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INEQUALITIES FOR ENTIRE FUNCTIONS 
OF EXPONENTIAL TYPE 

BY 

C L É M E N T F R A P P I E R 

ABSTRACT. Bernstein's inequality says that if f is an entire 
function of exponential type T which is bounded on the real axis 
then 

max | / ' ( X ) | ^ T max |/(x)|. 
— o o < x < o o — o o < x < o o 

Genchev has proved that if, in addition, fy(7r/2)<0, where hf is the 
indicator function of /, then 

max \f(x)\<T max |Re/(x)|. 
— o o < x < ° ° — o o < x < c o 

Using a method of approximation due to Lewitan, in a form given 
by Hôrmander, we obtain, to begin, a generalization and a refine­
ment of Genchev's result. Also, we extend to entire functions of 
exponential type two results first proved for polynomials by Rahman. 
Finally, we generalize a theorem of Boas concerning trigonometric 
polynomials vanishing at the origin. 

1. Introduction and statement of results. Let BT be the class of entire 
functions of exponential type T which are bounded on the real axis. A result of 
S. N. Bernstein says that if feBT then [3]: 

(1) | / ' ( X ) | < T max |/(t)|, - œ < x < o o . 
—oo<t<oo 

Equality in (1) holds only if 

f(z) = ae-iTZ + beiT\ a,beC. 

Genchev [9] has proved that if feBT and hf(7r/2)<0, where 

V e ) : = ^ l 0 g l / ( r C ' 9 ) l 

r 

is the indicator function of /, then 

(2) | / ' ( X ) | < T max |Re/(f)|, - œ < x < o o . 
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The inequality (2) extends a result of Szegô: if P(z) = Y?=o &jZ] is a polynomial 
of degree < n then the function f(z) = P(elz) satisfies the hypothesis of Gen-
chev's result and (2) becomes (see [15]): 

(3) \F(Z)\ < nmax |Re P(£)|, \z\ < 1. 

In this article we first obtain a generalization of (2). 

THEOREM 1. Let feBT such that hf(7r/2)<0 and | R e / ( x ) | < l for -œ<x<oo. 

Then 
|/(x + i y ) - / U ) | < ( < T T y - l ) , y < 0 , - œ < x < o o . 

We shall also prove the following theorem which is stronger than Genchev's 
result. 

THEOREM 2. LetfeBT such that fif(7r/2)<0 and | R e / ( x ) | < l for -oo<x<oo. 

Then 
|Re(tf (x) + if'(x))\ + \f'(x)\ < T, -oo < x <«,. 

It is to be noted that the case f(z) = P(elz), where P is a polynomial of degree 
<n, of Theorem 2 gives us a refinement of (3). 

To prove Theorems 1 and 2 we use a method of approximation due to 
Lewitan [13] in a form given by Hôrmander [11]. This method turns out to be 
very useful and we use it to obtain the next results. 

THEOREM 3. Let a, |3, 7 be complex numbers such that the roots of the 
polynomial 

w(z):=(aT2+i |3T-7) + 2iT(2iaT-|8)z+4aT2z2 

lie in R e ( z ) < | . If feBT and | / ( x ) |< l for -œ<x<œ then 

\af"(x + iy) + pf(x + iy) + yf(x + iy)\ < \-ar2 + ipr + y\ e~T\ 
y < 0 , —oo<x<oo. 

This theorem extends a result of Rahman on trigonometric polynomials [14, 
Theorem 5]. Also, suppose that / e B T is real on the real axis and that | /(x) |< 1 
for —oo<x <œ. Choosing a = 0, |3 = fix), y = r2/(x) and taking y = 0 we see 
that Theorem 3 contains an inequality of Duffin and Schaeffer [8]: 

(4) ifix))2 + irfix))2 < T2, -00 < x < 00. 

THEOREM 4. Let a, 0, y be complex numbers such that the roots of the 
polynomial 

viz):=y + Î0TZ - a r 2 z 2 

lie in R e ( z ) < i If feBT, hf(7r/2)<0 and | / ( x ) |< l for - oo< x <oo then 

\afix + iy) + pf(x + iy) + y fix + iy)| < \a2 + ipr + 7|e"Ty, 
y < 0 , -oo<x<o°. 
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Like Theorem 3 this theorem extends a result of Rahman [14, Theorem 4]. 
It is readily seen that the condition on the roots of the polynomial v(z) in 
Theorem 4 is less restrictive than the corresponding condition on u(z) in 
Theorem 3; this latter is already satisfied if a, /3, 7 are reals and ($2>Aay. 

THEOREM 5. LetfeBT such that \f(x)\ < 1 for -oo< x <00 and /(0) = 0. Then 

77 

|/(x)|<|sinTx| for |x |< —. 
2r 

If, in addition, hf(7r/2) < 0 then 

rx 
sin—-

2 

for | x | < - . 
T 

l/(x)|=s| 

Theorem 5 generalizes a result of Boas [6] according to which the inequality 

(5) |S (x ) |< | s inn4 | x | < ^ , 
2n 

holds for all trigonometric polynomials S(x) = YJm=-n bmeimx satisfying S(0) = 0 
and max0<x<2lT |S (x) |< l . It is also an amelioration of a result of Giroux and 
Rahman [10]: let feBT such that fy(7r/2)<0, /(0) = 0 and | / (x ) |< l for -oo< 
x<oo; we have then | /(x) |<r/2 |x| for | X | < 2 / T . 

2. The method of approximation. Let feBT such that |/(x)| < 1 for -oo < x < 
oo. Put <p(x) = (sin TTX/ITX)2 and 

(6) / h(x)= £ <p(hx + k)f(x+^j, h>0. 

LEMMA 1. The functions fh defined by (6) are trigonometric polynomials with 
period 1/h and degree less or equal to N:= l + [r/2iTh]. When x is real we have 
| / h (x) |< l , and fh(z)—>f(z) uniformly in every bounded set when h ^ O . 

In view of Lemma 1 we may write 

N 
2mmhx (7) /„(*)= I Cm(h)e 

m=-N 

where 

J 'i/h 

fh(x)e-2"imh* dx. 
0 

LEMMA 2. If hf(7r/2)<0 then 

Cm(h) = 0 for - N < m < - 1 . 

Proof. Proceeding as in [11, p. 22] we have 

(8) Cm(h) = h I <p(h(x + iy))f(x + iy)e-2™»*(-+'v) dx, 
J— oo 
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for all real values of y, and the estimate 

e2irh\y\ 

(9) k(Mx + f y ) ) N W ( x 2 + y 2 ) . 

Suppose that y > 0 . The hypothesis | / (x ) |< l , -oo<jc<œ, and hf(7r/2)<0 
imply [4, p. 82, Theorem 6.2.4] that 

(10) |/(x + iy ) |< l , y > 0 , - œ < x < œ . 

Using (8), (9) and (10) we obtain 

2-rrhy(m + l) Ç oo i 2irhy(m + l) 

^mV'U— 2] I 7 2~\ 2~\~ i ' 
77 h J_oo (x +y ) 7my 

Letting y —»00 we get Cm(h) = 0, m = —1, - 2 , . . . 

3. Proofs of the theorems 

Proof of Theorem 1. Consider the trigonometric polynomials (7), h > 0 . In 
view of Lemma 2 we have Cm(h) = 0, - N < m < - l . Thus, we may write 

'4s)-1" eix) 

where Ph is an algebraic polynomial of degree <N. Applying a result of Szegô 
[15, p. 68] we have 

(11) | P h (Re i x ) -P h ( e i x ) |< (K N - l )max |ReP h ( ^ ) | , -oo< x <oo, R>1. 

If we change x to 27ihx and R to R27rh then (11) becomes 

(12) \fh(x-i\ogR)-fh(x)\<(R2~hN-l), -œ<X<œ, j*>l, 

since max_oo<x<0O |Re fh(x)\ < 1 whenever max_00<x<00 |Re /(x)| < 1. Observe that 

(13) lim27rhN=T. 

By Lemma 1, /hU)—>/(z) uniformly in every bounded set, when h—>0, and 
the result then follows from (13) if we let h —> 0 in (12). 

Proof of Theorem 2. It is known [7, Theorem 4] that if P is a polynomial of 
degree <rc such that | R e P ( z ) | < l for | z | < l then 

(14) |Re( ( | - z )P ' (z ) + MP(z))|<n, | £ | < 1 , | z | < l . 

Write P'(z) = a! + ia2, nP(z)- zP'(z) = bx + ib2 (au a2, b1,b2eM) and take £ = 
eia\ co G R in (14); we obtain 

(15) — n < a ! cos co —a2sinco + b 1 <n , coe[R. 
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The choice - a 2 ax 

sin co =—r—^ 57, cosco=^—5 5-, 

in (15), gives us the inequality ^(al + cfy + b^n while the choice 

sm o> = /. 9 ^-, cos co = /, 9 7-
V(a?+al)' V ^ + a2,) 

gives - n < - \ / ( a i + £*!) + £>!; combining these inequalities we obtain 

(16) |Re(nP(z) - zP'(z))| + |F(z) | < n, |z| < 1. 

Consider now the trigonometric polynomials (7), h > 0 . In view of Lemma 2 
we may write fh(x/27rh) = Ph(e

ix) where Ph is a polynomial of degree <N. 
Furthermore | R e P h ( z ) | < l , | z | < l , and so, applying (16), we get 

(17) |Re(NPh(z)-zP«z)) | + |P«z)|<AT? | z | < l , 

which is equivalent to 

(18) |Re(2WhN/h(x) + i/«x)| + | ^ (x ) |<27rh^ -oo<x<cc. 

The result then follows from Lemma 1 and (13) if we let h -> 0 in (18). 

Proof of Theorem 3. Consider the trigonometric polynomials (7), h > 0 . Put 

We have (Lemma 1) |S h (x) |<l , - œ < x < o o . Now, a result of Rahman [14, 
Theorem 5] says that if S(0) is a trigonometric polynomial of degree < n such 
that |S(0) |<1 for O < 0 < 2 T T and the roots of the polynomial 

ut(z) : = z2- 2{a(2n - 1) + ib}z + an2 +ibn-c 
n 

lie in the half plane | z | < | z - n | then 

(19) \aS"(0) + bS'(0) + cS(6)\<\-an2+ibn + c\, OeR. 

It is clear that the same line of reasoning used in [14] to prove (19) lead us to 
the more general conclusion 

(20) |aS"(0 - i log R) + bS'(6 - i log R) + cS(0 - i log R)| 

<\-an2 + ibn + c\ Rn, OeU, R > 1 . 

Take a = {2irh)2a, b = 2irhfr c = y, 6 = 2irhx, y = -2TTJI log R and apply (20) 
to the trigonometric polynomial Sh (of degree <N). We obtain that if the roots 
of the polynomial 

u^Nz) = 2(27rh)2N(2N- l)az2-2{(27rh)2N(2N- l ) a + i2irhNfi}z 

4- (2irhN)2a + ifâirhN- y 
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lie in the half plane | z |< | z —1| then 

\afUx + iy) + tf'h(x + iy) + 7/h(x + iy)| ^ I - (27rWV)2a + i(2irhN)p + y\e'2vhNy 

for -oo<x<oo and y < 0 . 
Suppose first that the roots of the polynomial 

u(z) = (aT2+ipT-y) + 2h(2iaT-p)z + 4aT2z2 

lie in R e ( z ) < | . The result then follows from Lemma 1, (13), the fact that 

lim uANz) = U(Z) 

and Hurwitz's theorem (according to which the roots of u(z) are the limits of 
the roots of the u^Nz), when h —> 0). If one or two of the roots of u(z) has 
real part equal to \ then, putting a i = a, j31 = 0 + 4 i a r e and yx = 
7 + 2i|3T8-4aT2e2, where e > 0 , we are led to a new polynomial, 

Ue (z) - (c^r2 + ifar - 7x) + 2iT(2iaiT -/31)z + 4a!T2z2, 

whose roots have real part <\, and the result follows by continuity on letting 
e ^ O . 

Proof of Theorem 4. Since hf(7r/2)<0 we have (Lemma 2) 

where Ph is a polynomial of degree < N such that (Lemma 1) max|z |=1 |Ph(z) |< 
1. It is known [14, Theorem 4] that if P is a polynomial of degree < n then 
|P ( z ) |< l , |z| = l implies 

(21) |B(P(z)) |<|B(z")| , | z | > l , 

where J3 is the operator which carries 

P(z)=Î¥ J 
into j=o 

B(P(z)) = A0P(z) + Ax £ zP'(z) + A2 ̂  z2P"(z) 

and where A0, A1? A2 are complex numbers such that the roots of 

UxU) : = A0 + Axnz + A2 zz 

lie in the half plane | z |< | z - (n /2 ) | . 
Put 

-8(27rh)2o: _2(2irh)pi-2(27rh)2a 
A 2 - ^ , A x - - , A 0 - 7 , 

https://doi.org/10.4153/CMB-1984-073-4 Published online by Cambridge University Press

file:///afUx
https://doi.org/10.4153/CMB-1984-073-4


1984] INEQUALITIES FOR ENTIRE FUNCTIONS 469 

change x to 2irhx, R to R27rh and apply (21) to the polynomial Ph (of degree 
<N) ;we obtain that if the roots of 

vi(-y) = y + (lirhNpi - (2irh)2Na)z - (27rh)2N(N- l)az2 

lie in the half plane |z| < |z — 1| then 

|a/K(x - i log R) + 0ft(x - i log R) + yfh(x - i log R)\ 

< | - (2TrhN)(2<rrh(N- I)) a + 2irhN^i + 7 - (27rh)2Na| R2"hN, 

for -oo<x<oo and J R > 1 . 
Suppose first that the two roots of the polynomial v(z) = 7 + ijSrz - ar2z2 lie 

in Re(z)<^. The result then follows from Lemma 1, (13), the fact that 

HVI{T)=V{Z) 

and Hurwitz's theorem. If one or two of the roots of v(z) has real part equal to 
\ then, putting « ! = «, p1 = j8 + 2iare and yx = 7 + i($T£ — ar2s2, where e > 0 , 
we are led to a new polynomial, Ve(z) = y1 + i(B1 TZ — OL\T z , whose roots have 
real part <\, and the result follows by continuity on letting s -» 0. 

Proof of Theorem 5. Since fh(0) = f(0) = 0 the trigonometric polynomial 

satisfies Sh(0) = 0 and, by Lemma 1, |S h (x) |<l , 0<X<2TT. Applying (5) to Sh 

we obtain 

(22) |Sh(x)|<|sinJVx|, | x | = s ^ 

or, equivalently, 

(23) |/h(x)|<|sin2irWVjc|, |x |< 
77 

477WV* 

Now let £ > 0 and suppose r > 0 . If h>0 is sufficiently small the interval 

[ 77 77 I 

-27+e'2T-eJ is contained in 

whence 

[ —77 77 "I 

(24) |/h(x)|<|sin277hNx| for | x | < ^ - e 
2T 
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and h sufficiently small. Letting h —* 0 we get 

77 
| /(x)|<|sin TX|, | x | ^ ~ — £ , 

2r 

and since 

;>OI_2T ' 2T J \ 2 T ' 2 T / 

we obtain the first part of Theorem 5 in the case r > 0 . An entire function of 
exponential type 0 which is bounded on the real axis is a constant so that the 
conclusion is trivial in the case T = 0. 

The second part of Theorem 5 is obtained similarly. We need only to 
observe that the hypothesis hf(7r/2)<0 implies, in view of Lemma 2, that 
fh(xl27rh) = Ph(e

lx), where Ph is a polynomial of degree <N, and apply the 
preceding reasoning to the trigonometric polynomial (of degree <N) 

th(x) = eiNxPh(e-2ix). 

4. Concluding remarks. The method described above may be used to prove 
several well-known results. For example, Bernstein's inequality (1) may be 
obtained from the corresponding (and previously discovered [2, p. 39]) result 
on trigonometric polynomials. 

As another example, suppose that feBT is such that hf(irl2) < 0 and |/(x) | < 
1 for -oo<x<oo. if y ( z ) ^ o in lm(z )>0 then there exists a sequence of 
positive numbers (fiy)J°=0

 s u c n t n a t linij_>oo h}• = 0 and / ^ ( z ) ^ 0 in lm(z)>0 , 
/ = 0 ,1 , 2, • • • The polynomial 

N. 

PH,(Z)= t Cm(h)zm, 
m = 0 

where 

N, . :=l + L27rhJ' 

is then different from 0 in | z | < l . By the Erdôs-Lax Theorem [12] we have 
|P^(e i e) |<i^./2, O < 0 < 2 T T , that is 

\f'hi(x)\^—^, -oo<X<oc. 

Letting / -> °° and using Lemma 1 we obtain 

| / ' ( x ) | < - - o o < X < o o . 

If / ( z ) ^ 0 only in lm(z )>0 then we may apply the result just proved to the 
entire function g(z): = f{z + eï), e > 0 , which is of exponential type T, satisfies 
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hg(7r/2)<0 and is different from 0 in lm(z)>0. We have thus proved a result 
of Boas [5]: if feBT, hf(7r/2)<0, | / (x ) |< l for -œ<x<œ and / ( z ) ^ 0 in 
lm(z)>0 then 

(25) \f'(x)\^, -œ<X<œ. 

In a similar way we may prove, with the same hypothesis as for (25), that 

e"Ty + l 
(26) |/(x + i y ) | < — - — , y < 0 , - o o < x < œ . 

The inequality (26), also due to Boas [5], is reminiscent to a result of Ankeny 
and Rivlin [1] according to which the inequality |P(Re ie)|<(JRn + l)/2, O < 0 < 
277, R>1, holds for all polynomials P not vanishing in the unit disk and 
satisfying max iz|=1 | P (z ) |< l . 
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