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INEQUALITIES FOR ENTIRE FUNCTIONS
OF EXPONENTIAL TYPE

BY
CLEMENT FRAPPIER

ABSTRACT. Bernstein’s inequality says that if f is an entire
function of exponential type T which is bounded on the real axis
then

max |f'(x)|=<7 max [f(x)l.
o —oo<Tx <Coo

—oo<Tx <

Genchev has proved that if, in addition, h(w/2) =0, where h; is the
indicator function of f, then

_max _[f'(x)|=7 max_[Ref(x)|.

Using a method of approximation due to Lewitan, in a form given
by Hormander, we obtain, to begin, a generalization and a refine-
ment of Genchev’s result. Also, we extend to entire functions of
exponential type two results first proved for polynomials by Rahman.
Finally, we generalize a theorem of Boas concerning trigonometric
polynomials vanishing at the origin.

1. Introduction and statement of results. et B, be the class of entire
functions of exponential type 7 which are bounded on the real axis. A result of
S. N. Bernstein says that if fe B, then [3]:

M Fl=7 max |f(0)], —e<x<o.

Equality in (1) holds only if
f(z)=ae ™™ +be™, a,beC.
Genchev [9] has proved that if fe B, and h¢(w/2) =0, where

h(6) ::}_i_r)—glol———()g lffre'e)l

is the indicator function of f, then

&) If' ()| = T_max Re f(1)], —oo<x<o.
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The inequality (2) extends a result of Szegd: if P(z) =), a;z’ is a polynomial
of degree =n then the function f(z)= P(e"*) satisfies the hypothesis of Gen-
chev’s result and (2) becomes (see [15]):

(3) |P'(z)|= nmax [Re P(¢)|, |z|=1.

In this article we first obtain a generalization of (2).

THEOREM 1. Let f € B, such that hy(w/2)<0 and |Re f(x)| =1 for —o<x <oo,
Then
fx+iy)—f)l=(e™-1), y=0, -—wo<x<ox
We shall also prove the following theorem which is stronger than Genchev’s
result.

THEOREM 2. Let fe B, such that he(m/2)<0 and |Re f(x)| <1 for —o<x <o,
Then
[Re(rf(x) +if ()| +|f (x)| =7, —o<x<co

It is to be noted that the case f(z) = P(e**), where P is a polynomial of degree
=n, of Theorem 2 gives us a refinement of (3).

To prove Theorems 1 and 2 we use a method of approximation due to
Lewitan [13] in a form given by Hormander [11]. This method turns out to be
very useful and we use it to obtain the next results.

THEOREM 3. Let «, B, v be complex numbers such that the roots of the
polynomial
u(z):=(ar?+iBr—v) + 2irQiat — B)z + 4ar?z?

lie in Re(z)=3. If fe B, and |f(x)|=<1 for —c<x <o then

laf"(x +iy) + Bf'(x +iy) + yf(x +iy)| <|~ar’ +iBr +vy|e ™,
y =0, —00 < x <o,

This theorem extends a result of Rahman on trigonometric polynomials [14,
Theorem 5]. Also, suppose that f € B, is real on the real axis and that |f(x)|=1
for —o<x <o, Choosing a =0, B =f'(x), y=7f(x) and taking y =0 we see
that Theorem 3 contains an inequality of Duffin and Schaeffer [8]:

4) (f'))+(f(x)* =73, —w<x<ox
THEOREM 4. Let «, B, v be complex numbers such that the roots of the
polynomial

v(z):=vy+iBrz —ar’z?
lie in Re(z)=<3. If fe B,, hy(m/2)=0 and |f(x)|=<1 for —o<x < then

laf"(x +iy) + Bf'(x +iy) + yf(x + iy)| <|a’+iBr + y|e ™,
y=0, —oo < x<< oo,

https://doi.org/10.4153/CMB-1984-073-4 Published online by Cambridge University Press


file:///afix
https://doi.org/10.4153/CMB-1984-073-4

1984] INEQUALITIES FOR ENTIRE FUNCTIONS 465

Like Theorem 3 this theorem extends a result of Rahman [14, Theorem 4].
It is readily seen that the condition on the roots of the polynomial v(z) in
Theorem 4 is less restrictive than the corresponding condition on u(z) in
Theorem 3; this latter is already satisfied if «, 8, vy are reals and B*=4ay.

THEOREM 5. Let f € B, such that |f(x)| =1 for —o<x < and f(0) =0. Then
|f(x)|=<lsin 7| for |xlsl.
27
If, in addition, h¢(mw/2)=0 then

If(o)l =

X
sin = for |x|sz.
2 T

Theorem 5 generalizes a result of Boas [6] according to which the inequality

(5 |S(x)|=<|sin nx|, lesl,

2n
holds for all trigonometric polynomials S(x)=Y"__, b,.e™ satisfying S(0)=0
and maxg—, . |S(x)|=1. It is also an amelioration of a result of Giroux and
Rahman [10]: let f € B, such that he(w/2)=<0, f(0)=0 and |f(x)|=1 for —wo<
x <coo; we have then |f(x)|=1/2|x| for |x|=2/t.

2. The method of approximation. Let f < B, such that |[f(x)|=1 for —e<x <
o, Put ¢(x)= (sin 7x/mx)? and

(6) fu(x)= i (p(hx+k)f<x +E) h>0.

k=—o0

LeEmMA 1. The functions f, defined by (6) are trigonometric polynomials with
period 1/h and degree less or equal to N:=1+[7/27h]. When x is real we have
If.()|=1, and f,,(z) — f(z) uniformly in every bounded set when h — 0.

In view of Lemma 1 we may write

N

(7) fu)= Y Culh)er™m=

m=—N
where
1/h

C,.(h)= hj £ (x)e 2mmhx gy
Lemma 2. If hy(w/2) <0 then ’

C,.(h)=0 for —N=m=-1.
Proof. Proceeding as in [11, p. 22] we have

(€)) C,(h)= th (p(h(x+iy))f(x+iy)e~21-rimh(x+iy) dx,
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for all real values of y, and the estimate

e2whlv\

9) lcp(h(x+iy))lﬁm-

Suppose that y>0. The hypothesis |f(x)|=1, —eo<x <o, and h(m/2)=<0
imply [4, p. 82, Theorem 6.2.4] that

(10) fe+iy)=1, y=0, —co<x<wx,
Using (8), (9) and (10) we obtain
lCm(h)lseZ-n-hyz(erl) Joo 2dx i :ez-rrhy(m+1)
w2h ). (x®+y?) oy

Letting y — o we get C,(h)=0, m=—-1,-2,...
3. Proofs of the theorems

Proof of Theorem 1. Consider the trigonometric polynomials (7), h>0. In
view of Lemma 2 we have C,,(h)=0, —N=m =-1. Thus, we may write

where P, is an algebraic polynomial of degree =<N. Applying a result of Szegd
[15, p. 68] we have

(11) lPh(Rei")—Ph(ei")IS(RN—1){gggclRePh(«S)I, —o<x<e, R=1

If we change x to 27hx and R to R*™ then (11) becomes
(12)  fulx—ilog R)—f,(x)|=(R*™N=1), —co<x<w,  R=z=1,

Since Max_ -y . |R€ f, (x)| =1 whenever max_.._, ... |Re f(x)|=1. Observe that
(13) lim 27whN = 7.

h—0
By Lemma 1, f,,(z) — f(z) uniformly in every bounded set, when h — 0, and
the result then follows from (13) if we let h — 0 in (12).

Proof of Theorem 2. It is known [7, Theorem 4] that if P is a polynomial of
degree =n such that |Re P(z)|=1 for |z|=1 then

(14) Re((§-2)P'(z)+nP(z))l=n,  [¢|=1, [z|=1.

Write P'(z)=a,+ia,, nP(z)—zP'(z)=b,+ib, (a4, a,, by, b,€R) and take &=

e, weR in (14); we obtain

(15) —n=a,;cosw—a,sinw+b;=n, weR.
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The choice —

. ar
SINwW=—F—F">57 COS w =
Va?+a?)’

_ %
V(ai+a3)
in (15), gives us the inequality v(a?+a2)+ b, =n while the choice

sin e cos —4
—_— e ——— w =

N V@t ad) Jai+ad)

gives —n =<—+(a?+ a2)+b,; combining these inequalities we obtain

(16) |[Re(nP(z)— zP'(2))|+|P'(z)|=n, lz|=1.

Consider now the trigonometric polynomials (7), h>0. In view of Lemma 2
we may write f,(x/27h)= P,(e™) where P, is a polynomial of degree <N.
Furthermore |Re P,(z)|=<1, |z|=1, and so, applying (16), we get

17) |Re(NP, (z) - zP(2)|+|Pi(2)|=N,  |z|=1,

which is equivalent to

(18) |Re(2mhNf, (x) + if ()| + |f r(x)| = 27hN, —co< x <o,

The result then follows from Lemma 1 and (13) if we let h — 0 in (18).

Proof of Theorem 3. Consider the trigonometric polynomials (7), h >0. Put

s.00=h(5)

We have (Lemma 1) |S,(x)|=1, —o<x <. Now, a result of Rahman [14,
Theorem 5] says that if S(6) is a trigonometric polynomial of degree =n such
that |S(6)|=1 for 0=6 <27 and the roots of the polynomial

2a2n—1)
n

u(z):= z2-2{a@n—1)+ib}z+an’*+ibn—c

lie in the half plane |z|=<|z —n| then
(19) [aS"(6)+ bS’(0) + cS(0)|<|—an?*+ibn +c|, 0cR.

It is clear that the same line of reasoning used in [14] to prove (19) lead us to
the more general conclusion

(20) |aS"(0—ilog R)+bS'(0—ilog R)+cS(6—ilog R)|
=|-an®*+ibn+c| R", 0eR, R=1.

Take a = (2mh)?a, b=2mhB, c =7, 6 =2mhx, y=—2mhlog R and apply (20)
to the trigonometric polynomial S, (of degree =N). We obtain that if the roots
of the polynomial

uy(Nz) = 22mh)>N(2N — 1)az? — 2{(27h)> NN - 1)a + i2whNB} z
+2mhN)*a+iB27hN —v
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lie in the half plane |z|<|z—1]| then
lafn(x +iy) + Bf u(x +iy) + v, (x + iy)| <| = (27hN)*a + i(2hN) B + y|e >™

for —co<x <o and y=0.
Suppose first that the roots of the polynomial

u(z) = (ar>+iBr — )+ 2irQRiar — B)z + 4ar’z?
lie in Re(z)<3. The result then follows from Lemma 1, (13), the fact that

lim u;(Nz)=u(z)
h—0

and Hurwitz’s theorem (according to which the roots of u(z) are the limits of
the roots of the u;(Nz), when h — 0). If one or two of the roots of u(z) has
real part equal to 3 then, putting a;=a, B;=B+4iate and y,=
v +2iBre —4ar’e?, where £ >0, we are led to a new polynomial,

U, (2)=(a 72 +iBy7—v1) + 2it(iay 7 — By) z + da 7727,

whose roots have real part <3, and the result follows by continuity on letting
e —0.

Proof of Theorem 4. Since h¢(7/2) =<0 we have (Lemma 2)

where P, is a polynomial of degree <N such that (Lemma 1) max, -, |P,(z)| =
1. It is known [14, Theorem 4] that if P is a polynomial of degree <n then
|P(z)|=1, |z| =1 implies

(21 |B(P()|=|B(z")|, |z|=1,
where B is the operator which carries

. P(z)= ) az’
nto i=0

B(P(2)) = A\ P(2)+ A, g 2P (2)+ Ay % 22P"(2)

and where Ay, A, A, are complex numbers such that the roots of

nn—1)

>z

vi(z):=Ag+ A nz+ A,

lie in the half plane |z|<|z —(n/2)|.
Put

_ ~8(27h)*a = 2(27h)Bi —2(27h)*a

)\2 N2 B 1 N bl

/\OZ'Y’
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change x to 2whx, R to R®*™ and apply (21) to the polynomial P, (of degree
= N); we obtain that if the roots of

vy (%) = v+ Q2mhNBi — 27h)*Na)z — 27h)*N(N — 1)az?

lie in the half plane |z|=|z—1| then
lafh(x —ilog R)+ Bfn(x —ilog R)+ vf, (x —i log R)|
=|-QmwhN)27h(N —1))a + 27hNBi + v — (27h)*Na| R*™N,

for —o<x < and R=1.
Suppose first that the two roots of the polynomial v(z) =y + iBrz — ar?z? lie
in Re(z) <3. The result then follows from Lemma 1, (13), the fact that

. Nz\
e ()

and Hurwitz’s theorem. If one or two of the roots of v(z) has real part equal to
1 then, putting o; =, B, =8+ 2iate and y,=+vy+iBre —ar’e?, where £>0,
we are led to a new polynomial, V_(z)=vy,+iB,7z —a;7°z>, whose roots have
real part <3, and the result follows by continuity on letting £ — 0.

Proof of Theorem 5. Since f,,(0) = f(0) =0 the trigonometric polynomial

s.0=A(52)

27h
satisfies S, (0)=0 and, by Lemma 1, |S,(x)|=1, 0=x <2m. Applying (5) to S,
we obtain
(22) S, (x)| =|sin Nx|, |x|s£—v

or, equivalently,

T
47hN’

(23) If(x)|<|sin 27whNx|, |x|=
Now let £ >0 and suppose 7>0. If h >0 is sufficiently small the interval

Ey
27 & 27 €

is contained in

FErE
47thN’ 47whN 1
whence

(24) |fi(x)|<|sin 27whNx| for |x|52—ﬂ;—s
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and h sufficiently small. Letting h — 0 we get

fo|<[sin x|,  |x|=———¢,

2T

and since

—ar ™ - T

— ,—— =f{—,—

EL>JO [21’ © 27 8] (27 27>
we obtain the first part of Theorem 5 in the case 7>0. An entire function of
exponential type 0 which is bounded on the real axis is a constant so that the
conclusion is trivial in the case 7=0.
The second part of Theorem 5 is obtained similarly. We need only to

observe that the hypothesis hi(w/2)=<0 implies, in view of Lemma 2, that

fi(x/27h) = P,(e™), where P, is a polynomial of degree =N, and apply the
preceding reasoning to the trigonometric polynomial (of degree <N)

t(x) = e™*P, (e 7).

4. Concluding remarks. The method described above may be used to prove
several well-known results. For example, Bernstein’s inequality (1) may be
obtained from the corresponding (and previously discovered [2, p. 39]) result
on trigonometric polynomials.

As another example, suppose that fe B, is such that hi(7/2) =<0 and |f(x) | <
1 for —o<<x <<oo, If f(z)#0 in Im(z)=0 then there exists a sequence of
positive numbers (h;)[Z, such that lim; .. h;=0 and f,(z)#0 in Im(z)=0,
j=0,1,2,-- - The polynomial

Pu(z)= Y Cu(h)z",
m=0

where

T

is then different from 0 in |z|=1. By the Erdos-Lax Theorem [12] we have
|P;, (e®)|=Nj/2, 0=60 <2, that is

27h-N.
Ifai(x)lﬁ#, —o0 < x <o,
Letting j — o0 and using Lemma 1 we obtain
If’(x)IS%, —o<x <o,

If f(z)#0 only in Im(z)>0 then we may apply the result just proved to the
entire function g(z):=f(z +e&i), € >0, which is of exponential type T, satisfies
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hy(7/2)=<0 and is different from 0 in Im(z)=0. We have thus proved a result
of Boas [5]: if feB,, h(w/2)<0, |f(x)|=<1 for —e<x<o and f(z)#0 in
Im(z)>0 then

(25) |f’(x)l$%, —o0< x <o,

In a similar way we may prove, with the same hypothesis as for (25), that

41
(26) |f(x+iy>|sz-, y=0, —w<x<ow,

The inequality (26), also due to Boas [5], is reminiscent to a result of Ankeny
and Rivlin [1] according to which the inequality |P(Re*)|=(R"+1)/2, 0=60<
27, R=1, holds for all polynomials P not vanishing in the unit disk and
satisfying max, -, |P(z)|=1.
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