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Abstract. Some efficient numerical schemes are proposed for solving one-dimensional
(1D) and two-dimensional (2D) multi-term time fractional sub-diffusion equations, com-
bining the compact difference approach for the spatial discretisation and L1 approxima-
tion for the multi-term time Caputo fractional derivatives. The stability and convergence
of these difference schemes are theoretically established. Several numerical examples
are implemented, testifying to their efficiency and confirming their convergence order.
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1. Introduction

Fractional differential equations are now frequently invoked in various scientific and
engineering applications. Physical phenomena in fields such as viscoelasticity, diffusion
processes, relaxation vibrations and electrochemistry are successfully described by differ-
ential equations involving derivatives of fractional order [1-8]. Moreover, some underly-
ing processes that cannot be described by single term time fractional partial differential
equations can be described by multi-term equations — e.g. the multi-term time fractional
diffusion-wave equation modelling various types of viscoelastic damping [9].

In this article, we provide some numerical difference schemes to solve multi-term time
fractional sub-diffusion equations of the following form [9-11]:

c 2%u(x,t)
P( Dt)u(x,t)ZKT+f(x,t), O0<x<L,0<t<T, (1.1)
x
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where « is a positive diffusion constant and the multi-term fractional operator P(D,) here
is defined by

S
P(°D)v(x,t) = ng‘ + Zai ngi v(x,t)
i=1

with0<o,<---<a;<a<landg; €R,i=1,2,---,s, and gD? denotes the Caputo
fractional derivative of order a:
Cv(s)

Cpa —
ODtv(t)_l"(l—a) . (t—s)“ds'

We note that Luchko [10] obtained a priori solution estimates for the generalised multi-
term time fractional diffusion equation using an appropriate maximum principle, and es-
tablished solution uniqueness by the Fourier method. Daftardar-Gejji & Bhalekar [11]
used separation of variables to solve a multi-term fractional diffusion-wave equation with
homogeneous/nonhomogeneous boundary conditions. From Luchko’s Theorem and the
equivalent relationship between the Laplacian operator and the Riesz fractional derivative,
Jiang et al. [12,13] derived analytical solutions for both multi-term time-space fractional
advection-diffusion and multi-term modified power law wave equations, respectively.
Other authors have discussed the numerical solution of fractional partial differential
equations, including the fractional anomalous diffusion equation [14-24]. Chen et al. [14]
proved the stability and convergence of an implicit difference approximation scheme of
the fractional sub-diffusion equation using Fourier analysis. Lynch et al. [15] studied the
numerical properties of the partial differential equations of fractional order 1 < a < 2.
Yuste [16,17] presented an explicit scheme and weighted average finite difference meth-
ods for the time fractional diffusion equation, and analysed their stability by the von-
Neumann method. Zhuang et al. [18] obtained an implicit numerical method to solve
the sub-diffusion equation by integrating the original equation on both sides, and proved
the stability and convergence of their scheme by the energy method. Zhang et al. [19]
constructed a Crank-Nicolson-type difference scheme and a compact difference scheme, to
solve the time fractional sub-diffusion equation with a Riemann-Liouville fractional deriva-
tive. They proved that these two difference schemes are unconditionally stable, and the
numerical solution converges in the maximum norm. Zhao & Sun [20] provided a box-
type scheme for solving a class of fractional sub-diffusion equation with Neumann bound-
ary conditions. Later, Ren et al. [21] proposed a compact difference scheme for the time
fractional sub-diffusion equation with Neumann boundary conditions, and proved its un-
conditional stability and global convergence to be O(72~% + h*) in the discrete L, norm.
There has also been some previous work on the numerical solution of problems with
multiple fractional derivatives. Ford et al. [25] introduced a numerical method for solving
the space-time fractional telegraph equation. Based on a quadrature formula approxima-
tion of the Caputo fractional derivative in spatial and temporal direction respectively, they
proved the scheme was conditionally stable using the Fourier method. Liu et al. [26] pro-
posed an implicit difference scheme for modified anomalous sub-diffusion equations with
a nonlinear source term, and showed its convergence is O(t + h?) by the energy method.
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Recently, Liu et al. [28] discussed some computationally effective numerical methods for
the multi-term time fractional wave-diffusion equations, and Yang et al. [29] applied the
variational iteration method to obtain approximate solutions for multi-term fractional dif-
ferential equations.

Since fractional derivatives are non-local operators, any low-order finite difference or
finite element scheme requires a large number of operations and a large memory stor-
age capacity, so it is very desirable to use high-order methods for the efficient numerical
solution of fractional derivative problems. However, there appear to be very few previ-
ous studies on efficient numerical methods and their relevant stability and convergence
analysis, for problems involving multi-term fractional partial differential equations. The
main purpose of this article is to construct effective and fast numerical methods for the
1D and 2D forms of the multi-term time fractional sub-diffusion equation (1.1), and to
establish corresponding error estimates. To reduce the computational burden, we adopt
fourth-order compact differences for the spatial approximation [19,21,33], such that fewer
grid points are required to produce accurate solutions. The L1 approximation proposed by
Xu [30] and Sun [31] is adopted to deal with the multi-term temporal Caputo fractional
derivatives. Using the discrete energy method, we prove that our resulting compact dif-
ference scheme is unconditionally stable and globally convergent, with the convergence
0(7%™* + h*) in the maximum norm. Furthermore, another new scheme with second-
order spatial accuracy is also presented, and its corresponding stability and convergence
discussed.

In Section 2, we first give some auxiliary lemmas, and then derive our compact dif-
ference scheme. In Section 3, by introducing a new inner product and using the energy
method, we prove the stability and convergence of the compact difference scheme. In
Section 4, the second-order scheme with unconditional stability and maximum norm con-
vergence is discussed. Some results on the two-dimensional multi-term time fractional dif-
fusion equation are given in Sections 5 and 6, respectively. In Section 7, some numerical
experiments are presented to support the theoretical analysis, and to show the efficiency
of the difference scheme. Some final comments are made in the concluding section.

2. Construction of the Compact Finite Difference Scheme

2.1. Notation and auxiliary lemmas

We first give some notation and auxiliary lemmas, to be used in the construction of the
compact finite difference scheme. Without loss of generality, we may takea; =1l andx =1
in Eq. (1.1) and consider the following problem involving the 1D two-term time fractional
sub-diffusion equation:

Cp® ¢ na 2%u(x, )

oD tulx, t) +; Dtu(x,t)=7+f(x,t), O<x<L,0<t<T, 2.1)
u(x,0)=¢(x), 0<x<1L, (2.2)
u(oa t) = wl(t) b) u(LJ t) = ’lpZ(t) b) o<t S T > (2-3)
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where 0 < a; <a <1 and p(x),(t),Y(t) and f(x,t) are known smooth functions.

For the finite difference approximation, we set h = L/M and T = T /N, where M and
N are two positive integers. The domain [0,L] x [0,T] is covered by €, x Q., where
Q,=1{x;|x;=1ih, 0<i <M} and Q, = {t, | t, =n7t, 0 <n < N}. For any grid function
u= {u;( |0<j<M, 0<k<N}defined on 2 x Q., we introduce the notation

1 1
kK k_ K 2k _ = kK _ s ok
5xuj_% =7 (uj uj_l) , 5xuj =7 (5xuj+% 5xuj_%) .

For convenience, we denote a discrete fractional derivative operator D? and an average
operator A respectively as follows:

k—1
1 i .
Dfuf = |uf =D (af ; —af el —af p(x) |, 0SISM, 1Sk<N,
=
where y = 7°T'(2 — a) and af = (k+ DI —k!'"%; and

1

1 h2
Ak —12(uf~‘_1+10uf~‘+uf~‘+1)=(I+—125§)u’-< 1<i<M-1, 0<k<N,
u. =
A
uk, i=0,M, 0<k<N,

i

where I denotes the identity operator.

The following lemmas will be used in deriving the difference schemes.

Lemma 2.1 (cf. Ref. [31]). Suppose that 0 < a < 1, g € C2[0,t,], and

. 1 ogl(s)
R (g(%)):r(l_a)fo £

T n—1
B rz-—a) |:agg(t”) - ;(ag—k—l - a,‘f_k)g(tk) - a,‘i‘_lg(o)} .

Then

[R*(g(t,)] < ! L-o, 27 — (1427 | max |g"(t)|t*®
AT r2-a)| 12 2-a 0<t<t, ’

Lemma 2.2 (cf. Ref [32]). Denote {(s) = (1—5)3[5—3(1—s)?]. Thenif f (x) € C®[x;_1,X;41]
where 1 <i <M —1,

1 1/ 1/ 1/ 1

D [f7(eim) +10F" () + f(xi31) ] — w2 [f(xio1) = 2f () + f(xi41) ]

4 1
=3% [£ O —sh) + FOx; +sh) ] {(s)ds .
0
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2.2. Derivation of the compact difference scheme

Let us now construct a compact difference scheme to solve the problem (2.1)-(2.3).
On Q, x Q., we define the grid functions

Ul'k:u(xiatk): fik:f(xbtk): 0515M} 0<k<N.

Suppose u(x,t) € Cff [0,L] x [0, T]). Considering Eq. (2.1) at the point (x;, t;), we have

Cn% C pa azu(xl” tk) :
o D¢ ulx, ti) +¢ Diulx;, ) = T—l—f(xi,tk), 0<i<M,1<k<N,
and on applying the average operator A to both sides:
CH® Cpa 0%u(x;, ty) .
AgDtulxy, ty) +A g Diu(x;, ty) :AT +Af(x;,t), 1<i<M-1,1<k<N.

From Lemmas 2.1 and 2.2 and recalling D' and DZ,

ADF'UF + ADOUF = 62UF + AfF +RE, 1<i<M-1,1<k<N, 2.4)
where
R (2 et 2 st | €62
= —(x; —sh, —(x; +sh, s)ds
£7360 J, | ax® SOFIT e :

+AR™ (u(x;, t;.)) + AR*(u(x;, ty.)) -

Noting that 0 < a; < a < 1, there exists a positive constant ¢; independent of h and T

such that
R¥| <c)(r2™*+h%), 1<i<M-1, 1<k<N. (2.5)
In addition, it follows from the initial and boundary conditions (2.2) and (2.3) that
Ul=op(x), 0<i<M, (2.6)
Ug=¢1(tk), U}\}:il’z(fk), 1<k<N. 2.7)

Omitting the small term Rli‘ in Eq. (2.4) and replacing the function Uik with its numerical

approximation uf, on noting (2.6) and (2.7) we construct the following compact difference

scheme (L1-CD):

ADMuf + ADMUN = 52uf +AfF, 1<i<M-1,1<k<N, (2.8)
w=0(x;), 0<i<M, (2.9)
ug =1(te), ufy=a(t), 1Sk<N. (2.10)

It is easy to see that at each time level, this L1-CD scheme (2.8)—(2.10) is a linear tridiago-
nal system with a strictly diagonally dominant coefficient matrix, so we have the following
theorem:

Theorem 2.1. The L1-CD scheme (2.8)-(2.10) is uniquely solvable.
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3. Stability and Convergence of the L1-CD Scheme
We now proceed to investigate of the stability and convergence of the L1-CD scheme

(2.8)-(2.10). Let V, ={v | v = (v, V1, ", Viy—1, Vi) Vo = vy = O}. For any u,v € V},, we
define the discrete inner product, L, norm, H I semi-norm and maximum norm as follows:

M-1
Wv)=hY uvi, lul=v@u,

i=1
M-1 p3 M=1
G, =h Y (S,1) (6:31) T3 20 G, 1ol = /(6,.6,0),
i=0
M-1 9
july = h;(5xui+%), oo = max fu.

Lemma 3.1 (cf. Refs. [14,19]). If 0 <y < 1 and alz(k—i—l)l_y — k', k=0,1,2, .
Then

=q Y rs ... s ...
l=a;>a; >a,> >a > -0,

1-y)k+1)7T< az <(A-y)k7T.
Lemma 3.2. Let 0 < y < 1. For any grid function u = {uf |0 <i<M, 0<k<N}defined
on Qp X Q_, it holds that

k-1
1 .
_(ADzuka 532Cuk) :E ||5xuk”}21 - E (al—j—l - al—j)<5xu]’ 5xuk) - a]t_1<5xu01 5xuk> 5
—

where u = T'T(2 — 7).
Proof From the definition of DY and the discrete Green formula,

— u(ADTu*, 52u")

h = h2 .
=— ((I + 55)2() uk,5iuk) +Z (ak i1 ak 1) ((I—i— 55’2‘) u1,5iuk)
]:
h2
+al_1 ((I + ES)ZC) u0,5)2( k)

h2 = . h> .
- (||5xuk||2 - E||5§u’<||2) - (a{_j_l —a,t_j) [(5xu1,5xuk) -5 (5iu1,5iuk)}

j=1
r (5 TR uk) —ﬁ (52u0 52uk)
1 X= 2 FXx 12 X 27X
k—1 .
=||5xuk||}21—2 (a{_j_l —a}:_j) (5.0, 6,uk) — ak 1(0x u®,5,uk) .
j=1
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Dividing the above equality by u then yields the desired result. O
Lemma 3.3 (cf. Ref. [33]). For any mesh function u € Vy,,

2

5|U|f < |18 ully < ful? .

The semi-norm || - ||, is equivalent to the standard H' semi-norm, but the semi-norm || - ||,
is more convenient than the standard H! semi-norm for the stability and convergence
analysis. We now prove the following Theorem on an a priori estimate.

Theorem 3.1. Let {vik |0<i<M, 0<k <N} be the solution of the difference system

ADMVE + ADYVE =52V + gk, 1<i<M-1,1<k<N, (3.1)
v =vx), 0<i<M, (3.2)
V=0, vk=0, 1<k<N, (3.3)

where v°(xg) = v°(x,;) = 0. Then

c
5.vK? < 115,02 X max || ¢!
18,v¥1 < 118,901 + 25 max [lg'|?,

where Cpq,, = max{THI'(1 —a;), T*T(1 — a)}.
Proof. Taking the inner product of Eq. (3.1) with —5§vk, we have
—(ADF'vk, 52vF) — (ADMVK, 52vK) = —(62vK, 52vF) — (g5,62vF), 1<k<N; (34
and hence from Lemma 3.2
1 1 &4 )
—(ADEVE, 826 =18, — = D et —apt )6, 5,
1 1 j=1
ay

a
_ ﬂwxvo, 5.5, (3.5)
1231
1 k=1 ‘
—(ADIVK, 82v8) =— |16, VK IR — — ) [(ap_;_ ) —ag_ )., 6,05
Yo 0 j=1
a

a
- %(5,(%’,5,(%) . (3.6)
0

Substituting Egs. (3.5) and (3.6) into Eq. (3.4), from Lemma 3.1 and the Cauchy-Schwarz
inequality we consequently deduce that

(4 ) 1o

k-1 1 1 4
<> [ - af )+ —af L, —af )]s
= Uy k—j-1 k—j o k—j—-1 k—j X h
a a
a a
k=1 M1 k-1 Mo
+ =2 (115,00 + —a—lgh?) + 22 (160012 + 72— lgkI?) . 37
U1 4a; Uo 4ay_,
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Applying Lemma 3.1 and noting that 0 < a; < a < 1, we also obtain

U1 kalTalr(Z - a]_) < Talr(l - al)

< >
4a;<11_1 4(1 - al) B 4
Yo k*tTr(2—a) T°T(1—a)
< < .
da;_, 4(1—a) 4

Letting
oy2 , Smax .2
B=6,v ||h+—4 llg"ll

and substituting the above estimates into Eq. (3.7), we have

(.ul nul ) ”5 k”2 < S |:.U1 ( - - ) ﬂll ( k k )i| ”5 j”2
y E a'. . —a .|+ a; . ,—ay. . %
1 0 X h = 1 k—j—-1 k—j 0 k—j—-1 k—j X h

aal aa
+| =y kL) 1<k<N.
%51 HUo

Using the same arguments as in [20,21], we obtain the desired result. O

We obtain the following stability statement from Theorem 3.1.

Theorem 3.2. The L1-CD scheme (2.8)-(2.10) is unconditionally stable to the initial value
@ and the inhomogeneous term f.

Let us now consider the convergence of the L1-CD scheme (2.8)-(2.10). Writing

ek=UF—uk, 0<i<M, 0<k<N,

i

and subtracting Egs. (2.8)-(2.10) from Eq. (2.4) and Egs. (2.6)—(2.7) respectively, we get
the error equations

AD%ef + AD%f = 52ef +RF, 1<i<M-1,1<k<N,
=0, 0<i<M,
ek=0, e =0, 1<k<N.

From Eq. (2.5) and Theorem 3.1 we have

2
5. o112 < Smax 12 < CmaxLCT 5 142
10, eIl == 1211235\[”1{ I“ < 4 (=7 *+h")",

and then applying the embedding inequality ||u||o, < §|U|1 (cf. [34]) and Lemma 3.3 we
obtain the following convergence result.

Theorem 3.3. Assume that u(x,t) € Cff [0,L] x [0, T]) is the solution of Egs. (2.1)-(2.3)
and {uif |0<i<M, 0<k<N}isthesolution of the L1-CD scheme Egs. (2.8)-(2.10). Then

¢ L
lleMlloo < 1?\/ 6Cmax(t> *+h*), 0<k<N.
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4. A Second-Order Finite Difference Scheme

We now present a finite difference scheme second-order in the spatial direction that
is computationally efficient when the storage is inexpensive. Thus for the problem (2.1)-
(2.3) we construct the L1-SOD scheme

DU+ DMk =62uf+fF, 1<i<M-1,1<k<N, (4.1)
wW=e(x), 0<i<M, (4.2)
ug=41(t), uy =1a(ti), 1<k<N. (4.3)

Lemma 4.1. Suppose u(x,t) € C;’f [0,L] x [0,T]) is the solution of the problem (2.1)-
(2.3). Then the truncation error of the L1-SOD scheme (4.1)-(4.3) satisfies

|RF|<&(t*+h?), 0<i<M, 1<k<N,
where Cy is a positive constant independent of T and h.

Using the analytical method of the compact difference scheme in Section 3, we can also
prove that the L1-SOD scheme (4.1)-(4.3) is stable to the initial value ¢ and the forcing
term f, and convergent with the convergence order of O(72~*+h?) in the maximum norm.

Theorem 4.1. Suppose {uf |0 <i<M, 0<k<N}is the solution of the L1-SOD scheme
(4.1)-(4.3). Then

c
S uk|> < 116,102 + == ma 2.
13 2 < 13, + 2 max [If')

Theorem 4.2. If the problem (2.1)-(2.3) has smooth solution u(x,t) € C;‘f [0,L]%x[0,T])
and {uif |0 <i<M, 0<k <N} is the solution of the L1-SOD scheme (4.1)-(4.3), then

CrL
IU* = t¥lloo < == Vemax(* % + 1), 0Sk<N.

5. Extension to 2D Multi-Term Time-Fractional Sub-Diffusion Equations

Let is now consider the numerical solution of the following problem involving the 2D
multi-term time fractional sub-diffusion equations:

SD{u(x, y, )+ §D%u(x, y, 6) = Au(x,y, )+ f(x,y,1), (x,y)€Q,0<t<T, (5.1)
u(x,y,0)=9(x,y), (x,y)eQ=Quoq, (5.2)
ulx,y,t) =¢(x,y,t), (x,y)€dQ,0<t=<T, (5.3)

where Q = (0,L,) x (0, L), 99 is the boundary, 0 < a; < a < 1, and ¢(x,y),yY(x,y,t)
and f(x, y, t) are known smooth functions.
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Set x; = ihy and y; = jhy with hy = L;/M; and h, = L,/M,, where M; and M,
are positive integers. Define Q, = {x;| 0 < i < My} and Q;, = {y;| 0 < j < My},
Q= Qp, X Qp,, Uy = UQ and IQy, = Q, UIN . The definitions of 7, t; are the same in
Section 2. For any grid function v = {v;; | 0 <i < M;,0 < j < M,}, we denote

5xvl_1’] h1 (vij —vi_l’j) R 5)2(vi] h1 (5xvl+ ¥ 5xV1_l J) ,
1 1
— 2 _ 2 2
5,8 1yt = i (6uvis ;- 5xvi_%,j_1) SR ANEE S CAORLATEYE
Similarly, the notations &,v; ; 1, §5vj, 5,65v,_ 1 , 6262v;; can be defined. The discrete
Laplace operator is denoted Ahvi 5 vij + 5 Y Vijs and the spatial average difference

operators are defined as

1 n
Hovo=1 12 (vl 1,; +10v;; +Vl+1,j):(1+ﬁ5i)vij; I<i=M;-1,0=j=M,,
x Vij

Vi, i=0 or My, 0<j<M,,

1 h% ) . :
H,v: = E(Vi’f‘ﬁloviﬁvi’f“):( 125y) o 1=7=My =1, 0=i=My,
yVij

vij) ]:0 or Mz, OSlSMl.

We introduce the space of grid functions on Q:
V= {v |v={vij | (x;,y;) €%} and v;; = 0if (x;,y;) € 8Qh} )

For any grid functions u,v € V,, we define the discrete inner product

M;—1M,—1

(wv)=hhy Y > uyv
i=1 j=1

and denote ||v|| = 4/ (v, v). Similarly, we define ||52v], ||5§v|| and ||5)2C§§v||; and denote

M, My—1
16, vl =, | hZZ Z ‘5 vl_%. ,
M, M, 9
16,6, vl = \ hlhzzz 8.:8yvi1y 1| s
i=1 j=
My—1 M, 5
16, 52v|| = \ i Y, 2[8,8%v,1]
i=1 j=1
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and |6, v]], [16,6 §v|| similarly. The discrete H! semi-norm and H' norm are

IVavll = \/II5XVI|2 +5, VI, Wl = VIVIP+ Va2

Finally, for any grid functions u,v € V' we denote

(Viu, Viv)p
hZ
= (6,u,5,v) + (8,1, 5,v) — 1—; [(62u,62v) + (6,6,1,5,5,v)]
2 21,2

_ 2
12 144

IVl = v/ {Vhtt, Vi) g .

5.1. Derivation of the compact ADI difference scheme

and

We suppose that u(x, y,t) € CS:?”%(Q x [0,T]), and define the grid functions
Ul’:l] :u(xiyyj3 tn) > fl;l :f(xiyyj3 tn); (Xl,_)’]) € Qh > 1<n<N.

Considering Eq. (5.1) at the point (x;, y;, t,), we have

SDIUCx;, ¥j, ta) + SD%ulxy, i, tn) = Aulx;, ¥j, t,) + £ (xi, ¥jo t),
(xi,¥;) €, 1<n<N.

Applying the average operator H, H, on both sides of this equation,

HxH_y(C):D?lu(xia y]a tn) + HxHy(C):D?u(XiJ y]5 tn)

h2h
[(5§u,5§v)+(5x5yu,5x5yv)] +-L2 [(5§5yu,5§5yv)+(5x5§u,5x5§v)]

=H,H, (uxx(xi,yj, tn) +uy, (X, i, tn)) +H,H, f(x;, 5, tn))t, (x5, ¥)) €Q, 1<n<N.

From Lemmas 2.1 and 2.2,

— 2 2 D
H H, DU}, + H,H,DU = H, 62U + Hy 52Ul + H. H, f1 +RY,

(xi:yj)EQh: 1<n=N,

where

_ - rt (T rotu 2°u
RY [ 5280 = Ak, v t0) + 55 i Ay, ) [ €2 d2
0

7360 ) Laxe
hg 'rotu 3%u
+% . [a—yﬁ‘(xi,yj' _Ahz’tn)_i'3_},6(xi’yj+kh2:tn)] Z(A)dA

+H, H R (u(x;, ti)) + HHyR*(u(x;, ty) -
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_1
Adding a small term 5 1:‘_“ ) 25 25, U "2 into Eq. (5.4), we then have
1

_1
P® 52525,07 2
M1+ Uo

=H, 63U}, + H65Uf + HoHy ff + R}, (x,y;) €Q, 1Sn<N, (5.5)

H,H,D¥ Ut +H H,DUJ +

where

Uit T
u1 + to

1
5 2c2 n—;
R}, =R} + 62626U; *,

so there exists a positive constant ¢, independent of h;,h, and 7T such that

_1 .
R 2| < cp(vmn0F ezl p Bt 4 b3, (x;, ;) €Qy, 1Sn<N. (5.6)
In addition, on noting the initial and boundary value conditions (5.2)—(5.3) we find that

Ul(; :(P(xi,yj), (Xi:yj)EQh, (57)
U1T}=¢(Xi,y]‘atn), (x;,¥;) €08, 1<n<N. (5.8)
Omitting small terms R?j in Eq. (5.5), and replacing the function Ul.”. with its numerical ap-

proximation u?j in Egs. (5.5), (5.7) and (5.8), we obtain the following compact difference
scheme (L1-CADI):

H H, DO, + H H, DOl + 20 52525 7
M1+ Uo
—Hy5§u;“] +H S0l +HH,y f, (xpy) €, 1SN, (5.9)
upy=9(x,y;), () €, (5.10)
w,=¢(x,ypt), (x,y)€0Q, 1<n<N. (5.11)

To efficiently solve this formulation, the following techniques can be used. Introducing
the intermediate variable ufj, we obtain the D’Yakonov-type ADI scheme

e (%)25i5§u5‘1+ ) Z(an 1= 0 HH
.uoa:il 4
{ +‘u1+‘u0HxHy¢ij +.u0 Z( nek—1— ay_ JH H,u
n Moy _q HxHy¢ij+ MHXH}, in ,
b1+ Ho p1 + o g
= p s e =i
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We determine {u?j} by solving two sets of independent one-dimensional problems. Since
the coefficient matrices are strictly diagonally dominant, at each time level one can run the
x-sweep of the procedure to compute {u; ; |(xi,¥;) € Q4} with the known data {u?j_1 |(xi, ¥5)
€ Q} using the fast tridiagonal (Thomas) algorithm — cf. Ref. [35] for example. Then
once the solution {ufjl(xi, ¥j) € Qu} is available, the y-sweep can readily be performed
to calculate the desired unique solution {u?jl(xi, ¥;) € 4} to the compact ADI difference
scheme (5.9)-(5.11).

5.2. Stability and convergence of the L1-CADI scheme

To analyse the stability and convergence of the L1-CADI scheme (5.9)-(5.11), we in-
troduce some important lemmas.
Lemma 5.1. If 0 <y < 1, for any grid function {uj; | (x;,y;) € Qp, 0 < n < N} defined on
Qp, x Q. we have
1 n—1
~(HHy D", A" == [V 2. = Dy = al_ (Vi Vi
k=1
—a,_ (v, thn)h*} .

Proof. The result follows from the definition of || - ||;+ and the discrete Green formula.

O
Lemma 5.2. For any grid function u € V,},
2
(1,82 + He82u, Apu) = SllAwul?.
Proof. From the discrete Green formulation,
((Hy5§ +Hx5§) u, Ahu)
h2 h2
= ((1 + 555) §2u+ (1 + ﬁ(si) 52u, Ahu)
h2 2
1 2
= Al - 73 (15.62ull? +11625,ul ) — 2 (H18.52ul* + 11525 ull?)
1 1
> Al = 5 (I82ul? + 1158 ul) - 5 (62l + 1155, ul)
SN
f— u 5
- 3 h
where we have used
16,6 ull <2h7 Y16, ull,  182ull < 2h7H16,ull,
16,8y ull < 25 16,ull,  163ull < 215115, ull - O
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Lemma 5.3. For any grid function u € V,", we have

1
gllvhull2 < IVpulli- < IV5ull®.

Proof. The result readily follows from the definition of || - ||+ and inverse estimates. [

We may now obtain an a priori estimate in the following Theorem.

Theorem 5.1. Let {vi’} | (xi,¥;) € Qp, 0 < n < N} be the solution of the difference system

=H,62v[ +H v +gf, (X, y;)€Q, 1<Sn<N, (5.12)
v =v00x, ), (X y) €y, (5.13)
VFJ-:O, (x;,¥;) €08y, 1<n<N, (5.14)

where vo(xi,yj) = 0 when (x;,y;) € 9. Then it follows that

n

Ptk T 2,012 25 02

Y NIVI2 <c { (||5 52v0|1* + 11625, )
; " T g+ o =y x>

Tl Tl 02 3 < k2
+( =+ )Vv T+ =T .
PR R o) | O ;Hg [r

Proof. Taking the inner product of Eq. (5.12) with —A,v", we have

Uil T 2 <2 n—1

a n n a,,n n n

— (H H,DIv", Apv™) — (H H, DIV, Apv™) — s (5x5y5tv 2, Ay )
—_ ( H, 6% + H,52)v", Ahv”) - (gk,Ahv”) , 1<k<N. (5.15)

On using the discrete Green formula and Cauchy-Schwarz inequality, we rewrite the third
term on the left-hand side of Eq. (5.15) as

-7 (5i5§5tv”_%,Ahv”)
= — (8262, apm) + (826207, A7)

(1526, v +15,62v12) — [ (5,62v"1,6,62v") + (625,v"1, 525, v") ]

1
2 (1828, vm12 +115.62v"12) = 5 | (185%™ 12 +116,52v"I12)
+ (1828, v 1>+ 11625, v"1*) |

1
2 2 2)n2 2 -1y2 20112
>~ [(1828,v12 +115,52"1) - (1626, 2 + 115,82 ) | . (5.16)
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On substituting Eq. (5.16) into Eq. (5.15), and using Lemmas 5.1 and 5.2 together with
the Cauchy-Schwarz inequality, we deduce that

U1 lho

525 ni2 S 52 ny2
sty | (188,071 +116.8"1)

1 1 5 2 5
— + — | [IV"ll5 + 3 1A" 17 +
u 3

U 0
— (11828, 12 + 115,62v" 1) |
a

—1
(Vpv?, Viy™) e
1

. al k n a
Z n k=1 _k)(vhv )vhv )h* +
1 k=

a

el a _ v. vk v,y n—1
(an—k—l an—k)< W' Vv e+

(Viv®, Vv — (8", Viv™)

Yo
(11 (11
Z( 1 )(||vhv’<||h*+||vhv“||h*)+ o L0z + 2 AL
1 r C( (1 1
al_
+52<a,3_k_1 @) (IR M I + 1R IR ) + 5 ||vhv°||h* AR
0 k=1 0

3 2
+=lg"I> + = llap"1?,
8" I"+ S 1Al

implying that

1 1 1 o
(o o ) 9+ 2 [ (1526, 2+ 15,5271
By Mo H1 + Uo

: (||525 VI 4 15,5202 |

n—1 1

<3 (e e et e | I
= Mo

a’, a’, 3
(n— +— ) I3Vl + Zle"l- (5.17)

+

U1 Ug

On denoting

n—1 a a

a

G" = Tnk g Tnok )y g, k|2, 4 2RO ||525 V2 4116, 620" 1<n<N

h
=\ W Mo .U1+

and

GO — M1lo (

2 012 2.,0712
e (1828,0° + 116,831 )
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Eq. (5.17) can be written as

a a

a a_ 3

GG 4 [ 4 2| VOl + S lg P
Uy Uo 4

n
<GO+Z (_Jf—) V3Vl + leg"llz. (5.18)
k:l

On the one hand, noting that an_k >(1-y)(n—k+1)"7>(1—-y)NY wherey =a;, a
we arrive at

.l _ a,’y S d—aN™ 1
U1 Tar(2—ay)  t8r2—a;) THT(1—ay)
ay , B ay_, - (1-a)N"® 1

e TR2-a)” tr(2—a) TU(l-a)
On the other hand, noting that a] = (k 4+ 1) — k'~ we have

n 0 1-a; 1-oy

TZ S p—. < _tn < L
— up T TUI(2-a;) T TQ2-aoy) T T2—ay)
n a Tnl—a tl—a Tl—a

ak—l n
< < < .
T; o T T(2—-a) T2-a) T2-a)

Multiplying Eq. (5.18) by 7 and invoking the above inequality yields the desired result. [

From Theorem 5.1, we obtain the following stability statement.

Theorem 5.2. The L1-CADI scheme (5.9)-(5.11) is unconditionally stable to the initial value
@ and the inhomogeneous term f.

Let us now consider the convergence of the L1-CADI scheme (5.9)-(5.11).

Theorem 5.3. Assume that u(x,y,t) € Cg’f/’f(ﬂ x [0, T]) is the solution of Egs. (5.1)-(5.3),

and {u | (xi,¥;) € Qp, 0 < n < N} is the solution of the L1-CADI scheme (5.9)-(5.11). Then

1 3c .
MTZ 1V ek1? < 72 VTL Ly (rmintte2=al p pd 4 pd) . 1<n<N.
k=1

Proof. Let

U—Un_ul], (xi,y]-)eﬂh, 0<n<N.

Subtracting Egs. (5.9)-(5.11) from Egs. (5.5), (5.7) and (5.8) respectively, we obtain the
error equations

_1
H H,D®e!, + H H, D el + ~ 52525 ! 2
u1+u /

=H,65e; +H, 55, + R, ,
el.].=0, (x;,¥j) € Qs

e;=0, (x;,y)€d, 0<n<N,

(Xi;yj)EQh’ 1<n=N,
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where Dzefj = Dz(Ui’} — u{‘j) and y = a, a;. Using inequality (5.6), it follows from Theo-
rem 5.1 and Lemma 5.3 that

n n n
ot ot . B
T kg 1 |V ,ek]1? <—4 kE s IRK||> < T kg 1 Llecg(’rI’mn{lJro"2 ab 4 h‘l‘ + hg)2

o , in{1+a,2— 4 4 14)2
sjchle(fmm{ @2a L hi+h3)", 1<n<N.

6. A Second-Order ADI Finite Difference Scheme for the 2D Problem

We consider a difference scheme L1-ADI for the problem defined by Egs. (5.1)-(5.3) as

follows:
a a..n Ml“o 22
D 1u +DTuU+,u1+u05 o 5t i
= A+ £ (xpy) €y, 1<n<N, (6.1)
ul :‘P(xi,.)’j); (xi;}’j)EQh, (6-2)
u; =¢(x,ypt), (X,y)) €0, 1<n<N. (6.3)

The difference scheme for Eq. (6.1) can be written in the ADI form

_ Mo o o _ [ _Mibo 252,11 4 al K
- (22 S

p1+ Mo p1 + Mo
aq
{ + Uoa n— 1 ] (Cl a® )uk+ .u’oan—l 'l/)+ U1lo n
EITAL T +u Z nket T e s T e
M1t 2 n _
|:I_.U1 +Mo5y} u

Lemma 6.1. Suppose that u(x, y,t) € C;‘;%(Q x [0, T]) is the solution of the problem (5.1)-

(5.3). Then the truncation error of the L1-ADI scheme (6.1)—(6.3) satisfies
|R11<J|S5 ( min{14+a,2— a}+h2+h2) (xi’yj)eﬂh’ 1<n<N,
where Cy is a positive constant independent of T and hq, h,.
The proofs for the stability and convergence for the L1-ADI scheme (6.1)-(6.3) are

essentially the same as for Theorems 5.1 and 5.3, so we omit the details and simply state
the relevant results.
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Theorem 6.1. The L1-ADI scheme (6.1)—(6.3) is unconditionally stable to the initial value ¢
and the inhomogeneous term f — i.e.

n
P T
Ty IVak|? < c (15,8261 + 11525, 1|12
2,1Vl max{ulwo 16,852 + 11635, 1)

Tl Tl 02 3 % k2
\Y% = .
| famay Tra=a ) IV +4T;||f I

Theorem 6.2. Suppose u(x,y,t) is the smooth solution of (5.1)-(5.3) and {u{‘j | (xi, ) €
Qh, 0 <n < N} is the solution of the L1-ADI scheme (6.1)-(6.3), respectively. Then

n ~
Cr i —
1/rkz IVheHI2 < 2 /3T Ly Ly (2™ 14274 + bl +h3) . 1<n<N.
=1

7. Numerical Experiments

We now present numerical solutions of the problem using the numerical methods pre-
viously discussed, where the errors involved are measured by comparing the numerical
solutions with exact solutions.

Example 7.1. Let L = 7, T = 1. In order to test the convergence rate of the proposed
methods, we refer to the exact solution of the problem (2.1)-(2.3) — viz.

u(x,t) =t ®toginy .

It can readily be checked that the corresponding source term f(x,t) and the initial and
boundary conditions are respectively
F(2+a1+a)t2+a r2+a +a)t2+°‘1 by

flx, t):( r2+a) T2+ ay)

1+a1+a) sinx

and
e(x)=0, Y(t)=0, Y,(t)=0.

We compute the maximum norm errors of the numerical solution

_ k_ .k
eoo(h,f)—ogasﬁllU U oo 5

and respectively characterise the temporal convergence order and the spatial convergence

order as (h27) (2h. )
eOO ) T eoo )T
_— Order2 =1 — .
s, ) ) TR ( em(h,r))

The first computational investigation concerns the temporal errors and convergence
orders. In order to find the temporal convergence order, the space step h should be chosen

Orderl =log, (
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Table 1: Numerical convergence of the L1-CD and L1-SOD schemes in the temporal direction.

the L1-CD scheme | the L1-SOD scheme
a;, o T ex(h,7) Orderl | e (h,7) Orderl
1/10 | 3.776e-2 * 3.776e-2 *
1/20 1.836e-2 1.040 1.836e-2 1.040
a; =0.15, a=0.95 1/40 | 8.890e-3 1.047 | 8.890e-3 1.047
1/80 | 4.296e-3 1.049 | 4.296e-3 1.049
1/160 | 2.075e-3 1.050 | 2.075e-3 1.050
1/10 1.242e-2 * 1.242e-2 *
1/20 | 4.817e-3 1.366 | 4.817e-3 1.366
a; =035, a=0.65 | 1/40 | 1.858e-3 1.374 | 1.858e-3 1.374
1/80 | 7.159e-4 1.376 | 7.160e-4 1.376
1/160 | 2.759¢e-4 1.376 | 2.761e-4 1.375

Table 2: Numerical convergence of the L1-CD scheme in the spatial direction with T =1/200000.

a;, a h ex(h,7) Order2
n/2 6.413e-3 *

a; =035, a=0.65 | ©w/4 3.788e-4 4.082

/8 2.328e-5 4.024

n/16 1.464e-6 3.991

/2  6.450e-3 *

a; =045, a=0.55| ©/4 3.809¢-4 4.082

n/8 2.340e-5 4.025

n/16 1.461le-6  4.002

sufficiently small to prevent the effect of the spatial discretisation error entering into the
calculation. The computational results of the L1-CD scheme (2.8)-(2.10) and the L1-SOD
scheme (4.1)-(4.3) with h = /100 and h = 7t/1000 are presented in Table 1, respectively.
It is observed that both schemes generate 2—a temporal convergence order, consistent with
our theoretical analysis.

Secondly, we test the spatial errors and convergence orders of the two schemes by
letting h vary, but fixing the time step 7 sufficiently small to avoid contamination of the
spatial error. Tables 2 and 3 show the maximum norm errors and spatial convergence
orders of the L1-CD scheme and the L1-SOD scheme with different a;, a. As predicted by
our theoretical estimates, the L1-CD scheme attains fourth-order spatial accuracy while the
L1-SOD scheme has second-order spatial accuracy.

Next, in order to quantify some features of the computational efficiencies of the L1-CD
scheme more precisely, we investigate the CPU time of both schemes. As mentioned before,
since fractional derivatives are non-local operators they require a large memory storage
capacity if low-order finite difference methods are employed for the spatial approximation.
For the L1-SOD scheme, the optimal step sizes satisfy 72~* ~ h?, or N ~ [M ﬁ]. For the
L1-CD scheme, the optimal step sizes satisfy 72~ % ~ h*, or N ~ [M 2%4a].

From Table 4, it is clear that the two schemes provide almost the same accuracy for
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Table 3: Numerical convergence of the L1-SOD scheme in the spatial direction with T =1/20000.

a;, a h es(h,7) Order2
n/2  4.612e-2 *

a; =035 a=0.65| ©/4 1.188e-2 1.956
n/8 2.993e-3  1.990
n/16 7.497e-4  1.997
m/2  4.640e-2 *

a; =045, a=0.55 | ©w/4 1.195e-2 1.957
n/8 3.009e-3  1.990
n/16 7.537e-4  1.997

Table 4: The maximum norm error and CPU time of the L1-CD and L1-SOD schemes.

the L1-CD scheme the L1-SOD scheme

a;, a N M ey (h,T) CPUtime(s) | M ex(h,7) CPU time(s)
225 10 1.678e-5 0.1669 100 2.940e-5 0.7005
a; =0.1, a=0.3 585 15 3.286e-6 0.7557 225 5.802e-6 4.8096
1151 20 1.044e-6 2.3417 400 1.835e-6 20.8146
1947 | 25 4.262e-7 5.9645 625 7.512e-7 70.2803
464 10 2.159e-5 0.3780 100 3.331e-5 1.5963
a; =0.1, a=0.5 1368 15 4.229e-6 2.1757 225 6.572e-6 14.9198
2947 | 20 1.343e-6 8.7419 400 2.078e-6 86.3564
5344 | 25 5.485e-7 28.4608 625 8.505e-7 369.1998
1194 | 10 3.070e-5 1.1944 100 4.131e-5 5.4915
a; =01, a=0.7 | 4157 | 15 6.024e-6 11.1884 225 8.156e-6 89.9025
10073 | 20 1.916e-6 65.8156 400 2.580e-6 727.2762
20015 | 25 7.829e-7 292.5059 625 1.057e-6  4146.7922

the same temporal grid size, but the L1-CD scheme needs fewer spatial grid points and less
CPU time. Thus the L1-CD scheme reduces both the storage requirement and the necessary
CPU time successfully.

Finally, we compute the long time behaviour of the L1-CD and the L1-SOD schemes.
The optimal step sizes again satisfy 72~ ~ h? for the L1-SOD scheme and 72~% ~ h* for
the L1-CD scheme, on fixing T = 10 and M = 4,6,8,---,24. Fig. 1 shows the maximum
error and CPU time of the L1-CD scheme and the L1-SOD scheme for t = 0,1,2,---,10
when a; = 0.1, a = 0.2, and the compact difference scheme efficiency.

Example 7.2. Let T =1, Q = (0, ) x (0, 7). As before, we refer to the exact solution of
the problem (5.1)-(5.3) — i.e. in this case

u(x,y, t)=t3T"" %sinxsiny .

It is again not difficult to obtain the corresponding forcing term f(x, y,t), and the initial
and boundary conditions ¢ (x, y) and Y (x, y, t).

In order to test the convergence rate of the proposed methods, we use the same spacing
h in each direction (h = h; = h,), and compute the maximum norm errors of the numerical
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CPU time of the two schemes versus t
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Figure 1: Error and CPU time of the L1-CD and L1-SOD schemes.

Table 5: Numerical convergence of the L1-CADI and L1-ADI schemes in the temporal direction.

the L1-CADI scheme | the L1-ADI scheme
a;, a T E(h,7) Orderl | E (h,7) Order3
1/10 | 7.038e-2 * 7.038e-2 *
1/20 | 3.452e-2 1.028 3.453e-2  1.027
a; =02, a=0.9 1/40 1.657e-2 1.059 1.658e-2 1.058
1/80 | 7.857e-3 1.077 7.862e-3 1.076
1/160 | 3.698e-3 1.087 3.703e-3 1.086
1/10 | 4.140e-2 * 4.141e-2 *
1/20 1.757e-2 1.236 1.758e-2 1.236
a; =05, a=0.7 | 1/40 | 7.294e-3 1.269 7.299e-3  1.268
1/80 | 2.985e-3 1.289 2.990e-3  1.287
1/160 | 1.212e-3 1.301 1.217e-3 1.297
solution
Ey(h,7)= max |u(xi)yj:tn)_u?j| >
(xi,yj)€0
0<n=<N
via
E(h,27) E(2h,7)

Order3 = 10g2 (m
oo\ H

Firstly, the numerical accuracy in time is ve
and h = 7/200 respectively, and varying the

) , Order4 = log, (

).

rified. For fixed space step sizes h = /20
temporal step size T, the computational

E.(h,T)

results we obtain are displayed in Table 5. From this data, we conclude that there is

min{l + a,2 — a}-order convergence in time.
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Table 6: Numerical convergence of the L1-CADI scheme in the spatial direction with T =1/200000.

a;, a h E(h,7) Order4
/2 4.074e3 ¥

a;=0.1,a=02]| n/4 2413e-4 4.078
/8 1.482e-5 4.025
/16 9.222e-7  4.006
n/2  2.768e-3 *

a; =02, a=03| n/4 1.64le-4 4.076
/8 1.009e-5 4.024
/16 6.334e-7  3.993

Table 7: Numerical convergence of the L1-ADI scheme in the spatial direction with 7 =1/10000.

a;, a h E(h,7) Order4
/4 2.314e-2 "

a; =01, a=02| ©n/8 5.76%-3 2.004

/16 1.436e-3  2.007

/32 3.528e-4  2.025

/4 2.124e-2 ¥

a; =02, a=0.3| ©/8 5.306e-3 2.001

/16 1.324e-3  2.003

/32 3.287e-4  2.010

Secondly, we test the spatial errors and convergence orders of the two schemes, by
letting h vary and fixing the time step 7 sufficiently small in order to avoid significant
contamination from the spatial error. Tables 6 and 7 give the maximum norm errors and
spatial convergence orders for the two schemes. As predicted by the theoretical estimates,
the L1-CADI scheme attains fourth-order spatial accuracy whereas the 1.1-ADI scheme has
second-order spatial accuracy. In Table 8, we display some CPU time results for the L1-
CADI and L1-ADI schemes. It is clear that the two schemes generate almost the same
accuracy for the same temporal grid size, while the L1-CADI scheme needs fewer spatial
grid points and less CPU time, so it requites less storage and CPU time.

Similar to Example 7.1, we compute the problem for a longer time by fixing T = 10
and M = 4,5,6,---,14, and still choosing the optimal step size T™"{1+®2=a} & 12 for the
L1-ADI scheme and t™"1*®2-a} b4 for the L1-CADI scheme, respectively. Fig. 2 shows
the maximum error and CPU time of both schemes for t = 0,1,2,---,10 when a; = 0.1,
a = 0.2, and also the efficiency of the L1-CADI scheme.

8. Conclusions

In this article, we discuss some computationally effective numerical methods for solv-
ing 1D and 2D multi-term time fractional sub-diffusion equations. Based on the L1 ap-
proximation for the multi-term time Caputo fractional derivative in the temporal direction,
and in order to reduce the storage requirement, a compact difference method for spatial
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Table 8: The maximum norm error and CPU time of the L1-CADI and L1-ADI schemes.

the L1-CADI scheme the L1-ADI scheme
a,;, a N M  Ey(h,t) CPUtime(s) | M E(h,T) CPU time(s)
26 4 8.013e-6 0.0952 16 8.406e-6 0.1933
a; =01, a=0.3 68 6 6.330e-7 0.4022 36 6.355e-7 2.3234
133 8 8.503e-8 1.7451 64 8.510e-8 15.2556
225 [ 10 1.659e-8 5.9884 100 1.660e-8 68.3041
40 4 9.825e-6 0.0979 16 9.861e-6 0.2762
a; =01, a=0.5| 119 6 2.380e-7 0.7966 36 2.381e-7 4.3325
256 8 1.658e-8 4.4757 64 1.658e-8 33.2143
464 | 10 2.056e-9 18.5542 100 2.057e-9 179.8494
71 4 1.743e-6 0.1580 16 1.744e-6 0.4916
a; =01, a=0.7 | 248 6 1.668e-8 2.1985 36 1.669e-8 10.0185
601 8  5.994e-10 17.3999 64  5.994e-10 100.2059
1194 | 10 4.492e-11 95.8941 100 4.492e-11 917.2806
_2Error of the two schemes versus t CPU time of the two schemes versus t
10 | —#— the L1-CADI scheme 450 —#— the L1-CADI scheme
the L1-ADI scheme 400 the L1-ADI scheme ||
\s\
\&_ 350
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w 300
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Figure 2: Error and CPU time of the L1-CADI and L1-ADI schemes.

approximation is derived that has fourth-order spatial accuracy [19,21,33]. Using some
novel techniques, the unique solvability, unconditional stability and global convergence
are proved rigorously for both the 1D and 2D cases. Numerical examples verify the ef-
fectiveness of the compact difference scheme. These methods and techniques could be
extended to other kinds of multi-term time-space fractional equations and to equations
with a nonlinear source term. Future work may concentrate on studying the effective
numerical schemes for the multi-term fractional time-space equations.
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