CONILPOTENGY AND WEAK GATEGORY

C. S. HOO

Let $f: X \rightarrow Y$ be a map and let $e^{\prime}: Y \rightarrow \Omega \Sigma Y$ be the usual embedding. Then we prove the following results.

Theorem 1. $\operatorname{cat} f=\operatorname{cat}\left(e^{\prime} f\right)$, $\mathrm{w} \operatorname{cat} f=\mathrm{w} \operatorname{cat}\left(e^{\prime} f\right)$ if Y is an H-space.
Theorem 2. conil $f=\mathrm{w} \Sigma \operatorname{cat}\left(e^{\prime} f\right) \leqq \Sigma \mathrm{w} \operatorname{cat}\left(e^{\prime} f\right) \leqq \mathrm{w} \operatorname{cat}\left(e^{\prime} f\right)$, where Σ is the suspension functor. If we take $X=Y$ and $f=1_{X}$, this result yields conil $X \leqq$ w cat e^{\prime}, a result due to Ganea, Hilton, and Peterson (4).

Theorem 3. Suppose that Y is $(m-1)$-connected and

$$
\operatorname{dim} X \leqq 2 m(\operatorname{conil} f+1)-2
$$

Then conil $f=\mathrm{w} \Sigma \operatorname{cat}\left(e^{\prime} f\right)=\Sigma \mathrm{w} \operatorname{cat}\left(e^{\prime} f\right)=\mathrm{w} \operatorname{cat}\left(e^{\prime} f\right)$.
Theorem 4. Suppose that Y is $(m-1)$-connected, where $m \geqq 2$. Then if $\operatorname{dim} Y \leqq m($ conil $Y+2)-2$, we have cat $Y=\operatorname{conil} Y=\mathrm{w}$ cat $e^{\prime}=\mathrm{w}$ cat Y.

Theorem 5. nil $f \leqq 1$ if and only if fe $\nabla: \Sigma \Omega X \vee \Sigma \Omega X \rightarrow Y$ extends to $\Sigma \Omega X \times \Sigma \Omega X$, where $e: \Sigma \Omega X \rightarrow X$ is the projection.
In this paper we shall work in the category \mathscr{T} of spaces with base point and having the homotopy type of countable CW-complexes. All maps and homotopies shall be with respect to base points, and for simplicity we shall use the same symbol for a map and its homotopy class. Given spaces X, Y we denote the set of homotopy classes of maps from X to Y by $[X, Y]$. We have an isomorphism $\tau:[\Sigma X, Y] \rightarrow[X, \Omega Y]$, where Σ and Ω are the suspension and loop functors, respectively. We denote $\tau\left(1_{\Sigma X}\right)$ by e^{\prime} and $\tau^{-1}\left(1_{\Omega X}\right)$ by e.

1. For convenience, we recall some notions from Peterson's theory of structures (5). We shall follow the definitions and notation of (2). Let \mathscr{C} be a category. By a right structure \mathscr{R} over \mathscr{C} we mean $(R, P, T ; d, j)$, where R, P, and T are covariant functors from \mathscr{C} to \mathscr{T}, d is a natural transformation from R to P, and j is a natural transformation from T to P. Given an object X of \mathscr{C}, we say that X is \mathscr{R}-structured if there exists a map $\phi: R X \rightarrow T X$ such that $j(X) \phi \simeq d(X)$. We may assume that j is a natural fibration. Given a right structure $\mathscr{R}=(R, P, T ; d, j)$ over \mathscr{C}, we have a right structure $\Sigma \mathscr{R}=(\Sigma R, \Sigma P, \Sigma T ; \Sigma d, \Sigma j)$ over \mathscr{C}, where Σ is the suspension functor. Clearly, if $X \in \mathscr{C}$ can be \mathscr{R}-structured, it can be $\Sigma \mathscr{R}$-structured. Given a category \mathscr{C}, we have a category \mathscr{C}^{2} of pairs. An object of \mathscr{C}^{2} is a map $f: X \rightarrow Y$ of \mathscr{C}, and given objects $f: X_{1} \rightarrow X_{2}, g: Y_{1} \rightarrow Y_{2}$ of \mathscr{C}^{2}, a map

Received December 28, 1967. This research was supported by NRC Grant A-3026.
$(u, v): f \rightarrow g$ is a pair of maps $u: X_{1} \rightarrow Y_{1}, v: X_{2} \rightarrow Y_{2}$ such that $g u=v f$. We have covariant functors $D_{0}, D_{1}: \mathscr{C}^{2} \rightarrow \mathscr{C}$ given by $D_{0}(f)=Y, D_{1}(f)=X$, where $f: X \rightarrow Y$. Furthermore, given $(u, v): f \rightarrow g$, we have $D_{0}(u, v)=v$, $D_{1}(u, v)=u$. We have a natural transformation $G: D_{1} \rightarrow D_{0}$ given by $G(f)=f$, where $f \in \mathscr{C}^{2}$. Given a right structure system $\mathscr{R}=(R, P, T ; d, j)$ over \mathscr{C}, we have a right structure system

$$
\mathscr{R}^{2}=\left(R D_{1}, P D_{0}, T D_{0} ;\left(d D_{0}\right)(R G), j D_{0}\right)
$$

over \mathscr{C}^{2}. Given an object $f \in \mathscr{C}^{2}$, we shall say that f is \mathscr{R}-structured if f is \mathscr{R}^{2}-structured. It is easily seen that if $f: X \rightarrow Y$ is an object of \mathscr{C}^{2}, and X is \mathscr{R}-structured or Y is \mathscr{R}-structured, then f is \mathscr{R}-structured.

Let $\mathscr{R}=(R, P, T ; d, j)$ be a right structure over \mathscr{C}. We may consider $j: T \rightarrow P$ as a natural fibration. Let $q: P \rightarrow Q$ be the cofibre of j and let $j_{w}: T_{w} \rightarrow P$ be the fibre of q. Then we have an associated weak structure $\mathscr{R}_{w}=\left(R, P, T_{w} ; d, j_{w}\right)$ over \mathscr{C}. If $X \in \mathscr{C}$, we say that X can be weakly \mathscr{R}-structured if X can be \mathscr{R}_{w}-structured. It is easily seen that if $X \in \mathscr{C}$ can be \mathscr{R}-structured, then it can be weakly \mathscr{R}-structured, and that X can be weakly \mathscr{R}-structured if and only if $q(X) d(X) \simeq *$.

We now consider the n-cat structure \mathscr{K}_{n} over \mathscr{T}. We have:

$$
\mathscr{K}_{n}=\left(\operatorname{Id}, \prod_{i=1}^{n+1}, T_{1} ; \Delta, j\right)
$$

where Id is the identity functor of $\mathscr{T}, \prod_{i=1}^{n+1}$ is the cartesian product functor, T_{1} is the "fat wedge" functor, Δ is the diagonal natural transformation, and j is the natural transformation induced by the inclusion of the fat wedge into the cartesian product. Thus, given a space X, cat $X \leqq n$ if there is a map $\phi: X \rightarrow T_{1}(X, \ldots, X)$ such that $j \phi \simeq \Delta: X \rightarrow X^{n+1}$. Given a map $f: X \rightarrow Y$, we have cat $f \leqq n$ if there exists a map $\phi: X \rightarrow T_{1}(Y, \ldots, Y)$ such that $j \phi \simeq \Delta f: X \rightarrow Y^{n+1}$. Furthermore, w cat $f \leqq n$ if $q \Delta f \simeq *$, where

$$
q: Y^{n+1} \rightarrow \wedge_{i=1}^{n+1} Y
$$

is the projection onto the smash product. Similarly, $\Sigma \mathrm{w}$ cat $f \leqq n$ if and only if there exists a map $\phi: \Sigma X \rightarrow \Sigma T_{w}(Y)$ such that

$$
\left(\Sigma j_{w}\right) \phi \simeq \Sigma(\Delta f): \Sigma X \rightarrow \Sigma Y^{n+1}
$$

It is easily seen that $\Sigma \mathrm{w}$ cat $f \leqq \mathrm{w}$ cat $f \leqq \operatorname{cat} f$. Furthermore, w Σ cat $f \leqq n$ if and only if $\Sigma(q \Delta f) \simeq *$, and hence w $\Sigma \operatorname{cat} f \leqq \Sigma$ w cat f. Finally, given spaces X, Y and a map $f: X \rightarrow Y$, we have an H^{\prime}-map $\Sigma f: \Sigma X \rightarrow \Sigma Y$. We shall write conil f for conil Σf; see (1) for definitions. We observe that in the above if we take $f=$ identity map, then the structures for f are just the structures for the space involved.
2. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps. Then it is easily seen that $\operatorname{cat}(g f) \leqq \min \{\operatorname{cat} f, \operatorname{cat} g\}$ and $\mathrm{w} \operatorname{cat}(g f) \leqq \min \{$ w cat f, w cat $g\}$.

Theorem 1. Let $f: X \rightarrow Y$ be a map, where Y is an H-space. Then cat $f=$ $\operatorname{cat}\left(e^{\prime} f\right), \mathrm{w}$ cat $f=\mathrm{w} \operatorname{cat}\left(e^{\prime} f\right)$, where $e^{\prime}: Y \rightarrow \Omega \Sigma Y$ is the embedding.

Proof. We need only show that cat $f \leqq \operatorname{cat}\left(e^{\prime} f\right)$, w cat $f \leqq \mathrm{w}$ cat $\left(e^{\prime} f\right)$. Since Y is an H-space, there is a map $\gamma: \Omega \Sigma Y \rightarrow Y$ such that $\gamma e^{\prime} \simeq 1_{Y}$. Then $\operatorname{cat} f=\operatorname{cat}\left(\gamma e^{\prime} f\right) \leqq \operatorname{cat}\left(e^{\prime} f\right)$ and $\mathrm{w} \operatorname{cat} f=\mathrm{w} \operatorname{cat}\left(\gamma e^{\prime} f\right) \leqq \mathrm{w} \operatorname{cat}\left(e^{\prime} f\right)$.

Theorem 2. Let $f: X \rightarrow Y$ be a map. Then

$$
\operatorname{conil} f=\mathrm{w} \Sigma \operatorname{cat}\left(e^{\prime} f\right) \leqq \Sigma \mathrm{w} \operatorname{cat}\left(e^{\prime} f\right)
$$

Proof. The fact that w $\Sigma \operatorname{cat}\left(e^{\prime} f\right) \leqq \Sigma \mathrm{w}$ cat $\left(e^{\prime} f\right)$ follows from the definition of these structures. We need only show that conil $f=\mathrm{w} \Sigma \operatorname{cat}\left(e^{\prime} f\right)$. Suppose that w $\Sigma \operatorname{cat}\left(e^{\prime} f\right) \leqq n$. Then we have:

$$
\Sigma\left(q \Delta e^{\prime} f\right) \simeq *: \Sigma X \rightarrow \Sigma\left(\bigwedge_{i=1}^{n+1} \Omega \Sigma Y\right)
$$

Let $c^{\prime}: \Sigma Y \rightarrow \vee_{i=1}^{n+1} \Sigma Y$ be the cocommutator map of weight $(n+1)$ for ΣY. Then we can form a map $\bar{c}^{\prime}: Y^{n+1} \rightarrow \Omega\left(\bigvee_{i=1}^{n+1} \Sigma Y\right)$ such that $\bar{c}^{\prime} \Delta=\tau\left(c^{\prime}\right)$; see (4). Since $\Sigma\left(q \Delta e^{\prime} f\right) \simeq *$, applying τ we have $\Omega \Sigma(q \Delta) e^{\prime} f \simeq *$. Consider the following diagram, where each square is homotopy-commutative:

$$
\begin{aligned}
& \text { X } \\
& \downarrow f
\end{aligned}
$$

$$
\begin{aligned}
& \Omega \Sigma Y \underset{\Omega \Sigma \Delta}{\longrightarrow} \Omega \Sigma\left(Y^{n+1}\right) \underset{\Omega \Sigma q}{\longrightarrow} \Omega \Sigma\left(e_{i=1}^{n+1} Y\right)
\end{aligned}
$$

We then have that $e^{\prime} q \Delta f \simeq$. Using (4, Lemmas 4.1_{k} and 4.2_{k}), it follows that $\bar{c}^{\prime} \Delta f \simeq *$, that is, $\tau\left(c^{\prime}\right) f \simeq *$. Hence, $c^{\prime}(\Sigma f) \simeq *$. Hence, conil $f \leqq n$. This proves that conil $f \leqq \mathrm{w} \Sigma \operatorname{cat}\left(e^{\prime} f\right)$. The proof that $\mathrm{w} \Sigma \operatorname{cat}\left(e^{\prime} f\right) \leqq \operatorname{conil} f$ is exactly the same, using again (4, Lemmas 4.1_{k} and 4.2_{k}).

Remark. If we take $f=1_{X}$, we have conil $X=\mathrm{w} \Sigma$ cat $e^{\prime} \leqq \Sigma \mathrm{w}$ cat $e^{\prime} \leqq$ w cat $e^{\prime} \leqq \operatorname{cat} e^{\prime}$. In (4), it is shown that conil $X \leqq \mathrm{w}$ cat e^{\prime}. Our paper is motivated by an attempt to obtain a suitable modified form for the dual of Stasheff's criterion; see ($\mathbf{4} ; \mathbf{6}$). The exact dual of Stasheff's criterion would read: conil $X \leqq 1$ if and only if cat $e^{\prime} \leqq 1$. This is false, as shown by an example in (4).

Theorem 3. Let $f: X \rightarrow Y$ be a map, and let Y be $(m-1)$-connected. If $\operatorname{dim} X \leqq 2 m$ (conil $f+1$)-2, then $\operatorname{conil} f=\mathrm{w} \Sigma \operatorname{cat}\left(e^{\prime} f\right)=\Sigma \mathrm{w} \operatorname{cat}\left(e^{\prime} f\right)=$ w cat ($e^{\prime} f$).

Proof. We need only show that w cat $\left(e^{\prime} f\right) \leqq$ conil f under the restriction on $\operatorname{dim} X$. Suppose that conil $f \leqq n$. Then $c^{\prime}(\Sigma f) \simeq *$, where $c^{\prime}: \Sigma Y \rightarrow \vee_{i=1}^{n+1} \Sigma Y$
is the cocommutator map of weight $(n+1)$ for ΣY. Using the map \bar{c}^{\prime} above such that $\bar{c}^{\prime} \Delta=\tau\left(c^{\prime}\right)$, we then have that $\bar{c}^{\prime} \Delta f \simeq *$. Using (4, Lemma 4.2_{k}) and the same diagram as in Theorem 2 above, we have that $\Sigma\left(q \Delta e^{\prime} f\right) \simeq *$. The dimension restrictions now shows that

$$
\Sigma:\left[X, \wedge_{i=1}^{n+1} \Omega \Sigma Y\right] \rightarrow\left[\Sigma X, \Sigma\left(\bigwedge_{i=1}^{n+1} \Omega \Sigma Y\right)\right]
$$

is an injection. Hence, $q \Delta e^{\prime} f \simeq *$, that is, w cat $\left(e^{\prime} f\right) \leqq n$. Hence, w cat $\left(e^{\prime} f\right) \leqq$ conil f.

Corollary. If X is $(m-1)$-connected and $\operatorname{dim} X \leqq 2 m($ conil $X+1)-2$, then conil $X=\mathrm{w} \Sigma$ cat $e^{\prime}=\Sigma \mathrm{w}$ cat $e^{\prime}=\mathrm{w}$ cat e^{\prime}.

Theorem 4. Let Y be ($m-1$)-connected, where $m \geqq 2$. If

$$
\operatorname{dim} Y \leqq m(\text { conil } Y+2)-2
$$

we have:

$$
\text { cat } Y=\operatorname{conil} Y=\mathrm{w} \text { cat } e^{\prime}=\mathrm{w} \text { cat } Y .
$$

Proof. If $\operatorname{dim} Y \leqq m$ (conil $Y+2$) -2 and $m \geqq 2$, then we have $\operatorname{dim} Y \leqq$ $2 m$ (conil $Y+1$) -2 . Hence, by above, we have conil $Y=\mathrm{w}$ cat e^{\prime}. Clearly, we now have that $H^{\gamma}(Y)=0$ for $\gamma>m($ conil $Y+2)-2$. Hence, by (4, Theorem 4.3_{k}), cat $Y \leqq$ conil Y. Hence, we now have cat $Y \leqq$ conil $Y \leqq$ w cat $e^{\prime} \leqq \mathrm{w}$ cat $Y \leqq$ cat Y. This proves the result.

Remark. We now give a form of Stasheff's criterion for maps. We recall that Stasheff's criterion states that nil $X \leqq 1$ if and only if $e \nabla: \Sigma \Omega X \vee \Sigma \Omega X \rightarrow X$ extends to $\Sigma \Omega X \times \Sigma \Omega X$, where $e: \Sigma \Omega X \rightarrow X$ is $\tau^{-1}\left(1_{\Omega X}\right)$.

Let $f: X \rightarrow Y$ be a map. We shall write nil f for nil Ωf. Then we have the following theorem.

Theorem 5. nil $f \leqq 1$ if and only if $f e \nabla: \Sigma \Omega X \vee \Sigma \Omega X \rightarrow Y$ extends to $\Sigma \Omega X \times \Sigma \Omega X$.

Proof. We note that nil $f \leqq 1$ if and only if $(\Omega f) c \simeq *$, where $c: \Omega X \times \Omega X \rightarrow \Omega X$ is the basic commutator map for ΩX. Let $i_{1}, i_{2}: \Sigma \Omega X \rightarrow \Sigma \Omega X \vee \Sigma \Omega X$ be the inclusions in the first and second coordinates, respectively. Then we have a generalized Whitehead product $\left[i_{1}, i_{2}\right] \in[\Sigma(\Omega X \wedge \Omega X), \Sigma \Omega X \vee \Sigma \Omega X]$. Now, $f e \nabla$ extends to $\Sigma \Omega X \times \Sigma \Omega X$ if and only if $f e \nabla\left[i_{1}, i_{2}\right]=0$, that is, if and only if $[f e, f e]=0$. Now, we have a generalized Samelson product $\langle\rangle:,[\Omega X, \Omega Y] \times$ $[\Omega X, \Omega Y] \rightarrow[\Omega X \wedge \Omega X, \Omega Y]$. This satisfies the relation

$$
\tau[f e, f e]=\langle\tau(f e), \tau(f e)\rangle=\langle\Omega f, \Omega f\rangle .
$$

Hence, $f e \nabla$ extends if and only if $\langle\Omega f, \Omega f\rangle=0$, that is, if and only if $q^{\#}\langle\Omega f, \Omega f\rangle=0$, where $q: \Omega X \times \Omega X \rightarrow \Omega X \wedge \Omega X$. We note that $q^{\#}$ is a monomorphism. Now $q^{*}\langle\Omega f, \Omega f\rangle=c(\Omega f \times \Omega f)=(\Omega f) c$, where the last c stands for the basic commutator map $\Omega X \times \Omega X \rightarrow \Omega X$ and the first c stands for the basic commutator map $\Omega Y \times \Omega Y \rightarrow \Omega Y$. Thus, $f e \nabla$ extends if and only if nil $f \leqq 1$.

References

1. I. Berstein and T. Ganea, Homotopical nilpotency, Illinois J. Math. 5 (1961), 99-130.
2. I. Berstein and P. J. Hilton, Homomorphisms of homotopy structures, Topologie et géométrie différentielle, Séminaire Ehresmann, April, 1963 (Inst. Henri Poincaré, Paris, 1963).
3. T. Ganea, On some numerical homotopy invariants, Proc. Internat. Congress Math., 1962, pp. 467-472 (Inst. Mittag-Leffler, Djursholm, Sweden, 1963).
4. T. Ganea, P. J. Hilton, and F. P. Peterson, On the homotopy-commutativity of loop-spaces and suspensions, Topology 1 (1962), 133-141.
5. F. P. Peterson, Numerical invariants of homotopy type, Colloquium on algebraic topology, pp. 79-83, Aarhus Universitet, 1962.
6. J. Stasheff, On homotopy abelian H-spaces, Proc. Cambridge Philos. Soc. 57 (1961), 734-745.

University of Alberta,
Edmonton, Alberta

