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On the Sizes of Gaps in the Fourier
Expansion of Modular Forms

Emre Alkan

Abstract. Let f =
∑

∞

n=1
a f (n)qn be a cusp form with integer weight k ≥ 2 that is not a linear

combination of forms with complex multiplication. For n ≥ 1, let

i f (n) =

{

max{i : a f (n + j) = 0 for all 0 ≤ j ≤ i} if a f (n) = 0,

0 otherwise.

Concerning bounded values of i f (n) we prove that for ǫ > 0 there exists M = M(ǫ, f ) such that

#{n ≤ x : i f (n) ≤ M} ≥ (1 − ǫ)x. Using results of Wu, we show that if f is a weight 2 cusp form

for an elliptic curve without complex multiplication, then i f (n) ≪ f ,ǫ n
51

134
+ǫ. Using a result of David

and Pappalardi, we improve the exponent to 1

3
for almost all newforms associated to elliptic curves

without complex multiplication. Inspired by a classical paper of Selberg, we also investigate i f (n) on

the average using well known bounds on the Riemann Zeta function.

1 Introduction

Let f (z) =
∑∞

n=1 a f (n)qn (q = e2πiz, Im(z) > 0) be a cusp form with integer weight

k ≥ 2 which is not a linear combination of forms with complex multiplication. To

estimate the size of possible gaps in the Fourier expansion of f (z), Serre introduced

the gap function

(1) i f (n) =

{

max{i : a f (n + j) = 0 for all 0 ≤ j ≤ i} if a f (n) = 0,

0 otherwise.

(Here one could alternatively define i f (n) = 1 + max{i : a f (n + j) = 0 for all 0 ≤
j ≤ i} if a f (n) = 0. This definition has the advantage that one can see a f (n) 6= 0 for

all n if and only if i f (n) = 0 for all n. Nevertheless, this would have no effect on any

of our results, so for simplicity we will use (1) as our definition of the gap function).

He proved [12] that

i f (n) ≪ f n.

The Rankin–Selberg asymptotic formula (see [10])

∑

n≤x

∣

∣a f (n)
∣

∣

2

nk−1
= c f x + O

(

x
3
5

)
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clearly implies the sharper estimate

i f (n) ≪ f n
3
5 .

However using local methods such as sieve arguments with weights, it is possible to

make substantial improvements on the exponent 3
5
. Using this type of an approach,

the author [1] recently proved that

i f (n) ≪ f ,φ φ(n)

for almost all n, where φ is essentially any function tending monotonically to infinity

(such as φ(x) = log log x). This shows that most of the time the possible gaps are

extremely short. Another interesting question about these gaps is to find a lower

bound for the number of n ≤ x with i f (n) ≤ M where M is a large integer. Here we

prove the following on this question:

Theorem 1 Let f (z) =
∑∞

n=1 a f (n)qn ∈ Sk(Γ0(N), χ) be a nonzero cusp form with

integer weight k ≥ 2 that is not a linear combination of forms with complex multiplica-

tion. If ǫ > 0, then there exists M = M(ǫ, f ) such that

#{n ≤ x : i f (n) ≤ M} ≥ (1 − ǫ)x.

Elkies [5] proved the existence of infinitely many supersingular primes for an el-

liptic curve E/Q without complex multiplication. This is equivalent to the fact that

the set

(2) BE = {p prime : aE(p) = 0}

is infinite, where

fE(z) =

∞
∑

n=1

aE(n)qn

is the weight 2 newform associated to the Hasse–Weil L-function of this elliptic curve.

It is well known that the Fourier coefficients aE(n) form a multiplicative function.

Using this fact, let us briefly see that lim sup i fE
(n) = ∞. Let p0 < p1 < · · · <

pm < · · · be the sequence of supersingular primes of E. By the Chinese Remainder

theorem, we can find n such that n ≡ p j − j (mod p2
j ) for 0 ≤ j ≤ m. Hence

n + j is divisible by p j but not by p2
j so that aE(n + j) = aE(p j)aE((n + j)/p j) = 0

for 0 ≤ j ≤ m. This shows that we can find arbitrarily large gaps in the Fourier

expansion of fE(z). Hence there is a sequence ni such that i fE
(ni) is monotonically

tending to infinity. We might expect this sequence to be quite sparse. Our next results

will give quantitative estimates on the number of terms of this sequence that are ≤ x.

Theorem 2 Let f (z) ∈ Sk(Γ0(N), χ) be a newform of weight k ≥ 2 without complex

multiplication and let φ(n) be a strictly increasing sequence of positive integers. If ǫ > 0,

then

#{n ≤ x : i f (n) = φ(n)} ≪ f ,φ,ǫ
x

φ(
√

x)(log log φ(
√

x))1−ǫ
+
√

x.
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For f (z) =
∑∞

n=1 a f (n)qn, let us define

B = {p prime : a f (p) = 0}(3)

and

B(x) = #{p ≤ x prime : p ∈ B}.(4)

Assuming a mild condition on the set B, it is possible to improve considerably the

estimate in Theorem 2.

Theorem 3 Let f (z) and φ(n) be as in Theorem 2. If

∑

r∈B

1

r
≤ 1

4
,

then for every ǫ > 0 we have

#{n ≤ x : i f (n) = φ(n)} ≪ f ,φ,ǫ
x

φ(
√

x)(log φ(
√

x))1−ǫ
+
√

x.

We also note that at the other extreme, Lehmer’s Conjecture says that τ (n) 6= 0 for

all n where

∆(z) =

∞
∑

n=1

τ (n)qn
= q

∞
∏

n=1

(1 − qn)24

is the unique normalized cusp form of weight 12 on SL2(Z). Hence in terms of the

gap function, Lehmer’s Conjecture says that i∆(n) = 0 for all n, so that in this case

the gap function is conjectured to be as small as it can be unlike the elliptic curve

case.

Using a result of Fouvry and Iwaniec [7] and improving on work of Balog and

Ono [2], the author proved [1] that for every ǫ > 0,

i fE
(n) ≪E,ǫ n

69
169

+ǫ

for a weight 2 newform fE(z) associated to E/Q without complex multiplication.

More generally, it was shown that the Generalized Riemann Hypothesis for Dedekind

Zeta functions imply the same bound for a general nonzero cusp form of weight

k ≥ 2 which is not a linear combination of forms with complex multiplication. Here

we improve these results using work by Wu [18] and Sargos and Wu [14].

Theorem 4

(i) Let E/Q be an elliptic curve without complex multiplication. For every ǫ > 0 and

x
51

134
+ǫ ≤ y we have

#{x − y < n ≤ x : aE(n) 6= 0} ≫E,ǫ y.

In particular, i fE
(n) ≪E,ǫ n

51
134

+ǫ.
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(ii) Let f (z) be as in Theorem 1. Assuming the Generalized Riemann Hypothesis for

Dedekind Zeta functions, for every ǫ > 0 and x
51

134
+ǫ ≤ y we have

#{x − y < n ≤ x : a f (n) 6= 0} ≫ f ,ǫ y.

In particular, i f (n) ≪ f ,ǫ n
51

134
+ǫ.

Theorem 5 Let f (z) be as in Theorem 1. For every ǫ > 0 and x
40
97

+ǫ ≤ y we have

#{x − y < n ≤ x : a f (n) 6= 0} ≫ f ,ǫ y.

In particular, i f (n) ≪ f ,ǫ n
40
97

+ǫ.

Using a result of David and Pappalardi [3], we can further improve the exponent

in the above theorems to 1
3

for almost all newforms associated to elliptic curves with-

out complex multiplication whose coefficients are in a large rectangle.

Theorem 6 Consider the family of elliptic curves

E(a, b) : v2
= u3 + au + b

without complex multiplication where a and b are integers with |a| ≤ A, |b| ≤ D. Let

fE(a,b)(z) =

∞
∑

n=1

aE(a,b)(n)qn

be the weight 2 newform associated to E(a, b). Let X be a parameter tending to infinity

such that both A and D are > X2+λ for some λ > 0. Then for every ǫ > 0 and x
1
3

+ǫ ≤ y

we have

#{x − y < n ≤ x : aE(a,b)(n) 6= 0} ≫E(a,b),ǫ y

with at most

O
( AD

(log X)c

)

exceptions of E(a, b). In particular, for these E(a, b) we have i fE(a,b)
(n) ≪E(a,b),ǫ n

1
3

+ǫ.

Here c > 0 is arbitrary and the O constant depends only on c.

Our final results give good upper bounds on the average value of i f (n) when ρ is

very close to 1
2
. Here ρ measures the sparseness of the primes in B (see Theorem 7 be-

low). In particular, we obtain quantitative estimates on the problem of the frequency

of large values of i f (n).

Theorem 7 Let f (z) ∈ Sk(Γ0(N), χ) be a newform of weight k ≥ 2 without complex

multiplication. If B(x) ≪ xρ for some 1
2
≤ ρ < 1, then

1

x

∑

n≤x

i f (n) ≪ f ,ρ x8ρ−4e
8 log x

log log x .
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If f (z) is a newform in Sk(Γ0(N), χ), then a f (n) is nonzero when n is square-free and

B-free. It is known by the work of Serre [12] that
∑

p∈B
1
p

is finite. Assuming this

as a general hypothesis, Erdős [4] was the first to define B-free numbers as a natural

generalization of square-free numbers. He conjectured that qn+1−qn ≪ǫ qǫ
n for ǫ > 0

arbitrarily small where qn is the sequence of B-free numbers. About this conjecture

the best short interval result is due to Sargos and Wu [14], who proved that

qn+1 − qn ≪ǫ q
40
97

+ǫ
n

by using deep analytic estimates on exponential sums improving on earlier work of

Fouvry and Iwaniec [7]. In the case of square-free numbers the best result is due

to Filaseta and Trifonov [8], who proved that rn+1 − rn ≪ǫ r
1/5+ǫ
n where rn is the se-

quence of square-free numbers. We should also mention that Granville [9] has shown

rn+1 − rn ≪ǫ rǫ
n for arbitrarily small ǫ > 0, assuming the abc-Conjecture. Note that

Erdős’ Conjecture would immediately imply that i f (n) ≪ f ,ǫ nǫ for arbitrarily small

ǫ > 0. Our next result shows that this holds on the average for almost all newforms

associated to elliptic curves E(a, b) over Q without complex multiplication. In fact

we obtain a slightly stronger result on the average.

Corollary 8 Let fE(a,b)(z) be as in Theorem 6. If A, D > X2+λ with λ > 0, then we

have
1

x

∑

n≤x

i fE(a,b)
(n) ≪E(a,b) e

8 log x
log log x ≪ǫ xǫ

for arbitrarily small ǫ > 0 with at most

O
( AD

(log X)c

)

exceptions of E(a, b). Here c > 0 is arbitrary and the O constant depends only on c.

We observe that for those E(a, b) of Corollary 8, the number of x
2

< n ≤ x satisfying

i fE(a,b)
(n) ≫ nǫ is

O
(

x1−ǫe
8 log x

log log x
)

where ǫ > 0 can be arbitrarily small. Finding upper bounds for the frequency of

large values of i f (n) for a general newform f (z) without complex multiplication is

an interesting problem. Let us briefly discuss a heuristic about this problem. Let

qm be the sequence of square-free and B-free numbers where B is defined as in (3).

From [1] we know that
∑

n≤x
i f (n)>log n

1 = o(x).
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If qm−1 < n ≤ qm, then i f (n) ≤ qm − qm−1. Since there is always a square-free and

B-free number between x −√
x and x, it follows that

∑

n≤x
i f (n)>log n

1 ≪
√

x +
∑

qm≤x

∑

qm−1<n≤qm

i f (n)>log n

1 ≪
√

x +
∑

√
x<qm−1<qm≤x

∑

qm−1<n≤qm

i f (n)>log n

i f (n)

log n

≪
√

x +
1

log x

∑

√
x<qm−1<qm≤x

qm−qm−1>
1
2

log x

∑

qm−1<n≤qm

(qm − qm−1)

≪
√

x +
1

log x

∑

qm≤x

qm−qm−1>
1
2

log x

(qm − qm−1)2.

Note that square-free and B-free numbers have positive density so that we might

expect
∑

qm≤x

qm−qm−1>
1
2

log x

(qm − qm−1)2 ≪
∑

qm≤x

(qm − qm−1)2 ≪ x.

Consequently we expect that (clearly this is not the best possible upper bound since

we estimated crudely at each step)

∑

n≤x
i f (n)>log n

1 ≪ x

log x
.

2 Proof of Theorems 1,2 and 3

Before presenting the proofs let us start with an observation which reduces most of

the arguments to the case where f (z) is a newform. Henceforth we may assume

in some of the proofs without loss of generality that f (z) is a newform. Suppose

that f (z) =
∑∞

n=1 a f (n)qn is an integer weight form in Sk(Γ0(N), χ) with weight

k ≥ 2 which is not a linear combination of forms with complex multiplication. If p

is prime, then the Hecke operators Tp are defined by

Tp | f (z) =

∞
∑

n=1

(

a f (pn) + χ(p)pk−1a f (n/p)
)

qn.

Let g1(z), g2(z), . . . , gs(z) be a list of all weight k newforms with levels dividing N .

Also let

gi(z) =

∞
∑

n=1

bi(n)qn

be the Fourier expansion of gi(z). Note that if p is a prime not dividing N , then we

have

Tp | gi(z) = bi(p)gi(z).
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By the principle of multiplicity one, we can find infinitely many primes p such that

bi(p) 6= b j(p) when i 6= j. Since newforms span the whole space we have

0 6= f (z) =

s
∑

i=1

∑

δ|N
αi,δ gi(δz).

Without loss of generality we may assume that α1,δ1
6= 0 where δ1 is the smallest such

divisor of N (i.e., we are assuming that g1(z) is a nonzero newform). Next we choose

p1 prime not dividing N such that b1(p1) 6= b2(p1). Then we have

(Tp1
| f (z)) − b2(p1) f (z) =

s
∑

i=1

(bi(p1) − b2(p1))
∑

δ|N
αi,δ gi(δz).

This clearly eliminates all terms involving g2(δz). In this way we get

f1(z) =

∞
∑

n=1

a1(n)qn

where

a1(n) = a f (p1n) + χ(p1)pk−1
1 a f (n/p1) − b2(p1)a f (n).

Continuing in this way we can remove all newform components gi(δz) for 2 ≤ i ≤ s

to get

F(z) =

∞
∑

n=1

A(n)qn
=

∑

δ|N
α1,δ g1(δz)

in Sk(Γ0(N), χ) where

A(n) =

∑

δ|N
α1,δ b1

( n

δ

)

=

∑

j

β ja f (ω jn).

In the above formula for A(n) the sum on j is a finite sum and for each j, β j is an

algebraic number and ω j is a rational number. Applying the shift operator Uδ1
we get

Uδ1
F(z) = F∗(z) =

∞
∑

n=1

A∗(n)qn ∈ Sk(Γ0(N), χ)

where A∗(n) = A(δ1n). Let S1 be the set of primes dividing N together with the set

of primes p such that b1(p) = 0. Let NS1
be the set of square-free numbers with no

prime divisors in S1. If n ∈ NS1
, then by minimality of δ1 we get

A∗(n) = α1,δ1
b1(n) =

∑

j

β j a f (ω jδ1n)

so that b1(n) 6= 0 implies a f (ω jδ1n) 6= 0 for some j. This establishes a finite-to-one

correspondence between nonvanishing Fourier coefficients of g1(z) and f (z). Note

that reduction to newforms in this way will effect only the constants in our asymp-

totic estimates and will be harmless.
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Proof of Theorem 1 Without loss of generality we may assume that

f (z) =

∞
∑

n=1

a f (n)qn

is a newform. If n is square-free, then

a f (n) =

∏

p|n
a f (p)

so that a f (n) 6= 0 when n is square-free and B-free where B is defined as in (3). Let A

be the set of primes in B together with squares of primes not in B. Consider

(5)
∑

n−M<m≤n
m is A-free

1 ≥
∑

n−M<m≤n
m6≡0 (mod bs)

for all s≤r

1 −
∑

n−M<m≤n
br<bs≤M

m≡0 (mod bs)
for some s>r

1 −
∑

n−M<m≤n
M<bs≤n

m≡0 (mod bs)
for some s>r

1

where b1, b2, . . . are elements of A in increasing order. The value of the parameter r

in (5) will be fixed soon. The number of n − M < m ≤ n that are divisible by bs is

[ n

bs

]

−
[ n − M

bs

]

=
M

bs

+ rbs
(n, M)

where rbs
(n, M) is a remainder term and |rbs

(n, M)| ≤ 1. By the Inclusion-Exclusion

principle
∑

n−M<m≤n
m6≡0 (mod bs)

for all s≤r

1 = M

r
∏

s=1

(

1 − 1

bs

)

+ RA(n, M)

where RA(n, M) is the sum of 2r remainder terms so that |RA(n, M)| ≤ 2r. It is

known from [12] that
∑

p∈B
1
p

is finite. Hence
∑∞

s=1
1
bs

is finite and we may put

CA =
∏∞

s=1

(

1 − 1
bs

)

> 0. Next we note that

(6)
∑

n−M<m≤n
br<bs≤M

m≡0 (mod bs)
for some s>r

1 ≤ 2M

∞
∑

s=r+1

1

bs

.

Now we may fix r large enough so that C = CA − 2
∑∞

s=r+1
1
bs

> 0. Note that this

choice of r depends on B and hence on f (z). We will estimate the last error term

in (5) where M < bs ≤ n on the average. To this end we consider

∑

T<n<2T

∑

n−M<m≤n
M<bs≤n

m≡0 (mod bs)
for some s>r

1
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where T is a large enough parameter. Changing the order of summation, this double

sum is easily seen to be ≪ MT
∑

bs>M
1
bs

, so that

(7)
∑

n−M<m≤n
M<bs≤n

m≡0 (mod bs)
for some s>r

1 ≤ C

2
M

except for a subset of (T, 2T) of cardinality O
(

T
∑

bs>M
1
bs

)

. Using a dyadic argu-

ment, the total number of exceptions ≤ T is again O
(

T
∑

bs>M
1
bs

)

. Hence combin-

ing (5), (6) and (7) we get that

∑

n−M<m≤n
m is A-free

1 ≥ C

2
M + RA(n, M)

where |RA(n, M)| ≤ 2r independently of M and the number of exceptions in (1, x) is

at most O
(

x
∑

bs>M
1
bs

)

. Finally choosing M = M(ǫ, f ) large enough the number of

exceptions is ≤ ǫx and

#
{

n ≤ x :
∑

n−M<m≤n
m is A-free

1 > 0
}

≥ (1 − ǫ)x.

This completes the proof of Theorem 1.

Proof of Theorem 2 Let B be defined as in (3) and let qs be the sequence of

square-free and B-free numbers. Note that if qs−1 < n ≤ qs and i f (n) = φ(n)

then φ(qs−1) < φ(n) = i f (n) ≤ qs − qs−1 since a f (qs) 6= 0. Moreover i f (n + j) =

i f (n) − j < φ(n) < φ(n + j) for 1 ≤ j ≤ φ(n). Hence for each qs−1 < n ≤ qs

such that i f (n) = φ(n) there are at least φ(n) consecutive numbers u such that

i f (u) 6= φ(u). It follows that

(8)
∑

n≤x
i f (n)=φ(n)

1 ≪
√

x +
∑

√
x<qs−1<qs≤x

∑

qs−1<n≤qs

i f (n)=φ(n)

1

≪
√

x +
∑

√
x<qs−1<qs≤x

qs−qs−1>φ(qs−1)

qs − qs−1

φ(qs−1)

≪φ

√
x +

1

φ(
√

x)

∑

qs≤x

qs−qs−1>φ(
√

x)

(qs − qs−1)

by the fact that φ is increasing. By the sieve of Eratosthenes, for some 0 < c < 1,

there are at most c(qs − qs−1) numbers in (qs−1, qs) which are not divisible either
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by p2, p prime and p ≤ log φ(
√

x) or by r ∈ B and r ≤ log φ(
√

x). Since there

are no square-free and B-free numbers in (qs−1, qs), it follows that there are at least

(1 − c)(qs − qs−1) numbers in (qs−1, qs) divisible either by p2 and p > log φ(
√

x) or

r ∈ B and r > log φ(
√

x). This gives

(9)
∑

qs≤x

qs−qs−1>φ(
√

x)

(qs − qs−1) ≪
(

∑

p>log φ(
√

x)

1

p2
+

∑

r>log φ(
√

x)

1

r

)

x.

Clearly we have

(10)
∑

p>log φ(
√

x)

1

p2
≪ 1

log φ(
√

x)

and if rm is the mth prime in B, then we know from D. Wan’s work on the Lang–

Trotter Conjecture [17] that rm ≫ f ,ǫ m(log m)2−ǫ where ǫ > 0 can be arbitrarily

small (one can alternatively use an improvement of K. Murty [11] on rm to obtain a

slightly better result). This gives

(11)
∑

r>log φ(
√

x)

1

r
≪ f ,φ,ǫ

∑

m≫ log φ(
√

x)

(log log φ(
√

x))2−ǫ

1

m(log m)2−ǫ
+

∑

m≪ log φ(
√

x)

(log log φ(
√

x))2−ǫ

1

log φ(
√

x)

≪ f ,φ,ǫ
1

(log log φ(
√

x))1−ǫ
.

Combining (8), (9), (10) and (11) we complete the proof of Theorem 2.

Proof of Theorem 3 We proceed similarly as in the proof of Theorem 2. The

number of integers in (qs−1, qs) which are divisible either by p2, p prime and p ≤
c φ(

√
x) log φ(

√
x) or r ∈ B, r ≤ cφ(

√
x) log φ(

√
x) (0 < c < 1) is at most

(12) π
(

cφ(
√

x) log φ(
√

x)
)

+
∑

p≤cφ(
√

x) log φ(
√

x)

(qs − qs−1)

p2

+ B
(

c φ(
√

x) log φ(
√

x)
)

+
∑

r≤c φ(
√

x) log φ(
√

x)

(qs − qs−1)

r

where π(x) is the number of primes ≤ x and B(x) is defined as in (4). Note that

π(x) = O
(

x
log x

)

and B(x) = o
(

x
log x

)

. Hence if x is large and c is small enough we

have

B(c φ(
√

x) log φ(
√

x)) = o(φ(
√

x))

and

π(c φ(
√

x) log φ(
√

x)) < ηφ(
√

x)
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where

η < 1 −
∑

p

1

p2
−

∑

r∈B

1

r
.

Note that such an η > 0 exists since it is easy to check that

∑

p

1

p2
<

3

4

and by assumption
∑

r∈B

1

r
≤ 1

4
.

Again using the estimate for rm from [17] we see for every ǫ > 0 that

(13)

(

∑

p>c φ(
√

x) log φ(
√

x)

1

p2
+

∑

r>c φ(
√

x) log φ(
√

x)

1

r

)

x ≪ f ,φ,ǫ
x

(log φ(
√

x))1−ǫ
.

Combining (12) and (13) and summing over all qs ≤ x such that qs − qs−1 > φ(
√

x)

completes the proof of Theorem 3.

3 Proof of Theorems 4, 5 and 6

Proof of Theorem 4 (i) Let

fE(z) =

∞
∑

n=1

aE(n)qn

be the weight 2 newform associated to E/Q without complex multiplication. Recall

that a prime p not dividing the conductor NE of E/Q is a supersingular prime if and

only if aE(p) = 0. Elkies [6] proved that

#{p ≤ x : aE(p) = 0} ≪E x
3
4 .

As before aE(n) 6= 0 when n is square-free and BE-free where BE is defined as in (2).

Hence it suffices to show that

#{x − y < n ≤ x : n is A-free } ≫E,ǫ y

for y = xθ, θ > 51
134

where A is the set of primes in BE together with squares of primes

not in BE. We define

M = M(x, δ1, µ) = {xδ1 < m < xδ1+µ : p|m is prime then p ≥ xη}

and

P = P(x, δ2, µ) = {xδ2 < p < xδ2+µ : p is prime}
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where δ2 + µ < δ1, δ1 + 2µ < θ and µ > 0, η > 0 can be arbitrarily small. For n ≤ x,

we use the sieving weight

w(n) =

∑

m∈M

∑

p∈P

∑

n≡0 (mod pm)

1

which was introduced by Wu [18] for detecting B-free numbers in short intervals.

Our improvement here is due to the fact that in one of the error terms below we can

get better estimates since the set of primes B that we are sieving is a very thin subset by

Elkies’ estimate on the number of supersingular primes mentioned above. Observe

that w(n) ≤ C(δ2, η) independently of x. Hence it is enough to show that

∑

x−y<n≤x
n is A-free

w(n) ≫ y.

Consider

(14)

∑

x−y<n≤x
n is A-free

w(n) ≥
∑

x−y<n≤x
n 6≡0 (mod bs)

for all s≤k

w(n) −
∑

x−y<n≤x

bk<bs≤x
η
2

n≡0 (mod bs)
for some s>k

w(n)

−
∑

x−y<n≤x

x
η
2 <bs≤y

n≡0 (mod bs)
for some s > k

w(n) −
∑

x−y<n≤x
y<bs≤x

n≡0 (mod bs)
for some s > k

w(n)

where bs denote the elements of A in increasing order. We will denote the right side of

(14) by M0 − E1 − E2 − E3. Next we estimate each sum on the right side of (14). For

the main term, using the definition of w(n) and the Inclusion-Exclusion principle,

we have

(15) M0 =

∑

x−y<n≤x
n 6≡0 (mod bs)

for all s≤k
n≡0 (mod pm)

p∈P,m∈M

1 =

∑

ω

(−1)|ω|
∑

p∈P,m∈M

∑

x−y<n≤x
n≡0 (mod dω)
n≡0 (mod pm)

1

where ω runs through all subsets of {s : 1 ≤ s ≤ k} and dω =
∏

s∈ω bs (empty

products are taken to be 1). Note that once the parameter k is fixed and x is large

enough then we have gcd(dω, pm) = 1 for all subsets ω. Let us define the remainder

terms rd(x, y) with

rd(x, y) =

[ x

d

]

−
[ x − y

d

]

− y

d

so that
∑

x−y<n≤x
n≡0 (mod pmdω)

1 =
y

pmdω
+ rpmdω

(x, y).
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Combining this with (15) we get

M0 = y
∑

p∈P

1

p

∑

m∈M

1

m

∏

s≤k

(

1 − 1

bs

)

+ R(x, y)

where

R(x, y) =

∑

ω

(−1)|ω|
∑

p∈P,m∈M

rpm

( x

dω
,

y

dω

)

.

Note that
∑

p∈P

1

p
= log

(

1 +
µ

δ2

)

+ O
( 1

log x

)

≥ µ

when x is large enough. As before,
∑∞

s=1
1
bs

is finite and we may put

CA =

∞
∏

s=1

(

1 − 1

bs

)

> 0.

Hence for the main term we get

(16) M0 ≥ CAµy
∑

m∈M

1

m
+ R(x, y).

We also have

(17) E1 ≤
1

δ2

∑

m∈M

∑

x−y<n≤x

bk<bs≤xη/2

n≡0 (mod mbs)

1 ≤ 2y

δ2

∞
∑

s=k+1

1

bs

∑

m∈M

1

m

since mbs ≤ xδ1+2µ < y and gcd(m, bs) = 1 when bs ≤ x
η
2 . Next we fix k such that

∞
∑

s=k+1

1

bs
<

CAµδ2

4

so that combining (16) and (17) we get

M0 − E1 ≥
CAµy

2

∑

m∈M

1

m
+ R(x, y).

Using the asymptotic formula for the number of integers whose prime factors are all

≥ xη , and partial summation, Wu obtained (see [18, Lemma 13]) the estimate

∑

m∈M

1

m
≥ µ

2η
.
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Hence we get

M0 − E1 ≥
( CAµ2

4η

)

y + R(x, y).

Improving on the work of Fouvry and Iwaniec [7] about estimates of exponential

sums with monomials, Wu obtained (see [18, Lemma 10])

|R(x, y)| ≤ C1(µ)2k
( e−s log s

η
+ x−

η
2

)

y

for s ≥ 3 where C1(µ) is a constant depending only on µ. Here we get the following

restrictions (see [18] for details)

(18) sη <
µ

2
, δ2 <

19θ − 6

11
and δ1 + δ2 <

1 + θ

2
.

It is easy to see that E2 = o(y). Finally we estimate E3. Using definition of w(n), we

have

(19) E3 =

∑

y<v2≤x

∑

p∈P

∑

m∈M

∑

x−y<n≤x

n≡0 (mod v2)
n≡0 (mod pm)

1 +
∑

y<r≤x

∑

p∈P

∑

m∈M

∑

x−y<n≤x
n≡0 (mod r)

n≡0 (mod pm)

1,

where v denotes a prime not in BE and r denotes a prime in BE. Note that there is

at most one n with x − y < n ≤ x satisfying either n ≡ 0 (mod v2) or n ≡ 0

(mod r). Moreover for any such n there are at most finitely many (independent of x)

pairs (p, m) with p ∈ P and m ∈ M satisfying n ≡ 0 (mod pm). Hence

(20) V =

∑

p∈P

∑

m∈M

∑

x−y<n≤x

n≡0 (mod v2)
n≡0 (mod pm)

1 = O(1)

and

(21) R =

∑

p∈P

∑

m∈M

∑

x−y<n≤x
n≡0 (mod r)

n≡0 (mod pm)

1 = O(1),

where the implied constants are independent of v, r and x. It follows from (19), (20)

and (21) that

E3 ≪
∑

V>0
y<v2≤x

1 +
∑

R>0
y<r≤x

1.

Let us assume that

(22) δ1 + δ2 +
4θ

3
> 1
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(so that in particular δ1 + δ2 + 2θ > 1). If y2 < v2 ≤ x and V > 0, then v is not in P

or M so that n ≡ 0 (mod pmv2) for some n with x − y < n ≤ x. But from (22), we

get that pmv2 > x which is a contradiction. Hence

∑

V>0
y<v2≤x

1 ≤
∑

y<v2≤y2

1 = O
( y

log y

)

= o(y).

Similarly if

x
4θ
3

log x
< r ≤ x

and R > 0 then we get a contradiction, so that

∑

R>0
y<r≤x

1 ≤
∑

y<r≤ x
4θ
3

log x

1 ≪ xθ

(log x)
3
4

= o(y)

using Elkies’ estimate. It follows that E3 = o(y). Note that the choice of k depends

on A and µ (the dependence on δ2 is minor). We may assume that

C(A, µ) = C1(µ)2k >
8

CAµ2
> 16

and we choose

η = min
( µ2

5
,

1

C(A, µ)

)

,

so that taking s = η− 1
2 we satisfy sη < µ

2
. Finally using the fact that

s log s ≥ 1

2

√

C(A, µ) log C(A, µ),

we get that

C(A, µ)e−s log s ≤ 1

C(A, µ)
<

CAµ2

8
.

After arranging all the parameters as above we obtain

M0 − E1 − E2 − E3 ≥
( CAµ2

8η

)

y + o(y).

The compatibility of the conditions (18) and (22) on θ gives that θ > 51
134

. This

completes the proof of (i). The proof of (ii) for a newform f (z) without complex

multiplication is identical. Just note that from [12] we know

#{p ≤ x : a f (p) = 0} ≪ f x
3
4

assuming the Generalized Riemann Hypothesis for Dedekind Zeta functions. The

general case follows from the argument at the beginning of Section 2.
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Proof of Theorem 5 Let A be the set of primes in B together with squares of primes

not in B where B is defined as in (3). If f (z) is a newform without complex multipli-

cation, then we know unconditionally from [12] that

B(x) ≪ f ,ǫ
x

(log x)
3
2
−ǫ

where ǫ > 0 can be arbitrarily small and B(x) is defined as in (4). It follows that

∑

bs∈A

1

bs

is convergent. Now a special case of [14, Theorem 11] gives that

∑

x−y<n≤x
n is A-free

1 ≫ǫ y

for x
40
97

+ǫ ≤ y. The proof then proceeds exactly as before.

Proof of Theorem 6 Given an elliptic curve E(a, b)/Q without complex multipli-

cation, let πE(a,b)(X) be the number of supersingular primes for E(a, b) up to X. In

proving the Lang–Trotter Conjecture on the average, David and Pappalardi [3] ob-

tained the following estimate

1

4AD

∑

|a|≤A,|b|≤D

∣

∣

∣
πE(a,b)(X) − c0

∫ X

2

1

2
√

t log t
dt

∣

∣

∣

2

= O
( X

(log X)c
+

( 1

A
+

1

D

)

X3 +
1

AD
X5

)

for every c > 0 and A, D > X1+λ for λ > 0 where the O constant depends only on c.

In particular if A, D > X2+λ, then since

∫ X

2

1

2
√

t log t
dt

is about
√

X
log X

, we get that

πE(a,b)(X) ≪E(a,b)

√
X

when X is large enough with at most

O
( AD

(log X)c

)

exceptions of E(a, b). This means that if

BE(a,b)(x) = #{p ≤ x : p is prime and aE(a,b)(p) = 0},
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then

BE(a,b)(x) ≪E(a,b)

√
x

with the number of exceptional E(a, b) stated as above. The conclusion of Theorem 6

now follows when we recall a result obtained in [1].

Theorem 2.3 of [1] Let B be a subset of primes such that B(x) ≪ √
x. If y = xθ and

θ > 1
3
, then the number of square-free and B-free integers in (x − y, x) is ≫ y.

4 Proof of Theorem 7 and Corollary 8

Proof of Theorem 7 Our method here is inspired by the classical work of Selberg

[13]. Since B(x) ≪ xρ for some 1
2
≤ ρ < 1, we get that

∏

p∈B

(

1 +
1

ps

)

is defined for all complex s with Re(s) > ρ. Consider the multiplicative function

µB(n) which is defined as µ(n) (µ is the Möbius function) when n is square-free and

B-free and µB(n) = 0 otherwise. We will work with the counting function

θB(x) =

∑

n≤x

|µB(n)| .

By Perron’s Inversion formula,

θB,1(x) =
1

2πi

∫ 2+i∞

2−i∞

xs

s

(

∞
∑

n=1

|µB(n)|
ns

)

ds

where

θB,1(x) =
θB(x+) + θB(x−)

2
.

Here x+ and x− denote the limits from right and left respectively, and the integral is

taken as the Cauchy principal value. Note that

∞
∑

n=1

|µB(n)|
ns

=
ζ(s)

ζ(2s)

∏

p∈B

(

1 +
1

ps

)−1

for Re(s) > 1. First we move the line of integration to the left of Re(s) = 1, say to

Re(s) = σ0 for some ρ < σ0 < 1. This can be justified by using standard results such

as |ζ(s)| ≪
√

|t| log |t| for |t| ≥ 2 and the inequalities

∣

∣

∣

1

ζ(2s)

∣

∣

∣
≤ ζ(2σ)

ζ(4σ)
≤ ζ(2σ)
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which is Theorem 8.7 of [15] and
∣

∣

∣

∏

p∈B

(

1 +
1

ps

)
∣

∣

∣
≥

∏

p∈B

(

1 − 1

pσ0

)

where s = σ + it and 1
2
≤ ρ < σ0 ≤ σ ≤ 2. Applying the Residue Theorem we get

(23) θB,1(x) − cx =
1

2π

∫ ∞

−∞

xσ0+it

(σ0 + it)

ζ(σ0 + it)

ζ(2σ0 + i2t)

∏

p∈B

(

1 +
1

pσ0+it

)−1

dt

where the residue at s = 1 is computed to be

c =
6

π2

∏

p∈B

(

1 +
1

p

)−1

.

Next we put eδ
= 1 + 1

T
for T > 0 and from (23) we obtain

(24)
θB,1(eδ+τ ) − θB,1(eτ ) − c eτ

T

eσ0τ
=

1

2π

∫ ∞

−∞

(eδ(σ0+it) − 1)

σ0 + it
eiτt I(σ0, t) dt

for τ > 0 (indeed (24) also holds when τ ≤ 0, but as t tends to−∞, both θB,1(eδ+τ ) =

0 and θB,1(eτ ) = 0 so that the left side of (24) simplifies considerably) where

I(σ0, t) =
ζ(σ0 + it)

ζ(2σ0 + i2t)

∏

p∈B

(

1 +
1

pσ0+it

)−1

.

Let us now show that the integrand in (24) is in L2(−∞,∞). Clearly it is enough

to show that the integrand is in L2(0,∞) (since all of the estimates are symmetric,

the norm estimate for (0,∞) will be true for the norm estimate for (−∞, 0) up to

constants). We put σ0 = ρ + η where η > 0 and 1
2
≤ ρ < 1. Note that

(25)
∣

∣

∣

1

ζ(2s)

∣

∣

∣
= O

( 1

2ρ + 2η − 1

)

independently of t . To estimate
∫ ∞

0

∣

∣

∣

eδ(σ0+it) − 1

σ0 + it

∣

∣

∣

2

|I(σ0, t)|2 dt

consider the series of inequalities for k ≥ 1,

(26)

∫ (2k+1−1)T

(2k−1)T

∣

∣

∣

∣

eδ(σ0+it) − 1

σ0 + it

∣

∣

∣

∣

2

|I(σ0, t)|2 dt

≪ 1

(2ρ + 2η − 1)222kT2

∫ (2k+1−1)T

(2k−1)T

|ζ(σ0 + it)|2 dt

≪ 1

(2ρ + 2η − 1)222kT

(2k+1 − 1)

(2k+1 − 1)T

∫ (2k+1−1)T

0

|ζ(σ0 + it)|2 dt

≪ ζ(2σ0)(2k+1 − 1)

(2ρ + 2η − 1)222kT
≪ (2k+1 − 1)

(2ρ + 2η − 1)322kT
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where we have used Theorem 7.2 of [15] on the mean square of the Riemann Zeta

function and the fact that

ζ(2σ0) =

∞
∑

n=1

1

n2ρ+2η
= O

( 1

2ρ + 2η − 1

)

since 2ρ + 2η > 1. Similarly we can show that

(27)

∫ T

0

∣

∣

∣

eδ(σ0+it) − 1

σ0 + it

∣

∣

∣

2

|I(σ0, t)|2 dt ≪ 1

(2ρ + 2η − 1)3T

(besides the presence of the term 1
(2ρ+2η−1)3 , the implied constants in (26) and (27)

still depend on ρ and η because of the term

∣

∣

∣

∣

∏

p∈B

(

1 +
1

pσ0+it

)−1
∣

∣

∣

∣

2

which will be estimated more precisely when we choose η specifically). It follows

from (26) and (27) that the integrand is in L2(−∞,∞). We recall the following

result from [16] on the Parseval–Plancherel Theory of Fourier transforms.

Theorem Let f (x) be a (real or complex) function in L2(−∞,∞) and let

F(x, a) =
1√
2π

∫ a

−a

f (y)eixy dy.

Then as a > 0 tends to infinity, F(x, a) converges in mean over (−∞,∞) to a function

F(x) in L2(−∞,∞). Moreover we have

∫ ∞

−∞
|F(x)|2 dx ≤

∫ ∞

−∞
| f (x)|2 dx.

The function on the left side of (24) is the Fourier transform of

(

eδ(σ0+it) − 1
)

σ0 + it
I(σ0, t)

which was shown to be in L2(−∞,∞) above. Hence by the theorem just mentioned,

we can conclude that

∫ a

−a

(

eδ(σ0+it) − 1
)

σ0 + it
eiτt I(σ0, t) dt

converges in mean to a function f (τ ) ∈ L2(−∞,∞). It is well known that mean

convergence implies the convergence of a subsequence almost everywhere. But in

our case any such subsequence converges to the function on the left side of (24), so

that the function on the left side of (24) and f (τ ) agree almost everywhere and their
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L2 norms are equal. Again by the same theorem, the norm of f (τ ) is ≤ the norm of

the integrand. Hence making the change of variable y = eτ , 1 ≤ y < ∞ we get that

(note that since θB,1(x) has a countable number of jump discontinuities we can use

θB(x) in all of the integrals)

(28)

∫ ∞

1

∣

∣θB

(

y +
y
T

)

− θB(y) − c
y
T

∣

∣

2

y1+2σ0
dy ≪

∫ ∞

−∞

∣

∣

∣

∣

eδ(σ0+it) − 1

σ0 + it

∣

∣

∣

∣

2

|I(σ0, t)|2 dt

≪ 1

(2ρ + 2η − 1)3T

∞
∑

k=0

(

2k+1 − 1
)

22k

≪ 1

(2ρ + 2η − 1)3T
.

Next we choose η =
1

log log T
, so that

(29) σ0 = ρ +
1

log log T

and
∣

∣

∣

∣

∏

p∈B

(

1 +
1

pσ0+it

)−1
∣

∣

∣

∣

2

≪ (log T)2.

Note that if ρ > 1
2
, then 1

(2ρ+2η−1)3 is harmless to our estimates and if ρ =
1
2
, then

1
(2ρ+2η−1)3 is about (log log T)3. In any case we obtain from (28) and (29) that

(30)

∫ T4

1

∣

∣

∣

θB(y + y
T

) − θB(y) − c y
T

y

∣

∣

∣

2

dy ≪ e
8 log T

log log T (log T)2(log log T)3

T5−8ρ
≪ e

8 log T
log log T

T5−8ρ
.

For 0 < H ≤ x
3
4 we put T =

2x
H

. Using this in (30) we get

(31)

∫ x

1

∣

∣

∣

θB

(

y +
H y
2x

)

− θB(y) − c
H y
2x

y

∣

∣

∣

2

dy ≪
exp

(

8 log( 2x
H )

log log( 2x
H )

)

(

2x
H

)5−8ρ .

Let qn be the sequence of square-free and B-free numbers. Our next goal is to estimate

a sum of the form
∑

qn≤x

qn−qn−1≥ H
x

qn

(qn − qn−1).

To this end, note that if qn−1 and qn are consecutive square-free and B-free numbers

≤ x such that qn − qn−1 ≥ H
x

qn, then (31) gives that

∫ qn− H
2x

qn

qn−1

∣

∣

∣

∣

θB

(

y +
H y
2x

)

− θB(y) − c
H y
2x

y

∣

∣

∣

∣

2

dy = c2

∫ qn− H
2x

qn

qn−1

H2

4x2
dy

≫ H2

x2
(qn − qn−1)
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and summing over all such qn ≤ x we get

(32)
∑

qn≤x

qn−qn−1≥ H
x

qn

(qn − qn−1) ≪
( x

H

) 8ρ−3

exp
( 8 log

(

2x
H

)

log log
(

2x
H

)

)

in the range 0 < H ≤ x
3
4 . Moreover using the well-known fact qn − qn−1 ≪ √

qn

(in fact sharper bounds are known by the work of Sargos and Wu [14]) we will show

that (32) holds for the full range 0 < H ≤ x. Indeed combining qn − qn−1 ≪ √
qn

with the condition H
x

qn ≤ qn − qn−1 of the summation, we get that qn ≪
(

x
H

)

2.

Hence if H is close to x
3
4 , then qn’s can go up to a bound which is about

√
x. Using

(32) with x replaced by
√

x and H replaced by H√
x
, we get that (32) is valid when

H√
x
≤ (

√
x)

3
4 = x

3
8 i.e., when 0 < H ≤ x

7
8 . Continuing in this way, we get that (32)

is valid for 0 < H ≤ x. Integrating with respect to H we get

(33)
∑

qn≤x

(qn − qn−1)2 ≤ x
∑

qn≤x

(qn − qn−1)2

qn

=

∫ x

1

(

∑

qn≤x

qn−qn−1≥ H
x

qn

(qn − qn−1)

)

dH

≪ x8ρ−3

∫ x

1

exp
(

8 log( 2x
H )

log log( 2x
H )

)

H8ρ−3
dH ≪ x8ρ−3e

8 log x
log log x .

If

f (z) =

∞
∑

n=1

a f (n)qn

is a newform, then a f (qs) 6= 0 for every qs, so that by the definition of i f (n) we have

i f (n) ≤ qs − n

when qs−1 < n ≤ qs. It follows that

∑

qs−1<n≤qs

i f (n) ≪
∑

qs−1<n≤qs

(qs − n) ≪ (qs − qs−1)2

and finally, using (33),

∑

n≤x

i f (n) ≪
∑

qs≤2x

∑

qs−1<n≤qs

i f (n) ≪
∑

qs≤2x

(qs − qs−1)2 ≪ x8ρ−3e
8 log x

log log x .

This completes the proof of Theorem 7.
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Proof of Corollary 8 Let us recall that by the result of David and Pappalardi [3] (see

proof of Theorem 6) we get

πE(a,b)(X) ≪
√

X

with at most

O
( AD

(log X)c

)

exceptions of E(a, b) where A, D > X2+λ and λ > 0. It follows that

BE(a,b)(x) ≪
√

x

with this many exceptions and Corollary 8 is a consequence of Theorem 7 by taking

ρ =
1
2
.
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Publ. Math. 54(1981), 323–401.
[13] A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive

primes. Arch. Math. Naturvid. 47(1943), 87–105.
[14] P. Sargos and J. Wu, Multiple exponential sums with monomials and their applications in number

theory. Acta Math. Hungar. 87(2000), 333–354.
[15] E C. Titchmarsh, The Theory of the Riemann Zeta-Function. Clarendon Press, Oxford, 1951.
[16] , Introduction to the theory of Fourier Integrals. Third edition. Chelsea Publishing Company,

New York, 1986
[17] D. Wan, On the Lang-Trotter conjecture. J. Number Theory 35(1990), 247–268.
[18] J. Wu, Nombres B-libres dans les petits intervalles. Acta Arith. 65(1993), 97–116.

Department of Mathematics

University of Illinois at Urbana-Champaign

61801, USA

e-mail: alkan@math.uiuc.edu

https://doi.org/10.4153/CJM-2005-019-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-019-7

