mean (R, P, T; d, j), where R, P, and T are covariant functors from \mathscr{C} to \mathscr{T}, d is a natural transformation from R to P, and j is a natural transformation from T to P. Given an object X of \mathscr{C} , we say that X is \mathscr{R} -structured if there exists a map $\phi: RX \to TX$ such that $j(X)\phi \simeq d(X)$. We may assume that j is a natural fibration. Given a right structure $\mathscr{R} = (R, P, T; d, j)$ over \mathscr{C} , we have a right structure $\mathscr{R} = (\Sigma R, \Sigma P, \Sigma T; \Sigma d, \Sigma j)$ over \mathscr{C} , where Σ is the suspension functor. Clearly, if $X \in \mathscr{C}$ can be \mathscr{R} -structured, it can be $\Sigma \mathscr{R}$ -structured. Given a category \mathscr{C} , we have a category \mathscr{C}^2 of pairs. An object of \mathscr{C}^2 is a map $f: X \to Y$ of \mathscr{C} , and given objects $f: X_1 \to X_2$, $g: Y_1 \to Y_2$ of \mathscr{C}^2 , a map

Received December 28, 1967. This research was supported by NRC Grant A-3026.

CATEGORIES

 $(u, v): f \to g$ is a pair of maps $u: X_1 \to Y_1, v: X_2 \to Y_2$ such that gu = vf. We have covariant functors $D_0, D_1: \mathscr{C}^2 \to \mathscr{C}$ given by $D_0(f) = Y, D_1(f) = X$, where $f: X \to Y$. Furthermore, given $(u, v): f \to g$, we have $D_0(u, v) = v$, $D_1(u, v) = u$. We have a natural transformation $G: D_1 \to D_0$ given by G(f) = f, where $f \in \mathscr{C}^2$. Given a right structure system $\mathscr{R} = (R, P, T; d, j)$ over \mathscr{C} , we have a right structure system

$$\mathscr{R}^{2} = (RD_{1}, PD_{0}, TD_{0}; (dD_{0})(RG), jD_{0})$$

over \mathscr{C}^2 . Given an object $f \in \mathscr{C}^2$, we shall say that f is \mathscr{R} -structured if f is \mathscr{R}^2 -structured. It is easily seen that if $f: X \to Y$ is an object of \mathscr{C}^2 , and X is \mathscr{R} -structured or Y is \mathscr{R} -structured, then f is \mathscr{R} -structured.

Let $\mathscr{R} = (R, P, T; d, j)$ be a right structure over \mathscr{C} . We may consider $j: T \to P$ as a natural fibration. Let $q: P \to Q$ be the cofibre of j and let $j_w: T_w \to P$ be the fibre of q. Then we have an associated weak structure $\mathscr{R}_w = (R, P, T_w; d, j_w)$ over \mathscr{C} . If $X \in \mathscr{C}$, we say that X can be weakly \mathscr{R} -structured if X can be \mathscr{R}_w -structured. It is easily seen that if $X \in \mathscr{C}$ can be \mathscr{R} -structured, then it can be weakly \mathscr{R} -structured, and that X can be weakly \mathscr{R} -structured if and only if $q(X)d(X) \simeq *$.

We now consider the *n*-cat structure \mathscr{K}_n over \mathscr{T} . We have:

$$\mathscr{K}_n = \left(\mathrm{Id}, \prod_{i=1}^{n+1} , T_1; \Delta, j \right),$$

where Id is the identity functor of \mathscr{T} , $\prod_{i=1}^{n+1}$ is the cartesian product functor, T_1 is the "fat wedge" functor, Δ is the diagonal natural transformation, and j is the natural transformation induced by the inclusion of the fat wedge into the cartesian product. Thus, given a space X, cat $X \leq n$ if there is a map $\phi: X \to T_1(X, \ldots, X)$ such that $j\phi \simeq \Delta: X \to X^{n+1}$. Given a map $f: X \to Y$, we have cat $f \leq n$ if there exists a map $\phi: X \to T_1(Y, \ldots, Y)$ such that $j\phi \simeq \Delta f: X \to Y^{n+1}$. Furthermore, w cat $f \leq n$ if $q\Delta f \simeq *$, where

q:
$$Y^{n+1} \to \bigwedge_{i=1}^{n+1} Y$$

is the projection onto the smash product. Similarly, $\Sigma \operatorname{w} \operatorname{cat} f \leq n$ if and only if there exists a map $\phi: \Sigma X \to \Sigma T_w(Y)$ such that

$$(\Sigma j_w)\phi \simeq \Sigma(\Delta f): \Sigma X \to \Sigma Y^{n+1}.$$

It is easily seen that $\Sigma w \operatorname{cat} f \leq w \operatorname{cat} f$. Furthermore, $w \Sigma \operatorname{cat} f \leq n$ if and only if $\Sigma(q\Delta f) \simeq *$, and hence $w \Sigma \operatorname{cat} f \leq \Sigma w \operatorname{cat} f$. Finally, given spaces X, Y and a map $f: X \to Y$, we have an H'-map $\Sigma f: \Sigma X \to \Sigma Y$. We shall write conil f for conil Σf ; see (1) for definitions. We observe that in the above if we take f =identity map, then the structures for f are just the structures for the space involved.

2. Let $f: X \to Y$, $g: Y \to Z$ be maps. Then it is easily seen that $\operatorname{cat}(gf) \leq \min\{\operatorname{cat} f, \operatorname{cat} g\}$ and $\operatorname{w} \operatorname{cat}(gf) \leq \min\{\operatorname{w} \operatorname{cat} f, \operatorname{w} \operatorname{cat} g\}$.

THEOREM 1. Let $f: X \to Y$ be a map, where Y is an H-space. Then $\operatorname{cat} f = \operatorname{cat}(e'f)$, w $\operatorname{cat} f = \operatorname{w} \operatorname{cat}(e'f)$, where $e': Y \to \Omega \Sigma Y$ is the embedding.

Proof. We need only show that $\operatorname{cat} f \leq \operatorname{cat}(e'f)$, w $\operatorname{cat} f \leq \operatorname{w} \operatorname{cat}(e'f)$. Since Y is an H-space, there is a map $\gamma: \Omega \Sigma Y \to Y$ such that $\gamma e' \simeq 1_Y$. Then $\operatorname{cat} f = \operatorname{cat}(\gamma e'f) \leq \operatorname{cat}(e'f)$ and w $\operatorname{cat} f = \operatorname{w} \operatorname{cat}(\gamma e'f) \leq \operatorname{w} \operatorname{cat}(e'f)$.

THEOREM 2. Let $f: X \to Y$ be a map. Then

$$\operatorname{conil} f = \operatorname{w} \Sigma \operatorname{cat}(e'f) \leq \Sigma \operatorname{w} \operatorname{cat}(e'f).$$

Proof. The fact that w $\Sigma \operatorname{cat}(e'f) \leq \Sigma \operatorname{w} \operatorname{cat}(e'f)$ follows from the definition of these structures. We need only show that $\operatorname{conil} f = \operatorname{w} \Sigma \operatorname{cat}(e'f)$. Suppose that w $\Sigma \operatorname{cat}(e'f) \leq n$. Then we have:

$$\Sigma(q\Delta e'f) \simeq *: \Sigma X \to \Sigma \left(\bigwedge_{i=1}^{n+1} \Omega \Sigma Y \right).$$

Let $c': \Sigma Y \to \bigvee_{i=1}^{n+1} \Sigma Y$ be the cocommutator map of weight (n + 1) for ΣY . Then we can form a map $\bar{c}': Y^{n+1} \to \Omega(\bigvee_{i=1}^{n+1} \Sigma Y)$ such that $\bar{c}'\Delta = \tau(c')$; see (4). Since $\Sigma(q\Delta e'f) \simeq *$, applying τ we have $\Omega\Sigma(q\Delta)e'f \simeq *$. Consider the following diagram, where each square is homotopy-commutative:

We then have that $e'q\Delta f \simeq *$. Using (4, Lemmas 4.1_k and 4.2_k), it follows that $\bar{c}'\Delta f \simeq *$, that is, $\tau(c')f \simeq *$. Hence, $c'(\Sigma f) \simeq *$. Hence, $\operatorname{conil} f \leq n$. This proves that $\operatorname{conil} f \leq w \Sigma \operatorname{cat}(e'f)$. The proof that $w \Sigma \operatorname{cat}(e'f) \leq \operatorname{conil} f$ is exactly the same, using again (4, Lemmas 4.1_k and 4.2_k).

Remark. If we take $f = 1_X$, we have conil $X = w \sum \operatorname{cat} e' \leq \sum w \operatorname{cat} e' \leq w \operatorname{cat} e' \leq \operatorname{cat} e'$. In (4), it is shown that conil $X \leq w \operatorname{cat} e'$. Our paper is motivated by an attempt to obtain a suitable modified form for the dual of Stasheff's criterion; see (4; 6). The exact dual of Stasheff's criterion would read: conil $X \leq 1$ if and only if $\operatorname{cat} e' \leq 1$. This is false, as shown by an example in (4).

THEOREM 3. Let $f: X \to Y$ be a map, and let Y be (m-1)-connected. If $\dim X \leq 2m(\operatorname{conil} f + 1) - 2$, then $\operatorname{conil} f = w \Sigma \operatorname{cat}(e'f) = \Sigma \operatorname{w} \operatorname{cat}(e'f) = \operatorname{w} \operatorname{cat}(e'f)$.

Proof. We need only show that $w \operatorname{cat}(e'f) \leq \operatorname{conil} f$ under the restriction on dim X. Suppose that $\operatorname{conil} f \leq n$. Then $c'(\Sigma f) \simeq *$, where $c': \Sigma Y \to \bigvee_{i=1}^{n+1} \Sigma Y$

CATEGORIES

is the cocommutator map of weight (n + 1) for ΣY . Using the map \bar{c}' above such that $\bar{c}'\Delta = \tau(c')$, we then have that $\bar{c}'\Delta f \simeq *$. Using (4, Lemma 4.2_k) and the same diagram as in Theorem 2 above, we have that $\Sigma(q\Delta e'f) \simeq *$. The dimension restrictions now shows that

$$\Sigma : \left[X, \bigwedge_{i=1}^{n+1} \Omega \Sigma Y \right] \to \left[\Sigma X, \Sigma \left(\bigwedge_{i=1}^{n+1} \Omega \Sigma Y \right) \right]$$

is an injection. Hence, $q\Delta e'f \simeq *$, that is, $w \operatorname{cat}(e'f) \leq n$. Hence, $w \operatorname{cat}(e'f) \leq \operatorname{conil} f$.

COROLLARY. If X is (m - 1)-connected and dim $X \leq 2m$ (conil X + 1) -2, then conil $X = w \Sigma \operatorname{cat} e' = \Sigma w \operatorname{cat} e' = w \operatorname{cat} e'$.

THEOREM 4. Let Y be (m-1)-connected, where $m \ge 2$. If

 $\dim Y \leq m(\operatorname{conil} Y + 2) - 2,$

we have:

$$\operatorname{cat} Y = \operatorname{conil} Y = \operatorname{w} \operatorname{cat} e' = \operatorname{w} \operatorname{cat} Y.$$

Proof. If dim $Y \leq m(\text{conil } Y+2) - 2$ and $m \geq 2$, then we have dim $Y \leq 2m(\text{conil } Y+1) - 2$. Hence, by above, we have conil $Y = w \operatorname{cat} e'$. Clearly, we now have that $H^{\gamma}(Y) = 0$ for $\gamma > m(\text{conil } Y+2) - 2$. Hence, by (4, Theorem 4.3_k), cat $Y \leq \text{conil } Y$. Hence, we now have cat $Y \leq \text{conil } Y \leq w \operatorname{cat} e' \leq w \operatorname{cat} Y$. This proves the result.

Remark. We now give a form of Stasheff's criterion for maps. We recall that Stasheff's criterion states that nil $X \leq 1$ if and only if $e\nabla: \Sigma \Omega X \vee \Sigma \Omega X \to X$ extends to $\Sigma \Omega X \times \Sigma \Omega X$, where $e: \Sigma \Omega X \to X$ is $\tau^{-1}(1_{\Omega X})$.

Let $f: X \to Y$ be a map. We shall write nil f for nil Ωf . Then we have the following theorem.

THEOREM 5. nil $f \leq 1$ if and only if $fe\nabla: \Sigma\Omega X \vee \Sigma\Omega X \to Y$ extends to $\Sigma\Omega X \times \Sigma\Omega X$.

Proof. We note that nil $f \leq 1$ if and only if $(\Omega f)c \simeq *$, where $c: \Omega X \times \Omega X \to \Omega X$ is the basic commutator map for ΩX . Let $i_1, i_2: \Sigma \Omega X \to \Sigma \Omega X \vee \Sigma \Omega X$ be the inclusions in the first and second coordinates, respectively. Then we have a generalized Whitehead product $[i_1, i_2] \in [\Sigma(\Omega X \land \Omega X), \Sigma \Omega X \vee \Sigma \Omega X]$. Now, $fe\nabla$ extends to $\Sigma \Omega X \times \Sigma \Omega X$ if and only if $fe\nabla[i_1, i_2] = 0$, that is, if and only if [fe, fe] = 0. Now, we have a generalized Samelson product \langle , \rangle : $[\Omega X, \Omega Y] \times$ $[\Omega X, \Omega Y] \to [\Omega X \land \Omega X, \Omega Y]$. This satisfies the relation

$$\tau[fe, fe] = \langle \tau(fe), \tau(fe) \rangle = \langle \Omega f, \Omega f \rangle.$$

Hence, $fe\nabla$ extends if and only if $\langle \Omega f, \Omega f \rangle = 0$, that is, if and only if $q^{\sharp} \langle \Omega f, \Omega f \rangle = 0$, where $q: \Omega X \times \Omega X \to \Omega X \wedge \Omega X$. We note that q^{\sharp} is a monomorphism. Now $q^{\sharp} \langle \Omega f, \Omega f \rangle = c(\Omega f \times \Omega f) = (\Omega f)c$, where the last c stands for the basic commutator map $\Omega X \times \Omega X \to \Omega X$ and the first c stands for the basic commutator map $\Omega Y \times \Omega Y \to \Omega Y$. Thus, $fe\nabla$ extends if and only if nil $f \leq 1$.

C. S. HOO

References

- 1. I. Berstein and T. Ganea, Homotopical nilpotency, Illinois J. Math. 5 (1961), 99-130.
- 2. I. Berstein and P. J. Hilton, *Homomorphisms of homotopy structures*, Topologie et géométrie différentielle, Séminaire Ehresmann, April, 1963 (Inst. Henri Poincaré, Paris, 1963).
- T. Ganea, On some numerical homotopy invariants, Proc. Internat. Congress Math., 1962, pp. 467-472 (Inst. Mittag-Leffler, Djursholm, Sweden, 1963).
- 4. T. Ganea, P. J. Hilton, and F. P. Peterson, On the homotopy-commutativity of loop-spaces and suspensions, Topology 1 (1962), 133-141.
- 5. F. P. Peterson, *Numerical invariants of homotopy type*, Colloquium on algebraic topology, pp. 79-83, Aarhus Universitet, 1962.
- 6. J. Stasheff, On homotopy abelian H-spaces, Proc. Cambridge Philos. Soc. 57 (1961), 734-745.

University of Alberta, Edmonton, Alberta