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Abstract

Let X be a (real or complex) rearrangement-invariant function space on Q (where Q = [0, 1] or Q C N)
whose norm is not proportional to the L2-norm. Let H be a separable Hilbert space. We characterize
surjective isometries of X(H). We prove that if T is such an isometry then there exist Borel maps
a : Q —>• K and a : Q —> Q and a strongly measurable operator map S of £2 into 31 (H) so that for almost
all a>, S(a>) is a surjective isometry of H, and for any / e X(H), Tf(a>) = a(co)S(a))(f (a(co))) a.e.
As a consequence we obtain a new proof of the characterization of surjective isometries in complex
rearrangement-invariant function spaces.

1991 Mathematics subject classification (Amer. Math. Soc): 46B04,46E30.

1. Introduction

We study isometries of Hilbert space-valued rearrangement-invariant function spaces
X{H), where dim H > 2 and H is separable. Our results are valid for both symmetric
sequence spaces and non-atomic rearrangement-invariant function spaces on [0, 1]
with norm not proportional to L2 but they are new only in the non-atomic case. If X is
a sequence space, not necessarily even symmetric, Theorem 11 is a special case of a
much more general result of Rosenthal [14] about isometries of Functional Hilbertian
Sums. We include here the case of X being a symmetric sequence space since the proof
is essentially the same as when X is a non-atomic rearrangement-invariant function
space, and also our techniques are much simpler than those developed in [14].

Spaces of the form X(H) appear naturally in the theory of Banach spaces (see
[10, Chapter 2.d]). In particular, if X is rearrangement-invariant (with Boyd indices
1 < Px < Qx < oo) then X(L2) is isomorphic to X ([10, Proposition 2.d.4]) and this
plays an important role in the study of the uniqueness of unconditional bases in X.
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Isometries of Hilbert space-valued function spaces have been studied by many
authors. In 1974, Cambern [2] characterized isometries of LP(L2) in the complex
case (see also an alternative proof of Fleming and Jamison [5]). Isometries of LP{L2)
in both real and complex cases are described (among other spaces) in the general
paper of Greim [7] in 1983. In 1981 Cambern [3] described isometries of both real
and complex, LOO(L2). In 1986 Jamison and Loomis [8] gave the characterization of
isometries in complex Hilbert space-valued non-atomic Orlicz spaces X{L2). Also
there have been a number of studies of various L2-valued analytic function spaces.
For a fuller discussion of the literature we refer the reader to the forthcoming survey
of Fleming and Jamison [4].

We use a method of proof which is designed for spaces over K, but clearly complex
linear operators T : X(H) —> X(H) can be always considered as real linear operators
acting on X(H)(l\) and therefore our results are valid also in the complex case.

Moreover, Theorem 11 with H = t\ may be viewed as a statement about the
form of isometries of complex rearrangement-invariant spaces. Thus we give a new
proof of the fact that all surjective isometries on X can be represented as weighted
composition operators, that is, if T is such an isometry, then there are Borel maps a, a
such that Tf = af o a for all / in X (cf. [17], [18] for non-atomic spaces, and [16]
for sequence spaces).

2. Preliminaries

We follow standard notations as in [10].
In the following, H denotes a separable Hilbert space with dim H > 2. If we want

to stress that we restrict our attention to the case when dim H = oo we will write
H = l2.

If X is a Kbthe function space ([10, Definition l.b. 17]) we denote by X' the Kothe
dual of X; thus X' is the Kbthe space of all g such that / | / | | g | d/x < oo for every
f e X equipped with the norm ||g||x' = supllfh<i f \f\\g\dix. Then X' can be
regarded as a closed subspace of the dual X* of X.

If X is a Kothe function space on (£21( //,]) and H is a separable Hilbert space on
(Q2, ix2), we will denote by X(H) the Kbthe function space on (Q^ x £l2, /x, x /x2)
with the following norm:

This definition coincides with the notion of //-valued Bochner spaces.
It is well-known that (X(//))* = X*(H), and that the space (X(//))' C X*(H)

can be identified with the space of functions <p : fi] -> H such that for every y e H
the map a)] i—> ((p(coi), y) is measurable and the map cp# : a>x i—> \\(p((Oi)\\H belongs
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to X'. The operation of <p on X (H) is given by

<P(f) = / {(p(cOi), f((l)i)) dfli((»i)
Jn,

for any / e X( / / ) . Thus (X(H)Y = X'{H).

For any function / e X{H) we define the map /# : &>] -> K by /#(&>) = ||/(w)ll//-
Then /# e X. We say that functions f,g€ X(H) are disjoint in a vector sense if /#
and g# are disjointly supported, that is, /#(«) • ##(&>) = 0 for a.e. oo e Q{. We say
that an operator T : X( / / ) —> X(H) is disjointness preserving in a vector sense if
(Tf)# • (Tg)# = 0 whenever /#•## = 0.

We will say that an operator T : X(H) —>• X( / / ) has a canonical vector form if
there exists a non-vanishing Borel function a on £2 (where £2 = [0, 1] if X is non-
atomic or £2 c N if X is a sequence space) and an invertible Borel map a : Q —> Q
such that, for any Borel set B c £2, we have MCCT"1 B) = 0 if and only if iu.(B) = 0
and a strongly measurable map S of Q into £%{H) (that is, for each h e H the mapping
a> i->- S{co)h is measurable) so that S(0 is an isometry of / / onto itself for almost all
t and Tf{t) = a(t)S(t)(f(a(t))) a.e. for any / e X(H).

Note that the name 'a canonical vector form' is introduced here only for the purpose
of this paper - we do not know the standard name for this type of operator. We will
need the following simple observation (cf. [9, Lemma 2.4]):

LEMMA 1. Suppose that T : X(H) —> X(H) is an invertible operator which has a
canonical vector form. Then T : X'(H) —>• X'(H) exists and has a canonical vector
form.

PROOF. Operator T has a representation Tf(cox) = aico^Sico^ifiaicoi))) where
a, S,a satisfy the above conditions for canonical forms and moreover a is non-
vanishing and a is an invertible Borel map with /J,(a~l B) = 0 if and only if ix(B) = 0.
Let v be the Radon-Nikodym derivative of the a -finite measure v(B) = fi(a~l B).

Then for / € X(H), g e X\H) we have

8(Tf)= [
Jn,

= f
= f (a{co{){S{(a,))'{g{M,)),f{cy{co,)))dn{co,)

= I (a(a-1(w0)(S(cr-1(w0))'te(^"1(^))),/

since (S(co))* = (S(co))'.
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Thus T*g e X'(H) and

T'gfa) =a(cy-\co,))v{cox)(S{a-x{^)))'g{a-\cox)) a.e.

Clearly the map a>x i-> S(a~l (a>i))' is strongly measurable and thus T' has a canonical
vector form.

A rearrangement-invariant function space (r.i. space) [10, Definition 2.a.l] is a
Kothe function space on (Q, y,) which satisfies the conditions:

(1) X' is a norming subspace of X*.
(2) If T : £2 -> £2 is any measure-preserving invertible Borel automorphism then

/ € X if and only if / o r 6 X and | | / | | x = \\fox\\x.
(3) ||xa||x = l i f / i ( 5 ) = l.

Next we will quickly state a definition of Flinn elements. For fuller description and
proofs we refer to [9, 12].

We say that an element u of a Kothe space X is Flinn if there exists a n / e X*
such that / ^ 0 and for every x e X and x* € X* with JC*(JC) = \\x\\x • \\x*\\x* we
have f(x) • x*(u) > 0. We say that (u, f) is a F//n« paz>. We denote by &{X) the
set of Flinn elements in X. We will need the following facts:

PROPOSITION 2 ([9, Proposition 3.2]). Suppose U : X -> K i s a surjective iso-
metry. Then U(^(X)) = J^(Y); furthermore if (M, / ) /s a Flinn pair then
(U(u), (U*)~lf) is a Flinn pair.

THEOREM 3 (Flinn, [13, Theorem 1.1], [9, Theorem 3.3]). Let X be a Banach
space and n a contractive projection on X with range Y. Suppose (u, f) is a Flinn
pair in X. Suppose f $ Y1. Then n(u) €

THEOREM 4 ([9, Theorem 4.3]). Suppose ix is non-atomic and suppose X is an
order-continuous Kothe function space on (£2, /z). Then u e X is a Flinn element if
and only if there is a non-negative function w e L0(/x) with suppw = suppu = B,
so that:

(a) Ifx eX(B)then\\x\\ = ( j \x\2wdfi\ , and

(b) Ifv e X(£l\B)andx,y e X(B) satisfy \\x\\ = \\y\\,then \\v + x\\ = ||u + ;y||.

The last fact about Flinn elements that we will need is a reformulation of Calvert
and Fitzpatrick's characterization of tp -spaces [1]:
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THEOREM 5. Suppose that X is a sequence space with dim X = d < oo, d > 3,
and basis {e,-}f=1. Suppose that every element u of X with support on at most two
coordinates is Flinn in X, that is,

{u e X : u — aiei + ajejfor some i, j < d, a,, at e R } C <^(X).

Then X = td
p for some 1 < p < oo.

PROOF. By [ 14, Lemma 1.4] (u, f) is a Flinn pair in X if and only if the projection
P defined by P(x) = x — f(x)u has norm 1 in X. Hence, if (u, / ) is a Flinn pair in
X then there is a projection of norm 1 onto the hyperplane ker / c X.

It is also clear from the definition that if (u, / ) is a Flinn pair in X then (/, u) is
a Flinn pair in X'. Therefore there exists a projection of norm 1 onto kerM C X' for
every u with support on at most two coordinates. But then [1, Theorem 1] asserts that
if d > 3 then X' = ld for some 1 < a < oo. Thus X = ld.

— q — i — p

Finally let us introduce the following notation.
Suppose that X is a non-atomic r.i. space on [0, 1] and n is a natural number. Let

e". = X[(,_i)2-.,-2-»] for 1 < / < 2". Denote Xn = [< : 1 < i < 2"]. If dim X < oo
then, for the uniformity of notation, we will use Xn = X for any n e N. Notice that
X* can be identified naturally with X'n.

We now need to introduce a technical definition. We will say that an r.i. space X
has property (P) if for every t > 0,

(a) IIX[o,i]IU < Ikio.i] + tX{i,\]\\x if X is a non-atomic function space on [0, 1]; or

(b) Iki ||x < Iki + te2\\x if X is a sequence space with basis {e,}f™x.

We say that X has property (/") if X' has property (P).

Notice that, clearly, if X has property (P) (respectively (/")) then for every n e N,
X,, has property (P) (respectively (/"))•

LEMMA 6. ([9, Lemma 5.2]) Any r.i. space X has at least one of the properties (P)
or(P').

The reason for introducing property (P) is the following fact which will be import-
ant for our applications.

Ifu e Xn(H)thenv = (t\-)?l,, where vt e H for all i and v, = (w,,;);
d™w. Similarly

for / € X'n(H), f = (f)f=v and /, = (fij)fZH e H. In this notation we have:

LEMMA 7. Suppose that X has property (/") am/ v ® f is a Flinn pair in Xn(H).

PROOF. Assume that / i i = 0 . Then, since u <8> / # 0 there exist / > 1 and j > 1
such that /,7 ^ 0 and vtj ^ 0. In fact ty,/,, > 0 since /(e,7) • e,*(u) > 0.
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Considere*, + te*j e X'n{(.d2). Then

for all t ^ 0 since X has property (/")• Hence for any t ^ 0, if an element
(a,en + b,eu) in Xn(H) is norming for (e*n + te*j), then b, ^ 0. In fact b, • t > 0.
Let us take t = -t>n/(2i;,7). Then sgnb, = sgnf = - sgn(un • t>,7) = - sgn(uu/;7) .
Furthermore,

- ^rv'j) = 2bt' fa'Vu < °'

and the resulting contradiction with numerical positivity of v <g> / proves the lemma.

3. Main results

We start with with an important (for us) proposition about the form of Flinn
elements in Xn(H). In the case when d im/ / < oo our proof requires a certain
technical restriction on the space X, which is irrelevant in the case when H — £2-
We present here proofs for both cases since they are quite different. However, for the
application to Theorem 11 we need only to know the validity of Proposition 8.

PROPOSITION 8. Suppose that X is an r.i. space with property (P1), dim X > 3 and
such that the norm ofX is not proportional to the Lp-normfor any 1 < p < oo. Then
there exists N £ N, such that if n > N and u = («,•)?!, e &{Xn{H)), then there
exists 1 < /o < 2" such that \\ut ||2 = Ofor all i ^ i0.

REMARK. Proposition 8 can be also understood as a statement about the form of
1-codimensional hyperplanes in Xn(H) which are ranges of a norm-1 projection.

PROOF. Let n be big enough so that Xn ^ l2^, 1 < p < oo. Let u e
Then u = ( M , ) ^ , , M, e H. Let m = card{/ : M, ^ 0}. We want to prove that m — 1.

By Proposition 2 we can assume without loss of generality that «, # 0 for ; =
1 , . . . , m, u, = Ofor/ > m andoti = ||«i||2 = min{||M,||2 : / = 1 , . . . , m). Now, for
any numbers a2,... , am e K with | « i | , . . . , \am\ < at there exist isometries [Ui}"=1

of H such that (£/,-(«,• ))i = a,- for / = 1 , . . . , /n. Hence by Proposition 2 the element
v with

{ £/,(«,) if i<m

0 if i > m

https://doi.org/10.1017/S1446788700000161 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000161


156 Beata Randrianantoanina [7]

is Flinn in Xn(H). By Theorem 3 and Lemma 7,v = (u,,i)fl, e <^(Xn). Since the
sequence {a2, . . . , otm} is arbitrary, this implies that every element with support of
cardinality less than or equal to m is Flinn in Xn. But if m > 2, Theorem 5 implies
that Xn = l2p for some 1 < p < oo, contrary to our assumption. So m = 1.

As mentioned above, in the case when H = l2, Proposition 8 is valid for any r.i.
space X. Namely we have:

PROPOSITION 9. Let Xn be a n-dimensional r.i. space not isometric to l\ (n > 2).
Ifu = (M,-)"=1 € J?(Xn(L2)) , then there exists 1 < i0 < n such that ||M,-||2 = 0 for all
i ^ /„.

REMARK. We use here the notation L2 for the separable Hilbert space to stress the
fact that it is non-atomic. Clearly L2 is isometric to l2 and Xn(L2) is isometric to
Xn(l2) via a surjective isometry which preserves disjointness in a vector sense and
hence our result is valid also in Xn (£2).

PROOF. Let u e &(Xn(L2)) be such that m = card{/ : u, ^ 0} is maximal. By
Proposition 2 we can assume without loss of generality that u, = 0 for i = m+1,..., n
and supp u, = [0, 1] for / = 1, . . . , m.

If we consider Xn(L2) as a function space on {1 , . . . , «} x [0, 1], then suppw, =
{ 1 , . . . , m} x [0, 1] = B. Since Xn{L2) is non-atomic, we can apply Theorem 4 to
conclude that there exists a measurable function w such that supp w = B and for
every x e Xn(L2)(B),

(1) \\x\\ = (j \x\2w dn\ .

Since Xn and L2 are r.i., w is constant, say w = k. We need to show that m = 1.
Firstly, notice that m < n since Xn is not isometric to t\ and (1). Assume, to obtain

a contradiction, that m > 2, and consider any element z = (z,)"=1 € Xn{L2) such that
z,• = 0 for / = m + 2,..., n. Define v, x, y <= Xn(L2) by

i f / ^ m + 1, z, i f i < » i , ||JC||2 ifi = l,

[ if/ = m + l [0 i f / > m 10 if/ > 1

respectively. Then suppu D B = 0, * , y e Xn(L2)(B) and ||x|| = ||v||, so by
Theorem 4(b), ||U + JC|| = ||u + y\\, that is, ||z|| = \\v + y\\. Since Xn is r.i.,

Hence ||z|| = fc||z||2 for every z e X B (L 2 ) ({1 , . . . , m + 1} x [0, 1]) and Theorem 4
quickly leads to a contradiction with maximality of m.
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PROPOSITION 10. Suppose that H is a separable Hilbert space and X is a rearrange-
ment-invariant function space with norm not proportional to the Lj-norm. Suppose
further that either X is non-atomic on [0, 1] or is a sequence space (dim X < oo),
and

(a) H = l2; or
(b) H = £2 , X has a norm not proportional to an Lp-normfor any 1 < p < 00, X

satisfies property (/") and dimX > 3.

Then every surjective isometry T : X(H) —>• X(H) preserves disjoint ness in a vector
sense.

PROOF. We will present the proof in the case when X is non-atomic. If X is a
sequence space the proof is almost identical and slightly simpler.

Let us denote e" = e" <g> e, e Xn{H) (ej denotes elements of the natural basis of
H) and fr = Te?j for j , n € N, / < 2".

Define for any co e [0, 1] x N (or on e [0, 1] x { 1 , . . . , d\ in case (b))

2" 00

Following the same argument as in [9, Theorem 6.1] we see that for almost every
co, Fn{co) e &(X'n(H)).

For the sake of completness we present this argument here.
Denote by U(X(H)) the set of pairs (x, x*) where x € X{H), x* e X'{H) and

l = ||jc|| = | | jc* | |=jr*(of) .

We note first that by [9, Proposition 2.5], T~] is a(X(H), X'(//))-continuous and
so has an adjoint S = (T~ly : X'(H) - • X'(H). We define g? = Se?. Suppose
(x,x*) e U(Xn(H)) where x = Y,ai.jeh md x* = T,a*jelj- T ^ " (Tx' Sx*"> €

U(X(H)) and this implies that

for fi—a.e. co e Q.
Using the fact that n (Xn (//)) is separable it follows that there is a set £ln

0 of measure
zero so that if co £ tt"0, (2) holds for every (x, x*) e U(Xn(H)). Let fi0 = L L i ^o-

Now define Gn(co) = Y,?=i E ~ i Si,j(<^)e"j e Xn(H). The above remarks show
that if co i Q.o then x*(Gn(co)) • Fn(oo)(x) > 0 for all (x, x*) e U(X'n{H)), that is,
Fn(co) 6 ^(X'n(H)) provided that Gn(co) ^ 0 and a; £ £20. We will show that this
happens for a.e. co e [0,1]-

Let Bn = {a» : Gn(co) = 0}. Clearly (/?„) is a descending sequence of Borel sets.
Let B = P) B«. If /^(fi) > 0 then there exists a non-zero /; € X( / / ) supported on B
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with (h, Sx') = 0 for every x' e X'(H). Thus T~lh = 0, which contradicts the fact
that T is an isometry.

Let D, = fi\(fi0U Bn). Then fi(Dn) = 0, and if to € £>„, then Gn(co) ^ 0, and
so it follows that Fn(eo) € &(X'n). Hence, by Proposition 8,

(3) for a.e. co 3ia so that f^{co) = 0 V/ ^ iw, j e N.

Let V!, v2 be any natural numbers. Consider the isometry V of H defined by

V(ej) = —— (P A- p \ i f / — V\

-jz(eVl-eV2) ifj = v2,

and the induced isometry V of X(H) defined by V on each fiber.

f?j(t,v) i f v #

Similarly as in 3 we conclude that for almost every t there exists i(IJ>t) such that
lfi, vx) =0 for all i ^ F(,,Ul). Therefore, for a.e. t,

f"j(t,v1) + f?j(t,v2) = 0 V/^F(,,U1), Wj.

Combining this with (3) we get that for almost every t e [0, 1] and any vuv2 e
N, T(,,V]) = it,v, = it,V2- It follows easily that T preserves disjointness of functions
supported in disjoint dyadic intervals.

We are now ready to present the main result of this paper.

THEOREM 11. Suppose that X is a rearrangement-invariant function space with
norm not proportional to the L2-norm. Suppose further that either X is non-atomic
on [0, 1] or it is a sequence space (dim X < oo), and let H be a separable Hilbert
space.

Suppose that T : X(H) —*• X(H) is a surjective isometry. Then there exists a
non-vanishing Borel function a onQ. {where Q. = [0, 1] ifX is non-atomic o r f l c N
ifX is a sequence space) and an invertible Borel map o : 12 -> Q such that, for any
Borel set B C £1, we have iu,(a~l B) = 0 if and only if [i(B) = 0, and a strongly
measurable map SofQ into SS{H) so that S(t) is an isometry of H onto itself for
almost all t and

Tf(t)=a(t)S(t)(f(a(t))) a.e.
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for any f € X(H).
Moreover, if X is not equal to Lp[0, 1], up to equivalent renorming, then \a\ = 1

a.e. and o is measure-preserving.

PROOF. We prove the theorem under the assumption that either:

(a) H = l2; or
(b) H = ld

2 , X has a norm not proportional to an Lp-norm for any 1 < p < oo, X
satisfies property ( f ) and dim X > 3.

If dimX = 2 the theorem follows from [14, Theorem 3.12]. If X = Lp[0, 1],
p ^ 2 the theorem was proved by Greim [6] and Cambern [3]. If X does not satisfy
property (/") then X' does and the result follows by a duality argument. That is,
[9, Proposition 2.5] says that the isometry T is a(X, X') continuous and thus T has
an adjoint T : X'(H) ->• X'{H) which is a surjective isometry. Since X' satisfies
property (/"). T' has a canonical vector form. By Lemma 1, T" and hence T, has a
canonical vector form.

So in the following we assume that the assertion of Proposition 10 holds, that is,
the isometry T preserves disjointness.

We follow almost exactly the argument of Sourour [15, Theorems 3.1 and 3.2].
Let {xn} be the countable linearly independent subset of H whose linear span S>

is dense in H and let ^ 0 be the set of all linear combinations of [xn} with rational
coefficients. For any measurable set E let O(£) = [Jn supp(T(xEXn)). Then, since
7" is 1-1, <D is a set-isomorphism.

Let yn = Tix^), where x^ denotes the function from X(H) constantly equal to xn.
For every / e Q define A(t)xn = yn(t) and extend A(t) linearly to 3>\ thus for every
y e @, A(-)y = T(y) a.e.

We will now extend A(t) to a bounded operator on X. Let E c £2 be measurable
and } 6 f 0 ; then

(4)

By absolute continuity we can define for almost every t

a(t) = lim
< « °

(notice that if X = Lp then a(-) coincides with the function h(-) considered by
Sourour).

By (4), A{t) = a(t)S{t) a.e., where S(t) is an isometry of H.
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The strong measurability of S and surjectivity of almost all S(t) follow as in the
proof of Sourour without change.

Thus, similarly as in [15],

Tf(t) = a(OS(r)(*(/))(r) for a.e. t e Q,

for some set isomorphism O. But, by [11], every set isomorphism of [0, 1] is induced
by a point isomorphism, that is, there exists an invertible Borel map a : £2 —> Q such
that, for any Borel set B c £2, we have [i(cr~[ B) = 0 if and only if ix{B) — 0 and
(<t>(/))(?) = /(o-(O)fora.e. t € [0, 1]. Clearly, if Q, c N then every set isomorphism
is a point isomorphism. Thus we have

fo rany /eX( / / ) .
The final remark is now an immediate consequence of [9, Theorem 7.2].
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