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Abstract

Let G be a locally compact group with a fixed left Haar measure. In this paper, given a strictly positive
Young function Φ, we consider LΦ(G) as a Banach left L1(G)-module. Then we equip LΦ(G) with the
strict topology induced by L1(G) in the sense of Sentilles and Taylor. Some properties of this locally
convex topology and a comparison with weak∗, bounded weak∗ and norm topologies are presented.
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1. Introduction

Throughout let G be a locally compact group with a fixed left Haar measure. In [5],
Crombez and Govaerts considered L∞(G) as a Banach left L1(G)-module with the
convolution as module operation, and then introduced and studied a locally convex
topology, denoted τc, on the Banach space L∞(G) induced by L1(G). Among other
things, they showed that τc is complete on norm-bounded subsets in L∞(G); that is,
(L∞(G), τc) is quasi-complete. Motivated by their work, we consider Orlicz spaces
on a locally compact group G associated to a strictly positive Young function Φ as
a Banach left L1(G)-module with the convolution as module operation. Then we
investigate some interesting properties of the induced topology. For our study we
use the notion of the strict topology in the sense of Sentilles and Taylor [24]. This
approach places our study in a correct frame, and enables us to generalize and extend
some nice results in [5]. For instance, we show that LΦ(G) with the induced topology
is complete. We also examine when this topology coincides with norm, weak∗, or
bounded weak∗ topologies, and we also give a necessary and sufficient condition for
its metrizability.
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2 I. Akbarbaglu and S. Maghsoudi [2]

Let us remark that Orlicz spaces are a genuine generalization of classical Lebesgue
spaces. We would also like to mention [7, 19–21] in which certain linear topologies
on Orlicz spaces and more general function spaces has been considered as well.

In the next section, we give necessary definitions and notations concerning Orlicz
spaces and strict topology, and in Section 3 we present our results.

2. Preliminaries

Throughout this work, let G be a locally compact group with a fixed left Haar
measure λ. By

∫
G f (x) dx we denote the integration of a function f defined on

G with respect to λ. Also, let L0(G) denote the set of all equivalence classes of
λ-measurable complex-valued functions on G. For measurable functions f and g on
G, the convolution product

( f ∗ g)(x) =

∫
G

f (y)g(y−1x) dy

is defined at each point x ∈G for which this makes sense. We denote by f ∗ the function
defined by f ∗(x) = ∆(x−1) f (x−1) for all x ∈ G, where ∆ denotes the modular function
on G. Also recall that the right and left translations of f by t ∈ G defined as Rt f (x) =

∆(t−1) f (xt−1) and Lt f (x) = f (t−1x) for all x ∈ G, respectively. The characteristic
function of a subset A ⊆ G is denoted by χA. For background on analysis on locally
compact groups, we refer to [9].

We refer to two excellent books [16, 22] for more details concerning Orlicz spaces.
A function Φ : R→ [0,∞] is called a Young function if Φ is a convex, even, and left
continuous function with Φ(0) = 0 which is neither identically zero nor identically
infinite.

For any Young function Φ let

Ψ(x) = sup{xy − Φ(y) : y ∈ R} (x ∈ R).

It is easily verified that Ψ is a Young function called the complementary Young function
to Φ. It should be remarked that Φ is also the complementary Young function to Ψ.
Then (Φ,Ψ) is called a complementary pair of Young functions.

Let Φ be a Young function. For f ∈ L0(G) define

ρΦ( f ) =

∫
G

Φ(| f (x)|) dx.

Then the Orlicz space LΦ(G) is defined by

LΦ(G) = { f ∈ L0(G) : ρΦ(a f ) <∞, for some a > 0}.

We also set
MΦ(G) = { f ∈ L0(G) : ρΦ(a f ) <∞, for all a > 0}.

Then LΦ(G) is a Banach space under the norm NΦ(·), called the Luxemburg–Nakano
norm, defined for f ∈ LΦ(G) by

NΦ( f ) = inf{k > 0 : ρΦ( f /k) ≤ 1}.
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It is well known that NΦ( f ) ≤ 1 if and only if ρΦ( f ) ≤ 1. Furthermore, if the Young
function Φ is strictly increasing and continuous, then using the complementary Young
function Ψ, another norm ‖ · ‖Φ, called the Orlicz norm, is defined on LΦ(G) in the
following way:

‖ f ‖Φ = sup
{∫

G
| f g| dλ : ρΨ(g) ≤ 1

}
.

Let us remark that ‖ · ‖Φ is equivalent to NΦ(·); in fact, NΦ( f ) ≤ ‖ f ‖Φ ≤ 2NΦ( f ), for
every f ∈ LΦ(G).

For 1 ≤ p ≤ ∞, classical Lebesgue spaces on G with respect to the Haar measure λ
will be denoted by Lp(G) with the norm ‖ · ‖p as defined in [9]. It is clear that Lp(G) is
an elementary example of the Orlicz space LΦ(G).

We now give some definitions and facts about general strict topology. Strict
topology has been studied extensively by many authors; see, for example, [8, 13–
15, 24–26]. To introduce this topology, we need to recall and fix some definitions and
notation concerning Banach modules. A bounded net (eι) in the Banach algebra A is
called a bounded approximate identity if ‖eιa − a‖ → 0 and ‖aeι − a‖ → 0 for all a ∈ A.
Let A be a Banach algebra, and let V be a Banach space. Then V together with the
continuous bilinear map (a, v) 7→ a · v, A × V → V is called a Banach left A-module
if a · (b · v) = ab · v for all a, b ∈ A and v ∈ V . A Banach right A-module is defined
similarly.

If V is a Banach left A-module, then V is called faithful if, for each v ∈ V \ {0}, there
exists a ∈ A with a · v , 0. If V is a Banach left A-module, then V∗, the topological dual
of V, is a Banach right A-module with the dual module operation (v∗, a) 7→ v∗ � a, V∗ ×
A→ V∗, specified by the formula 〈v∗ � a, v〉 = 〈v∗,a · v〉 for all a ∈ A, v ∈ V , and v∗ ∈ V∗.

We are now prepared to introduce the strict topology for Banach modules. Let
(V, ‖ · ‖) be a faithful Banach left A-module, where A is a Banach algebra with a
bounded approximate identity. Then the strict topology β on V induced by A is
defined as the locally convex topology on V generated by the family of seminorms
Pa(v) = ‖a · v‖ for all a ∈ A, v ∈ V . In particular, the sets Ua = {v ∈ V : ‖a · v‖ ≤ 1}, for
a ∈ A, form a neighborhood base at zero for the topology β.

3. Results

Throughout this work let Φ be a strictly positive Young function. It is known from
[4, Theorem 2.5] that LΦ(G) can be considered as a Banach left L1(G)-module under
the convolution as module operation. Recall that the Banach algebra L1(G) contains
a bounded approximate identity (eι) where eι = χUι

/λ(Uι) and Uι runs through the
directed set of all compact symmetric neighborhoods of G, and LΦ(G) is a faithful
L1(G)-module. Thus we can equip LΦ(G) with the strict topology induced by L1(G),
denoting it by βc in the sequel.

We start with the following result on completeness of βc.

Proposition 3.1. Suppose that the complementary function to Φ is finite-valued. Then
the space (LΦ(G), βc) is a complete locally convex space.

https://doi.org/10.1017/S1446788714000639 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000639


4 I. Akbarbaglu and S. Maghsoudi [4]

Proof. By [24, Theorem 3.5], it is enough to prove that the mapping f 7→ T f , T f (g) =

g ∗ f , from LΦ(G) into HomL1(G)(L1(G),LΦ(G)) is onto, where HomL1(G)(L1(G),LΦ(G))
denotes the Banach space of all bounded module homomorphisms from L1(G) into
LΦ(G). To see this, let T ∈ HomL1(G)(L1(G), LΦ(G)) be arbitrary. Let (eι)ι be an
approximate identity for L1(G) with ‖eι‖1 = 1 for all ι. Now from the duality LΦ(G) =

(MΨ(G),NΨ(·))∗ and the fact that Ψ is complementary to Φ together with the Banach–
Alaoglu theorem, we can assume that the net (T (eι))ι converges in the weak∗ topology
σ(LΦ(G), MΨ(G)) to some h ∈ LΦ(G) with NΦ(h) ≤ ‖T‖. For all f ∈ L1(G) and
g ∈ MΨ(G), we have

〈g,T ( f ∗ eι)〉 = 〈g, f ∗ T (eι)〉 = 〈 f ∗ ∗ g,T (eι)〉,

which converges to 〈 f ∗ ∗ g, h〉 = 〈g, f ∗ h〉. On the other hand,

|〈g,T ( f ∗ eι)〉 − 〈g,T ( f )〉| ≤ NΨ(g)‖T‖ · ‖ f ∗ eι − f ‖1,

which tends to zero because (eι) is a bounded approximate identity for L1(G). It
follows that, for all f ∈ L1(G) and g ∈ MΨ(G), we have 〈g, T ( f )〉 = 〈g, f ∗ h〉. This
implies that T ( f ) = f ∗ h, for every f ∈ L1(G), and hence T = Th. �

As an immediate consequence of [24, Theorem 4.1 and Corollary 4.7] together with
Proposition 3.1, we have the following corollary.

Corollary 3.2. The dual of (LΦ(G), βc) can be identified with LΦ(G)∗ � L1(G). In
particular, if LΦ(G) = MΦ(G) and Ψ vanishes only at zero, then (MΦ(G), βc)∗ =

LΨ(G) � L1(G).

Example. Let Φ(x) = |x|p/p, for p ≥ 1. Then, by Corollary 3.2, we have (Lp(G), βc)∗ =

Lq(G) for p > 1, where 1/p + 1/q = 1. Note that, by [24], we have (L1(G), βc)∗ =

LUC(G), the Banach space of all bounded left uniformly continuous functions on G.

In the next result we show that βc coincides with the norm topology only when the
group is discrete. For the proof we need an interesting result due to Yap [29]. We state
it for the convenience of the reader.

Theorem 3.3. Let A be a Banach algebra, and V a Banach left A-module. Let Y be a
closed subspace of V such that a · v ∈ Y for all a ∈ A, v ∈ V. Then:

(i) {v ∈ V : A · v = Y} is an open subset of V;
(ii) {a ∈ A : a · V = Y} is an open subset of A.

Now we are ready to prove the next result.

Proposition 3.4. The following assertions hold.

(i) The strict topology βc coincides with the norm topology generated by NΦ(·) on
LΦ(G) if and only if G is discrete.

(ii) (LΦ(G), βc) is a metrizable space if and only if G is discrete.
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Proof. (i) Let G be discrete. If e is the identity of G, then χe is an identity element for
the module operation on LΦ(G), and hence the map f 7→ χe ∗ f is the identity map on
LΦ(G). Now the result follows directly from [24, Theorems 2.4 and 3.2].

Conversely, suppose that the topology βc coincides with the norm topology and G
is not discrete. Then, again by [24, Theorems 2.4 and 3.2], there exists an element f in
L1(G) such that f ∗ LΦ(G) = LΦ(G). According to Theorem 3.3 and the fact that Cc(G),
the space of continuous functions with compact support, is dense in L1(G), there is a
function h ∈ Cc(G) such that h ∗ LΦ(G) = LΦ(G). Also, for all g ∈ LΦ(G) and x ∈ G,

|h ∗ g(x)| =
∣∣∣∣∣∫

G
h(y)g(y−1x) dy

∣∣∣∣∣
=

∣∣∣∣∣∫
G

h(y−1)g(yx)∆(y−1) dy
∣∣∣∣∣

≤ 2(1 + K)2 max{1 + ∆(x−1)}NΨ(h)NΦ(g)

where K = sup{∆(x−1) : x ∈ supp(h)}. Since the modular function ∆ is continuous,
h ∗ g is bounded on every compact subset of G. Now let V be a compact neighborhood
of the identity element of G. Since G is not discrete, there exists a sequence
(Kn)∞n=1 of pairwise disjoint measurable subsets of V with λ(Kn) = 2−n. Define g =∑∞

n=1 Φ−1(2n/2)χKn . Then g ∈ LΦ(G), but g is clearly not bounded λ-almost everywhere
on V . Therefore h ∗ LΦ(G) , LΦ(G). Thus we have arrived at a contradiction.

(ii) This is immediate from part (i) and [24, Theorem 3.2]. �

In the next result we compare the topology βc with the weak∗ topology on LΦ(G).

Theorem 3.5. The weak∗ topology σ(LΦ(G),MΨ(G)) coincides with the strict topology
βc if and only if G is finite.

Proof. Let G be finite. Then LΦ(G) is of finite dimension, and hence all locally convex
topologies on LΦ(G) are equal.

For the converse, first suppose that G is discrete. Then, by Theorem 3.4, the strict
topology and the norm topology on LΦ(G) are equal, and hence the weak∗ topology
σ(LΦ(G), MΨ(G)) coincides with the norm topology generated by NΦ(·). This implies
that LΦ(G) is of finite dimension. Now, since G is discrete, it follows that G must be
finite.

Second, we suppose that G is not discrete. The proof will be complete if we
construct a βc-neighborhood at zero such that it is not a weak∗ neighborhood of zero.
To do this, we borrow the method used in part (b) of [28, Theorem 5]. Fix an x ∈ G
that is not the identity element of G. Then there is a compact symmetric neighborhood
U of the identity element of G such that λ(U) < 1

2 and U ∩ xU = ∅. Let F = U ∪ {x}.
Let A be the collection of all open symmetric neighborhoods V of the identity with
V ⊂ U. For V ∈ A let FV = FV and EV = xV ∩ (G\F). Since G is not discrete, x
is a boundary point of F. It follows that EV is a nonempty open subset of G and
thus λ(EV ) > 0. Hence, for all V ∈ A, we have λ(F) < λ(F) + λ(EV ) ≤ λ(FV ) ≤ λ(F2).
Also, {FV : V ∈ A} forms a neighborhood base for F. Thus, by the regularity of Haar
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measure λ, λ(FV )→ λ(F), and so there is a decreasing sequence (Vn) inA with λ(FVn )
all distinct and λ(FVn )→ λ(F). In particular, λ(FVn \ FVn+1 ) > 0 for all n ≥ 1.

Let f0 = χF and gn = χVn
/NΦ(χVn

). Since, for each s ∈ G, we have f0 ∗ gn(s) =

λ(F ∩ sVn)/NΦ(χVn
), supp( f0 ∗ gn) = FVn , we infer that the sequence { f0 ∗ gn : n ≥ 1}

is linearly independent and contained in the strict neighborhood U f0 . Let A be the
subspace of LΦ(G) consisting of all g ∈ LΦ(G) with f0 ∗ g = 0, for all n ≥ 1. Note that
gn < A for all n ≥ 1. Thus A has infinite codimension. This implies that any subspace
B of LΦ(G) contained in U f0 has infinite codimension. This is because for any scalar
c, cg ∈ B whenever g ∈ B, and we obtain |c|NΦ( f0 ∗ g) ≤ 1, for g ∈ B and any scalar c.
Therefore f0 ∗ g = 0 for g ∈ B, and hence B ⊆ A. However, any weak∗ neighborhood
of zero contains a subspace of LΦ(G) with finite codimension. It follows that U f0 is
not a weak∗ neighborhood of zero, whereas it is a strict neighborhood of zero. This
contradiction implies that G is discrete. Finally, together with the first case, this implies
that G is finite. �

If X is a Banach space, then the bounded weak∗ topology bσ(X∗, X) on its dual X∗

is the strongest topology which coincides with σ(X∗, X) on bounded subsets; see [6,
Section V.5]. For a study of this topology in the setting of analytic functions; see [23].

The following theorem generalizes and extends [27, Theorem 4.3].

Theorem 3.6. Let G be a locally compact group. Then G is compact if and only if the
bounded weak∗ topology bσ(LΦ(G),MΨ(G)) on LΦ(G) coincides with the topology βc.

Proof. Let G be a compact group with the normalized Haar measure; that is, λ(G) = 1,
and B = {h ∈ LΦ(G) : NΦ(h) ≤ C} for any C > 0. It suffices to establish that for any
βc-neighborhood V of zero, there exists a weak∗ neighborhood E of zero such that
E ∩ B ⊂ V . But, by virtue of [24, Theorem 3.3], the βc topology coincides with
the κ-topology on B. Here κ is the locally convex topology on LΦ(G) generated
by the seminorms f 7→ ‖eι ∗ f ‖Φ in which (eι) is a bounded approximate identity of
L1(G). Hence we can work only with the κ-neighborhoods of zero. For any ι, let
Vι = {g ∈ LΦ(G) : NΦ(eι ∗ g) ≤ 1}. By the compactness of G and the continuity of the
right translation mapping x 7→ Rxg from G into (MΨ(G), NΨ(·)), [2, Lemma 4.1], it
follows that each eι is an almost periodic function on (MΨ(G),NΨ(·)). This means that,
given ε with Φ(ε) ≤ 1, there are elements x1, x2, . . . , xn in G such that, for any x ∈ G,
we can choose an element xi (1 ≤ i ≤ n) such that

NΨ(Rxeι − Rxi eι) <
ε

4C
.

This implies that for every g ∈ B and the corresponding xi to x,

|eι ∗ g(x) − eι ∗ g(xi)| = |〈Rxeι, g〉 − 〈Rxi eι, g〉|

≤ 2NΨ(Rxeι − Rxi eι)NΦ(g) <
ε

2
,

whence we obtain |eι ∗ g(x)| < |eι ∗ g(xi)| + ε/2 for all ι. Put

E =

{
h ∈ LΦ(G) : |〈Rxi eι, h〉| <

ε

2

}
.
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Then E is a weak∗ neighborhood of zero. Also, for each h ∈ E ∩ B, we get∫
G

Φ(|eι ∗ h(x)|) dx =

∫
G

Φ(|〈Rxeι, h〉|) dx

≤

∫
G

Φ(ε/2 + |〈Rxi eι, g〉|) dx ≤
∫

G
Φ(ε) dx ≤ 1.

Therefore E ∩ B ⊂ Vι, for all ι, as required.
To prove the converse, we assume, by way of contradiction, that G is not compact.

Then there are an infinite sequence (xn) in G and symmetric compact neighborhoods
U and V of the identity element of G such that

Φ(λ(U))λ(U) > 1, U2 ⊂ V, xnV ∩ xmV = ∅ (n , m).

For every n ≥ 1, set fn = χxnV . Then the sequence ( fn) is a norm-bounded sequence in
LΦ(G). By invoking Hölder’s inequality, for any g ∈ MΨ(G),∣∣∣∣∣∫

G
fn(x)g(x) dx

∣∣∣∣∣ ≤ 2
[
Φ−1

( 1
λ(V)

)]−1
Nψ(gχxnV ) (n ≥ 1).

However, the sequence (Nψ(gχV xn )) tends to zero as n→∞. To show this, let a > 0
be arbitrarily chosen. Then

∞∑
n=1

∫
xnV

Ψ(a|g(x)|) dx ≤
∫

G
Ψ(a|g(x)|) dx <∞.

Thus fn → 0 in the weak∗ topology. But, for χU ∈ L1(G),∫
G

Φ(χU ∗ fn(x)) dx ≥
∫

U
Φ

(∫
U
χU(y) χxnV (y−1x) dy

)
dx

=

∫
U

Φ

(∫
U
χU(yx−1

n ) χV (y−1x)∆(x−1
n ) dy

)
dx

=

∫
U

Φ

(∫
U
χU(yx−1

n )∆(x−1
n ) dy

)
dx

≥ Φ(λ(U))λ(U) > 1.

It follows that NΦ(χU ∗ fn) ≥ 1 for all n ≥ 1. Hence ( fn) does not converge to zero in
the topology κ and hence in the βc topology. �

As a direct consequence of the preceding theorem we show that the weak∗ and strict
topologies are sequentially equivalent if and only if G is compact.

Corollary 3.7. Any weak∗ convergent sequence is βc convergent if and only if G is
compact.

Proof. Let G be compact and let (gn)n be a sequence in LΦ(G) that converges in the
weak∗ topology to some g ∈ LΦ(G). Then the set A = {gn : n ≥ 1} ∪ {g} is weak∗
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compact in LΦ(G), and hence norm-bounded. Now, by Theorem 3.6, we get that
gn → g in the βc topology.

For the converse, as in Theorem 3.6 we can construct a sequence (gn)n in LΦ(G)
such that for every n ∈ N, NΦ(gn) ≥ 1 and gn → 0 in the weak∗ topology but (gn) does
not converge to zero in the βc topology. �

Remark 3.8. Corollary 3.7 does not hold if the norm topology is replaced by the
strict topology. Indeed, by [11] or [18], weak∗ convergence is equivalent to norm
convergence for sequences in LΦ(G) if and only if G is finite.

Theorem 3.9. Suppose that the complementary function to Φ is finite-valued. Then a
weak∗ closed linear subspace of LΦ(G) is an L1(G)-submodule if and only if it is left
translation invariant.

Proof. Suppose that I is a left translation invariant subspace. We have to show that
f ∗ g ∈ I for every f ∈ L1(G) and g ∈ I. Let h ∈ MΨ(G) be such that

∫
G h(x)g(x) dx = 0

for all f ∈ I. Then, for g ∈ I and any f ∈ L1(G),∫
G

( f ∗ g)(x)h(x) dx =

∫
G

h(x)
(∫

G
f (y)g(y−1x) dy

)
dx

=

∫
G

f (y)
(∫

G
Lyg(x)h(x) dx

)
dy = 0.

Since (MΨ(G), NΨ(·))∗ = LΦ(G), the Banach–Alaoglu theorem implies that f ∗ g ∈ I
for all f ∈ L1(G) and g ∈ I. Hence I is an L1(G)-submodule.

Conversely, let I be an L1(G)-submodule of LΦ(G) and s ∈ G be arbitrary. Let g ∈ I
and let V be a symmetric compact neighborhood of the identity in G. Then for any
h ∈ MΨ(G) we have〈

h, Lxg −
χxV ∗ g
λ(V)

〉
=

∫
G

h(x)
(∫

G

g(s−1x) χV (s−1y)
λ(V)

dy −
∫

G

χV (s−1y)g(y−1x)
λ(V)

dy
)

dx

=

∫
V

χV (y)
λ(V)

∫
G

h(x)
(
g(s−1x) − g(y−1s−1x)

)
dx dy

=

∫
V

χV (y)
λ(V)

∫
G

(
h(sx) − h(syx)

)
g(x) dx dy

≤ 2 sup
y∈V

NΦ(g)NΨ(Ls−1 h − Ly−1 (Ls−1 h)).

Since, for any f ∈ MΨ(G), the map y 7→ Ly−1 f from G into MΨ(G) is continuous [2],
for every ε > 0 there exists V such that

sup
y∈V

NΨ(Ls−1 h − Ly−1 (Ls−1 h)) < ε.

This implies that each g ∈ I belongs to the weak∗ closed subset L1(G) ∗ g. As I is a
weak∗ closed L1(G)-submodule, it follows that Lsg ∈ I. This completes the proof. �
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We conclude this work with the following observation. It is interesting to compare
this result with [28, Theorem 5.d] in which it was proved that, for a unimodular locally
compact group G, L1(G) with the locally convex topology β1, introduced there, is a
topological algebra if and only if G is compact. The second named author has shown
in [17] that the topology β1 is, in fact, a strict topology in the sense of Sentilles and
Taylor. We refer the interested reader to [3] for a more recent study of a generalization
of the topology β1 for Orlicz spaces. Here, our results show that βc is different
from β1.

Let us remark that LΦ(G) is not, in general, closed under the convolution product;
for more information see [1, 2, 12]. If G is locally compact abelian group, it was
proved in [10] that LΦ(G) is closed under the convolution product if and only if
limx→0 Φ(x)/x > 0 or G is compact. With this in mind, we present our final result.

Proposition 3.10. Let G be a locally compact abelian group and let LΦ(G) ∗
LΦ(G) ⊆ LΦ(G). Then (LΦ(G), βc) is a topological algebra with the convolution as
multiplication.

Proof. It is well known, and easily follows from the Cohen–Hewitt factorization
theorem, that L1(G) ∗ L1(G) = L1(G); see [9, Corollary 32.30]. Thus each ϕ ∈ L1(G)
can be written as ϕ = ϕ1 ∗ ϕ2 for some ϕ1, ϕ2 ∈ L1(G). Now if f , g ∈ LΦ(G) then

NΦ(ϕ ∗ ( f ∗ g)) = NΦ(( f ∗ ϕ1) ∗ (g ∗ ϕ2)) ≤ NΦ( f ∗ ϕ1)NΦ(g ∗ ϕ2),

from which the result follows. �
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[12] A. Kamińska and J. Musielak, ‘On convolution operator in Orlicz spaces’, Rev. Mat. Complut. 2
(1989), 157–178.

[13] L. A. Khan, Function Spaces, Contemporary Mathematics, 435 (ed. K. Jarosz) (American
Mathematical Society, Providence, RI, 2007), 253–263.

[14] L. A. Khan, ‘Topological modules of continuous homomorphisms’, J. Math. Anal. Appl. 343
(2008), 141–150.

[15] L. A. Khan, N. Mohammad and A. B. Thaheem, ‘The strict topology on topological algebras’,
Demonstratio Math. 38 (2005), 883–894.

[16] M. A. Krasnosel’skii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces (Noordhoff,
Groningen, 1961).

[17] S. Maghsoudi, ‘The space of vector-valued integrable functions under certain locally convex
topologies’, Math. Nachr. 286 (2013), 260–271.

[18] A. Nissenzweig, ‘W∗ sequential convergence’, Israel J. Math. 22 (1975), 266–272.
[19] M. Nowak, ‘On some linear topology on Orlicz spaces L∗φE (µ). I’, Ann. Soc. Math. Pol., Ser. I,

Comment. Math. 26 (1986), 51–68.
[20] M. Nowak, ‘On the modular topology on Orlicz spaces’, Bull. Pol. Acad. Sci. Math. 36 (1988),

553–562.
[21] M. Nowak, ‘A generalized mixed topology on Orlicz spaces’, Rev. Mat. Complut. 7 (1994), 27–56.
[22] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces (Marcel Dekker, New York, 1991).
[23] L. A. Rubel and J. V. Ryff, ‘The bounded weak-star topology and the bounded analytic functions’,

J. Funct. Anal. 5 (1970), 167–183.
[24] F. D. Sentilles and D. Taylor, ‘Factorization in Banach algebras and the general strict topology’,

Trans. Amer. Math. Soc. 142 (1969), 141–152.
[25] K. V. Shantha, ‘The general strict topology in locally convex modules over locally convex algebras

I’, Ital. J. Pure Appl. Math. 16 (2004), 211–226.
[26] K. V. Shantha, ‘The general strict topology in locally convex modules over locally convex algebras

II’, Ital. J. Pure Appl. Math. 17 (2005), 21–32.
[27] J. H. Shapiro, ‘The bounded weak star topology and the general strict topology’, J. Funct. Anal. 8

(1971), 272–286.
[28] A. I. Singh, ‘L∞0 (G)∗ as the second dual of the group algebra L1(G) with a locally convex topology’,

Michigan Math. J. 46 (1999), 143–150.
[29] L. Y. H. Yap, ‘On the ranges of certain convolution operators’, Expo. Math. 11 (1993), 73–80.

IBRAHIM AKBARBAGLU, Department of Mathematics,
Faculty of Basic Sciences, University of Bonab,
Bonab 55517-61167, Iran
and
School of Mathematics,
Institute for Research in Fundamental Sciences (IPM),
PO Box 19395-5746, Tehran, Iran
e-mail: ibrahim.akbarbaglu@gmail.com

https://doi.org/10.1017/S1446788714000639 Published online by Cambridge University Press

mailto:ibrahim.akbarbaglu@gmail.com
https://doi.org/10.1017/S1446788714000639


[11] A convolution-induced topology on the Orlicz space of a locally compact group 11

SAEID MAGHSOUDI, Department of Mathematics,
University of Zanjan, Zanjan 45195-313, Iran
and
School of Mathematics,
Institute for Research in Fundamental Sciences (IPM),
PO Box 19395-5746, Tehran, Iran
e-mail: s maghsodi@znu.ac.ir

https://doi.org/10.1017/S1446788714000639 Published online by Cambridge University Press

mailto:s\unskip _maghsodi@znu.ac.ir
https://doi.org/10.1017/S1446788714000639

	Introduction
	Preliminaries
	Results
	References

