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Abstract

The limit behaviour in probability of realised quadratic variation is discussed under
a relatively simple ambit process setting. The relation of this to the underlying
volatility/intermittency field is in focus, especially as concerns the question of no
volatility/intermittency memory.
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1. Introduction

Dynamic stochastic phenomena frequently involve a significant element of randomness
beyond the most basic types of stochastic innovation. Additional variations of this kind, for
instance in the form of latent stochastic variance changing over time, are often referred to as
volatility or intermittency, and they are of key importance, particularly in finance and turbulence.

In many cases the volatility is expressed in stochastic modelling by a multiplicative term
specified as a positive process σ . Thus, for example, we consider stochastic processes symbol-
ically written as

Yt =
∫
At

g(t − s)σsdWs, (1)

where At is a t-dependent interval of R, g is a deterministic function, and W is a Brownian
motion that is independent of the process σ . The question of what can be learned about σ from
observations of the process is then often of central interest, and the main tool to study that is
(realised) multipower variations, in particular (realised) quadratic variation; see [2], [3], [4],
[5], [6], [7], [10], and the references therein.

There are two main types of (1). In the case when g is constant andAt = [0, t] we are in the
framework of Brownian semimartingales, while if g is nontrivial andAt is of the form [t−c, t]
for some c ∈ (0,∞] we have a Brownian semistationary process, as defined in [3]. Note that
in the latter case if the process σ is stationary then Y is in fact a strictly stationary process
on R. These two types are substantially different. In particular, Brownian semistationary
processes are generally not semimartingales, and this, in particular, implies major differences
between the theory of multipower variations for the two types; see [6]. To exemplify, in
the Brownian semimartingale case the realised quadratic variation over [0, t] will converge in
probability to σ 2+

[0,t], where, for a < b, σ 2+
(a,b] = ∫ b

a
σ 2
s ds. On the other hand, for Brownian

semistationary processes, where a normalisation of the realised quadratic variation is generally
required, it may, for instance, happen that the convergence is to λσ 2+

[0,t] + (1 − λ)σ 2+
[−1,t−1] for
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some constant λ ∈ (0, 1) (cf. [3] and [6]). When the limit is in fact σ 2+
[0,t], we speak of a volatility

memoryless process.
Brownian semistationary processes constitute the subfamily of Brownian-based ambit pro-

cesses for which the spatial component is trivial. The general form (except for a drift term that
will not concern us here) is based on an ambit field Y , i.e. a stochastic field in space–time

Y (x, t) =
∫
At (x)

g(x, ξ, t − s)σs(ξ)W(dξds),

where At(x) is some subset of X × (−∞, t] for some spatial region X, g is deterministic, σ
is a positive stochastic field, and W is two-dimensional white noise. Then an ambit process X
is a process of the form X = Y (τ), where τ denotes a smooth curve in X × R.

The purpose of the present paper is to explore the question of volatility memorylessness
for a simple tempo-spatial setting and to draw some conclusions with respect to further related
research questions.

In Section 2 we present our main conclusions, while the proofs are given in Section 4. In
Section 3 we summarise and provide a brief outlook.

2. Results

We restrict the discussion to the case in which X = R and to ambit fields of the form

Y (x, t) =
∫
At (x)

g(x − ξ, t − s)σs(ξ)W(dξ ds), (2)

whereAt(x) = A+ (x, t) for someA ∈ Bb(R
2), the bounded Borel sets in R

2, g is a Lebesgue
locally square integrable function on R

2, and (σs(ξ))(ξ,s)∈R2 is a real-valued continuous random
field independent of W with (ξ, s) �→ E[σ 2

s (ξ)] locally bounded. Here we are primarily
interested in the case where A = {(ξ, s) ∈ R

2 | −M ≤ s ≤ 0, c1(s) ≤ ξ ≤ c2(s)} for some
M ∈ R+, and smooth functions c1 : [−M, 0] → R− and c2 : [−M, 0] → R+ such that c1 is
increasing and c2 is decreasing. Note thatA is a closed set and that if c1(0) = c2(0) then (0, 0)
is the unique top point, i.e. the only point in A for which s = 0.

To specify the meaning of (2), letλ2 denote the Lebesgue measure on R
2 and, forf ∈ L2(λ2),

let Wf = ∫
R2 f (ξ, s)W(dξds), the integral being a Wiener integral. The field (Wf )f∈L2(λ2)

is then isonormal, that is, a centred Gaussian process with covariance function (f, h) �→∫
R2 f h dλ2. As (f, ω) �→ Wf (ω) can be assumed measurable, we can, for every B ∈ Bb(R

2),
consider the variable WTB , where TB : � → L2(λ2); ω �→ σ·(·)(ω)g 1B . Consequently,
(WTB )B∈Bb(R2) is a well-defined square integrable centred process whose distribution given
σ = ψ equals the distribution of (

∫
B
gψ dW)B∈Bb(R2); in other words, (WTB ) is a centred

Gaussian process with covariance function (B1, B2) �→ ∫
B1∩B2

g2ψ2 dλ2. This last observation
both justifies and motivates the writing used in (2).

For a given smooth curve τ = (τ1, τ2) : R → R
2, consider the process Xθ = Y (τ(θ)),

θ ≥ 0. The realised quadratic variation of X and its normalised version are, for δ > 0 and
t > 0, given by

[Xδ]t =
[t/δ]∑
k=1

(Xkδ −X(k−1)δ)
2 and [Xδ]t = δ

c(δ)
[Xδ]t ,

where c(δ) is a positive constant depending only on δ, whose specific form will be given
below. We are interested in the asymptotic behaviour of [Xδ]t for δ → 0. So far we can only
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satisfactorily handle the case of τ being a straight line or, more generally, a piecewise straight
line. Therefore, for ease of notation we will from now on assume that θ �→ τ(θ) is a straight
line and, thus, 
τ(δ) = δ
τ , where, in obvious notation,


τ(δ) = (
τ1(δ),
τ2(δ)) = (τ1(t + δ)− τ1(t), τ2(t + δ)− τ2(t)) for t, δ ≥ 0.

We now introduce a probability measure πδ which is determined by the kernel function g.
The behaviour of πδ as δ → 0 is of key importance for the probabilistic limit properties of [Xδ].

Set

ψδ(u, v)

=

⎧⎪⎪⎨⎪⎪⎩
(g(
τ1(δ)+ u,
τ2(δ)+ v)− g(u, v))2 for (u, v) ∈ (−A) ∩ (−A−
τ(δ)),

g2(u, v) for (u, v) ∈ (−A) \ (−A−
τ(δ)),

g2(
τ1(δ)+ u,
τ2(δ)+ v) for (u, v) ∈ (−A−
τ(δ)) \ (−A).
Observe that

ψδ(u, v) = 0 if (u, v) /∈ (−A) ∪ (−A−
τ(δ))

and that, under smoothness conditions, ψδ(u, v) for (u, v) ∈ (−A) ∩ (−A − 
τ(δ)) will
typically be of order δ2. Now define

πδ(dudv) = ψδ(u, v)

c(δ)
λ2(du dv) for δ > 0, (3)

where c(δ) = ∫
R2 ψδ(u, v)λ2(du dv). Here it is tacitly assumed that c(δ) > 0, as will be

the case under the assumptions of the theorem stated below. Then, by construction, πδ is a
probability measure and, clearly, all weak limit points of πδ for δ → 0 will be probability
measures concentrated on −A. Simple calculations together with the continuity assumption on
σ then imply that in the case where the limit πδ

W−→ π0 exists as δ → 0,

E[[Xδ]t | σ ] →
∫

R2

∫ t

0
σ 2
τ2(s)−v(τ1(s)− u) dsπ0(du dv) as δ → 0.

We are particularly interested in conditions on A and g ensuring that the limit π0 exists and
is concentrated on ∂(−A) = −∂A. In this case we further have limδ→0 var([Xδ]t | σ) = 0, as
established by Lemma 2 in Section 4.

Under these conditions, we will thus have the key result that, as δ → 0,

[Xδ]t P−→
∫

R2

∫ t

0
σ 2
τ2(s)+v(τ1(s)+ u) dsπ(du dv). (4)

Hereπ denotes the image measure ofπ0 under the transformation (u, v) �→ (−u,−v). Observe
that π is concentrated on ∂A.

We can now state the main result of this paper. For proofs and further details, see Section 4.
Recall that, for any bounded closed convex subset C ⊆ R

2, containing 0 as an interior point,
the function

T (x) = inf{t > 0 | x ∈ tC}, x ∈ R
2, (5)

is called the gauge function of C. See [8, Chapter 5] for details and properties of T .
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Theorem 1. Let τ be a straight line, and letA be a bounded, closed, convex set with nonempty
interior A◦ and piecewise C∞ boundary. Then there exists a probability measure π concen-
trated on the boundary ∂A ofA such that (4) holds provided the following condition is satisfied
for some − 1

2 < α < 1
2 .

(i) g = ϕhα , where ϕ is Lipschitz continuous and not identically 0 on the part of −∂A
nonparallel to τ , and

hα(−x) =
{
(1 − T (x − x0))

α, x ∈ A,
0, x /∈ A,

where T is the gauge function of A− x0 for some x0 ∈ A◦.

Remark. The properties of T ensure the existence of positive constants C1 and C2 depending
only on A and x0 such that

C1d(x, ∂A) ≤ 1 − T (x − x0) ≤ C2d(x, ∂A), x ∈ A,
where d(x, ∂A) is the Euclidean distance between x and ∂A. The lower condition − 1

2 < α

therefore comes from the requirement that g should be locally integrable, whereas the upper
bound reflects the fact that in order for π to be concentrated on ∂A, the function g cannot tend
too fast to 0 as its argument tends to the boundary. In the proof we need δ2/c(δ) → 0 for δ ↓ 0,
implying that 2α + 1 < 2.

Remark. It follows from the proof given in Section 4 (see Lemma 3 for the case in which
α = 0) that if the boundary of A is piecewise smooth then the limit measure π exists if
λ21({x ∈ ∂A | ϕ(−x)2|τ ·n(x)| > 0}) > 0 and is determined by dπ = cϕ(−·)2|τ ·n| 1∂A dλ21,
where c is a normalising constant, τ is the unit vector giving the direction of the straight line
along which we move, n is the normalised outward normal to ∂A, with τ ·n being the Euclidean
inner product, and λ21 denotes the one-dimensional Hausdorff measure in R

2.

Remark. If A has a unique top point at 0 and if g = d(·, 0)α for some α with − 1
2 < α < 0,

then we can verify, similarly to the proof of Theorem 1, that the limit measure π exists and
equals the delta measure at the top point, in which case the process X is volatility memoryless
(in the sense of [3]).

Example. Suppose that the ambit setA is specified by c1(s) = −c2(s) = s, with −M ≤ s ≤ 0,
and let g be given by g(ξ, s) = |s|α for an α ∈ (− 1

2 , 0]. Then, with τ(θ) = (0, θ), from the
definition of ψδ(u, v), it is easily seen that the limit measure π exists and is proportional to the
Lebesgue measure on the boundary of the triangleA in the case in which α = 0, while if α < 0
then π equals the delta measure at the top point of A.

3. Conclusion and outlook

We have discussed the probabilistic limit behaviour of (normalised) realised quadratic
variation for a class of ambit processes, where the underlying volatility/intermittency field
σ is continuous and where the mother ambit set A is a bounded, closed, and convex. In this
setting a considerable variety of limits are possible, depending on the nature of the damping
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Figure 1: Ambit regions.

function g. All the limits are integrals of the squared volatility/intermittency field over the set
A and with respect to a probability measure π on A. Under specified weak conditions, the
integrals are concentrated on the boundary of A. Volatility memorylessness can be ensured if
A has a single top point.

There is a range of further questions of theoretical and applied interest in this context.
(i) What happens ifA is not bounded, stretching to minus infinity in time, or ifA is not convex?
(Figure 1 shows one type of ambit set that is of interest in turbulence studies and whose shape
is motivated by Taylor’s frozen field hypothesis (cf. [1]).) (ii) What is the situation in the case
when the curve τ is not linear? (The linearity assumption is crucial in deriving (6) below.)
(iii) What happens if σ is not continuous? (iv) What is the probabilistic limit behaviour of
multipower variations generally? (v) What type of central limit theorems can be established
for the multipower variations? (Undoubtedly, as was the case for Brownian semimartingales
(see [6]), Malliavin calculus will be a key tool.) (vi) How may such central limit theorems be
used to draw inference not only on σ but also on g (cf. [6])?

4. Proofs

Maintaining the notation of Section 2, we write gA for g · 1−A. Inserting this gives

[Xδ]t =
[t/δ]∑
k=1

(∫
R2

[gA(τ(kδ)− (ξ, s))− gA(τ((k − 1)δ)− (ξ, s))]σs(ξ)W(dξ ds)

)2

,

implying, by means of the independence between σ and W , that, for all δ, t > 0,

E[[Xδ]t | σ ] =
[t/δ]∑
k=1

∫
R2

[gA(τ(kδ)− (ξ, s))− gA(τ((k − 1)δ)− (ξ, s))]2σ 2
s (ξ)λ2(dξ ds).

Writing 
τ(kδ) for τ(kδ)− τ((k − 1)δ) and using the linear substitution

(u, v) = (τ1((k − 1)δ)− ξ, τ2((k − 1)δ)− s),
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we find that E[[Xδ]t | σ ] may be written as

[t/δ]∑
k=1

∫
R2

[gA(
τ(kδ)+ (u, v))− gA(u, v)]2σ 2
τ2((k−1)δ)−v(τ1((k − 1)δ)− u)λ2(du dv).

Thus, if 
τ(kδ) = 
τ(δ), independent of k, in particular if θ �→ τ(θ) is a straight line, we
have

E[[Xδ]t | σ ] =
∫

R2
ψδ(u, v)

[t/δ]∑
k=1

σ 2
τ2((k−1)δ)−v(τ1((k − 1)δ)− u)λ2(du dv), (6)

where, for δ > 0,

ψδ(u, v)

= (gA(
τ1(δ)+ u,
τ2(δ)+ v)− gA(u, v))
2

=

⎧⎪⎪⎨⎪⎪⎩
(g(
τ1(δ)+ u,
τ2(δ)+ v)− g(u, v))2 for (u, v) ∈ (−A) ∩ (−A−
τ(δ)),

g2(u, v) for (u, v) ∈ (−A) \ (−A−
τ(δ)),

g2(
τ1(δ)+ u,
τ2(δ)+ v) for (u, v) ∈ (−A−
τ(δ)) \ (−A).
Observe that ψδ(u, v) = 0 if (u, v) /∈ (−A) ∪ (−A−
τ(δ)). Formula (6) suggests that it is
natural to let c(δ) = ∫

R2 ψδ(u, v)λ2(du dv), since then, assuming that c(δ) > 0,

E[[Xδ]t | σ ] =
∫

R2
δ

[t/δ]∑
k=1

σ 2
τ2((k−1)δ)−v(τ1((k − 1)δ)− u)πδ(du dv),

where πδ denotes the probability measure defined by (3).
Assume from now on that θ �→ τ(θ) is a straight line and, thus, 
τ(δ) = δ
τ . As already

observed, for all ε > 0, there exists a δε > 0 such that πδ(R2 \ Aε) = 0 for all 0 < δ < δε,
where, using the notation d((ξ, s), B) := inf(u,v)∈B |(ξ, s) − (u, v)| for any B ⊆ R

2, the set
Aε is given by Aε = {(ξ, s) ∈ R

2 | d((ξ, s),−A) ≤ ε}. Thus, all weak limit points of πδ for
δ → 0 will be probability measures concentrated on −A. Using the continuity assumption on
σ , we see that in the case where the limit πδ

W−→ π0 exists as δ → 0,

E[[Xδ]t | σ ] →
∫

R2

∫ t

0
σ 2
τ2(s)−v(τ1(s)− u) dsπ0(du dv) as δ → 0.

We are interested in conditions onA and g ensuring that the limitπ0 exists and is concentrated
on ∂(−A) = −∂A, implying of course that π is concentrated on ∂A. Before discussing specific
conditions for this to happen we establish the following lemma.

Lemma 1. Under the assumption that π0 exists and is concentrated on −∂A, we have

lim
δ→0

var([Xδ]t | σ) = 0. (7)

Proof. For given δ, t > 0, var([Xδ]t | σ) equals δ2/c(δ)2 times

[t/δ]∑
k=1

var((Xkδ −X(k−1)δ)
2 | σ)+ 2

∑
1≤k<l≤[t/δ]

cov((Xkδ −X(k−1)δ)
2, (Xlδ −X(l−1)δ)

2 | σ).
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Applying the fact that, for any centred jointly Gaussian vector (U, V ), we have cov(U2, V 2) =
2 cov(U, V )2 and var(U2) = 2 var(U)2, we may write var([Xδ]t | σ) = Iδ + IIδ , where

Iδ = 2δ2

c(δ)2

[t/δ]∑
k=1

E[(Xkδ −X(k−1)δ)
2 | σ ]2

and

IIδ = 4δ2

c(δ)2

[t/δ]∑
k=1

E[(Xkδ −X(k−1)δ)(Xlδ −X(l−1)δ) | σ ]2.

Simple manipulations show that, for all δ > 0,

Iδ ≤ 2δ

c(δ)
max

1≤k≤[t/δ] E[(Xkδ −X(k−1)δ)
2 | σ ] E[[Xδ]t | σ ]

and, for all 1 ≤ k ≤ [t/δ],
E[(Xkδ −X(k−1)δ)

2 | σ ]
=

∫
R2
(gA(τ(kδ)− (u, v))− gA(τ((k − 1)δ)− (u, v)))2σ 2

v (u)λ2(du dv)

≤ max
(u,v)∈A|
τ |δ

σ 2
v (u)

∫
R2
(gA(
τ(δ)+ (u, v))− gA(u, v))

2λ2(du dv)

= max
(u,v)∈A|
τ |δ

σ 2
v (u) c(δ).

Thus, this shows that limδ→0 Iδ = 0. So it remains to be seen that limδ→0 IIδ = 0. For all
1 ≤ k < l ≤ [t/δ], we have

E[(Xkδ −X(k−1)δ)(Xlδ −X(l−1)δ) | σ ]
=

∫
R2
(gA(τ(kδ)− (u, v))− gA(τ((k − 1)δ)− (u, v)))

× (gA(τ(lδ)− (u, v))− gA(τ((l − 1)δ)− (u, v)))σ 2
v (u)λ2(du dv)

=
∫

R2
(gA(
τ(δ)+ (u, v))− gA(u, v))

× (gA((l − k + 1)
τ(δ)+ (u, v))− gA((l − k)
τ(δ)+ (u, v)))

× 1A|
τ |δ (u, v)σ
2
τ2((k−1)δ)−v(τ1((k − 1)δ)− u)λ2(du dv).

Using the continuity of the σ -process and Cauchy–Schwarz’s inequality, this implies the
existence of a constant K such that

E[(Xkδ −X(k−1)δ)(Xlδ −X(l−1)δ) | σ ]2

≤ K

∫
R2
(gA(
τ(δ)+ (u, v))− gA(u, v))

2λ2(du dv)

×
∫

R2
(gA((l − k + 1)
τ(δ)+ (u, v))− gA((l − k)
τ(δ)+ (u, v)))2

× 1A|
τ |δ (u, v)λ2(dudv)

= Kc(δ)

∫
R2
(gA(
τ(δ)+ (u, v))− gA(u, v))

2

× 1A|
τ |δ ((u, v)− (l − k)
τ(δ))λ2(du dv).
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Thus, limδ→0 IIδ = 0 if limδ→0 ĨIδ = 0, where ĨIδ denotes the expression

∑
1≤k<l≤[t/δ]

δ2

c(δ)

∫
R2
(gA(
τ(δ)+(u, v))−gA(u, v))2 1A|
τ |δ ((u, v)−(l−k)
τ(δ))λ2(du dv).

Given ε > 0, there exists a δε > 0 such that, for 0 < δ < δε,

ĨIδ ≤
∑

1≤k<l≤[t/δ]

δ2

c(δ)

∫
R2
(gA(
τ(δ)+ (u, v))− gA(u, v))

2

× 1Aε ((u, v)− (l − k)
τ(δ))λ2(du dv)

=
∑

1≤k<l≤[t/δ]
δ2

∫
R2

1Aε ((u, v)− (l − k)δ
τ)πδ(du dv)

≤
∑

1≤k<l≤[t/δ]
δ2

∫
R2
(fε,1 + fε,2)((u, v)− (l − k)δ
τ)πδ(du dv),

where fε,1, fε,2 ∈ Cb(R2)+ are chosen such that 1A−
ε

≤ fε,1 + fε,2, and

supp(fε,1) ⊆ {
(u, v) ∈ −A | d((u, v),−∂A) > 1

2ε
}

and

supp(fε,2) ⊆ {(u, v) ∈ R
2 | d((u, v),−∂A) < 2ε}.

By weak convergence,

lim sup
δ↓0

ĨIδ ≤
∫

R2

∫ t

0

∫ t

s

(fε,1 + fε,2)((u, v)− (r − s)
τ) dr dsπ0(du dv)

and so, since π0 is concentrated on −∂A, we find that

lim sup
δ↓0

ĨIδ ≤
∫

R2

∫ t

0

∫ t

s

fε,2((u, v)− (r − s)
τ) dr dsπ0(du dv)

≤ sup
(u,v)∈−∂A

∫ t

0

∫ t

s

fε,2((u, v)− (r − s)
τ) dr ds

≤ sup
(u,v)∈−∂A

λ2({(r, s) | 0 ≤ s ≤ r ≤ t, (u, v)− (r − s)
τ ∈ supp(fε,2)}).

But, for all (u, v) ∈ −∂A and all 0 ≤ s ≤ t ,

λ1({r | 0 ≤ s ≤ r ≤ t, (u, v)− (r − s)
τ ∈ supp(fε,2)}) ≤ cτ ε

for some constant cτ depending only on τ and A. Thus, lim supδ↓0 ĨIδ ≤ cτ tε, and since ε was
arbitrary, this means that ĨIδ → 0 for δ → 0. That is, (7) holds.

Finally, we turn to the proof of Theorem 1. We will focus first on the case in which α = 0.
Here the result will be a consequence of the two lemmas stated below.
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In the following let τ be a given vector in R
2, and let C be a bounded, closed, convex subset

of R
2 containing 0 as an interior point and having piecewise C∞ boundary. In particular,

λ21(∂C) < ∞, where λ21 is the one-dimensional Hausdorff measure in R
2. The gauge function

(5) of C is a convex subadditive function satisfying (i) T (λx) = λT (x), λ ≥ 0, x ∈ R
2;

(ii) there exist r1, r2 ∈ (0,∞) such that r1|x| ≤ T (x) ≤ r2|x| for all x ∈ R
2; (iii) C =

{x ∈ R
2 | T (x) ≤ 1} and ∂C = {x ∈ R

2 | T (x) = 1}; (iv) there exist c1, c2 ∈ (0,∞)

such that c1d(x, ∂C)|x| ≤ (1 − T (x)) ≤ c2d(x, ∂C) for all x ∈ R
2. Thus, T : R

2 → R is a
nonnegative almost everywhere smoothly regular 1-homogeneous continuous function and so,
using Equation (8.25) of [9], we have∫

R2
ϕ dλ2 =

∫ ∞

0
t

{∫
∂C

ϕ(tx)

|T ′(x)|λ21(dx)

}
dt =

∫
∂C

1

|T ′(x)|
{∫ ∞

0
tϕ(tx) dt

}
λ21(dx) (8)

for every nonnegative Borel function ϕ : R
2 → R. The use of Tonelli’s theorem is legitimate

since λ21(∂C) < ∞. The properties of T ensure that T ′(x) exists and is nonzero for λ21-almost
all x ∈ ∂C; in fact, under the above assumptions, for all but finitely many points of ∂C. In the
sequel we shall, for x ∈ ∂C, use the notation

n(x) =

⎧⎪⎨⎪⎩
T ′(x)
|T ′(x)| if T ′(x) exists and is nonzero,

0 otherwise.

Set, for δ > 0, νδ = δ−1fδ dλ2, where fδ(x) = (1C(x + δτ)− 1C(x))2, x ∈ R
2, and observe

that the νδs are all finite nonzero measures and, for δ ≤ 1, are all concentrated on a fixed
compact set.

Lemma 2. We have
νδ

W−→ |τ · n| 1∂C dλ21 as δ ↓ 0.

Proof. By the above observation, it is enough to prove that

lim
δ↓0

∫
R2
h dνδ =

∫
∂C

h(x)|τ · n(x)|λ21(dx)

for all Lipschitz continuous h ∈ Cc(R2)+. Given such an h, we have, according to (8),∫
R2
h dνδ = 1

δ

∫
R2
hfδ dλ2 =

∫
∂C

1

|T ′(x)|
{

1

δ

∫ ∞

0
th(tx)fδ(tx) dt

}
λ21(dx).

Using here the Lipschitz continuity of h and the fact that fδ vanishes identically on {1 − ε <

T < 1 + ε} for sufficiently small δ, we see that it suffices to prove that

lim
δ↓0

∫
∂C

h(x)

|T ′(x)|
{

1

δ

∫ 1+ε

1−ε
fδ(tx) dt

}
λ21(dx) =

∫
∂C

h(x)|τ · n(x)|λ21(dx) (9)

for all ε ∈ (0, 1). Fix x ∈ ∂C with n(x) = 0, and consider the function t �→ fδ(tx), that
is, the indicator function for the set {t ≥ 0 | tx ∈ (C − δτ)
C}. We may and will assume
that T (δτ) < 1, as this is true for sufficiently small δ. Since tx ∈ C if and only if t ≤ 1, we
have (1,∞) ∩ {t ≥ 0 | fδ(tx) = 1} = (1,∞) ∩ {t ≥ 0 | T (tx + δτ) ≤ 1} and, similarly,
(0, 1) ∩ {t ≥ 0 | fδ(tx) = 1} = (0, 1) ∩ {t ≥ 0 | T (tx + δτ) > 1}. Furthermore, since
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t �→ T (tx + δτ) is convex, {t ≥ 0 | T (tx + δτ) ≤ 1} is an interval including 0. Thus,
(1,∞)∩{t ≥ 0 | fδ(tx) = 1} = (1, bδ(x)] for some bδ(x) ≥ 1 and (0, 1)∩{t ≥ 0 | fδ(tx) =
1} = (aδ(x), 1) for some 0 < aδ(x) ≤ 1. Suppose that τ · T ′(x) > 0. Since

T (x + δτ) = T (x)+ δτ · T ′(x)+ o(δ2) = 1 + δτ · T ′(x)+ o(δ2),

we have T (x + δτ) > 1 and so T (tx + δτ) > 1 for small δ and t sufficiently close to 1. Thus,
bδ(x) = 1. Furthermore, since

T (tx + δτ) = T (tx)+ δτ · T ′(tx)+ o(δ2)

= tT (x)+ tδτ · T ′(x)+ o(δ2)

= t (1 + δτ · T ′(x))+ o(δ2),

we have

aδ(x) = 1

1 + δτ · T ′(x)
+ o(δ2) = 1 − δ|τ · T ′(x)| + o(δ2).

Similarly, if τ · T ′(x) < 0, we see that aδ(x) = 1 and bδ(x) = 1 + δ|τ · T ′(x)| + o(δ2), and if
τ · T ′(x) = 0, we obtain aδ(x) = 1 − o(δ2) and bδ(x) = 1 + o(δ2). Inserting this into (9) we
obtain, by the above,

lim
δ↓0

∫
R2
h dνδ =

∫
∂C

h(x)

|T ′(x)| |τ · T ′(x)|λ21(dx) =
∫
∂C

h(x)|τ · n(x)|λ21(dx).

Now let ϕ : R
2 → R be a given Lipschitz continuous function. Set, for δ > 0,

ϕδ(x) = ((ϕ 1C)(x + δτ)− (ϕ 1C)(x))2, x ∈ R
2.

Simple arithmetic shows that

ϕδ(x) = (ϕ2fδ)(x)+ (ϕ(x)− ϕ(x + δτ)) 1C(x + δτ)

× ((ϕ(x)+ ϕ(x + δτ)) 1C(x + δτ))− 2(ϕ 1C)(x))

for all x ∈ R
2. The Lipschitz property of ϕ and Lemma 2 therefore imply, using simple

inequalities, that

lim
δ↓0

1

δ

∫
R2
ϕδ dλ2 = lim

δ↓0

1

δ

∫
R2
ϕ2fδ dλ2 =

∫
∂C

ϕ2(x)|τ · n(x)|λ21(dx).

From this we may deduce the following result which establishes Theorem 1 in the case in which
α = 0.

Lemma 3. Let ϕ : R
2 → R be Lipschitz continuous such that

c =
∫
∂C

ϕ2(x)|τ · n(x)|λ21(dx) > 0.

Then, maintaining the above notation,

µδ
W−→ c−1ϕ2|τ · n| 1∂C dλ21 as δ ↓ 0,

where, for each δ > 0, µδ is the absolutely continuous Borel probability measure on R
2 with

density proportional to ϕδ .
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Next, consider an α ∈ (0, 1
2 ). Following the above we set, for δ > 0,

νδ = δ−(2α+1)fδ dλ2 for fδ(x) = ((dα 1C)(x + δτ)− (dα 1C)(x))2, x ∈ R
2,

where dα(x) = (1 − T (x))α . Again, the νδs are all nonzero measures concentrated on a fixed
compact set for δ ≤ 1. As above, we shall prove that limδ↓ νδ exists in the weak sense, the
limit being a finite nonzero measure concentrated on ∂C. That is, we shall prove that any weak
limit point is concentrated on ∂C and that, for all Lipschitz continuous h ∈ Cc(R2)+, the limit
as δ ↓ 0 of

δ−(2α+1)
∫

R2
hfδ dλ2 =

∫
∂C

1

|T ′(x)|
{

1

δ2α+1

∫ ∞

0
th(tx)fδ(tx) dt

}
λ21(dx) (10)

exists and is positive for some h. The equality in (10) follows from (8).
Since T is Lipschitz continuous, we have, using the mean value theorem,

|dα(x1)− dα(x2)| ≤ α

((1 − T (x1)) ∧ (1 − T (x2)))1−α |x1 − x2|, x1, x2 ∈ C◦.

Thus, for every K ⊆ C◦ compact, there exists a constant cK such that fδ(x) ≤ cKδ
2, x ∈ K ,

δ > 0, implying, since 2α + 1 < 2, that

lim
δ↓0

νδ(K) = lim
δ↓0

δ−(2α+1)
∫
K

fδ(x)λ2(dx) = 0.

Furthermore, using the definition of νδ , it is trivial to see that limδ↓0 νδ(K) = 0,K ⊆ R
2 \ C

compact, implying all together that any weak limit point of the νδs for δ ↓ 0 is concentrated
on ∂C. It remains to prove the existence of the limit in (10). Thus, fix an h ∈ Cc(R

2)+
which is also Lipschitz continuous. Owing to what has just been proved, the lim supδ↓0 and the
lim infδ↓0 of the left-hand side of (10) equals, for every ε ∈ (0, 1), the corresponding values of

δ−(2α+1)
∫

{1−ε≤T≤1+ε}
hfδ dλ2 =

∫
∂C

1

|T ′(x)|
{

1

δ2α+1

∫ 1+ε

1−ε
th(tx)fδ(tx) dt

}
λ21(dx).

Hence, using the Lipschitz continuity of h, it suffices to prove that

lim
δ↓0

∫
∂C

h(x)

|T ′(x)|
{

1

δ2α+1

∫ 1+ε

1−ε
fδ(tx) dt

}
λ21(dx)

exists for all 0 < ε < 1. That is, we have to investigate

lim
δ↓0

1

δ2α+1

∫ 1+ε

1−ε
fδ(tx) dt, x ∈ ∂C. (11)

As above, we split the analysis into three parts according to whether, for given x ∈ ∂C, we have
τ · T ′(x) > 0, τ · T ′(x) < 0, or τ · T ′(x) = 0. Consider first x ∈ ∂C with ax := τ · T ′(x) > 0.
Using the Taylor expansions of T and the computations used in the proof of Lemma 2, we see,
disregarding terms of size o(δ2), which is legitimate since 2α + 1 < 2, that the limit in (11)
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corresponds to the limδ↓0 of

1

δ2α+1

(∫ 1−δax

1−ε
fδ(tx) dt +

∫ 1

1−δax
fδ(tx) dt

)
= 1

δ2α+1

(∫ 1−δax

1−ε
(|1 − t − tδax |α − |1 − t |α)2 dt +

∫ 1

1−δax
|1 − t |2α dt

)
= 1

δ2α+1

(∫ ε

δax

(|t − (1 − t)δax |α − |t |α)2 dt +
∫ δax

0
t2α dt

)
= a2α+1

x

∫ ε/δax

1
(|t |α − |t − 1 + tδax |α)2 dt + a2α+1

x

2α + 1
.

But this clearly increases to

a2α+1
x

(∫ ∞

1
(|t |α − |t − 1|α)2 dt + (2α + 1)−1

)
< ∞.

Similarly, if τ · T ′(x) < 0 then, setting ax = |τ · T ′(x)|, the limit in (11) corresponds to the
limδ↓0 of

1

δ2α+1

(∫ 1

1−ε
fδ(tx) dt +

∫ 1+δax

1
fδ(tx) dt

)
= 1

δ2α+1

(∫ 1

1−ε
(|1 − t − tδax |α − |1 − t |α)2 dt +

∫ 1+δax

1
|1 − t − tδax |2α dt

)
= 1

δ2α+1

(∫ ε

0
(|t − (1 − t)δax |α − |t |α)2 dt +

∫ δax

0
|t + (t + 1)δax |2α dt

)
= a2α+1

x

(∫ ε/δax

0
(|t + tδax − 1|α − |t |α)2 dt +

∫ 1

0
|t + tδax + 1|2α dt

)
,

which converges to

a2α+1
x

(∫ ∞

0
(|t |α − |t − 1|α)2 dt +

∫ 1

0
|t + 1|2α dt

)
= a2α+1

x

(∫ ∞

0
(|t |α − |t − 1|α)2 dt + 22α+1 − 1

2α + 1

)
< ∞.

Finally, in the remaining case, τ · T ′(x) = 0, the computations in Lemma 2 immediately show
that the limit in (11) equals 0. Thus, for all x ∈ ∂C for which T ′(x) exists,

lim
δ↓0

1

δ2α+1

∫ 1+ε

1−ε
fδ(tx) dt = |τ · T ′(x)|2α+1(a1 1{τ ·T ′(x)>0} +a2 1{τ ·T ′(x)<0})

for suitable positive constants a1 and a2 independent of ε. As the above computations show,
the setting is sufficiently regular for Lebesgue’s dominated convergence theorem to apply, and,
hence, we may deduce that limδ↓0 of the left-hand side of (10) exists and equals∫
∂C

h(x)|τ · T ′(x)|2α|τ · n(x)|(a1 1{τ ·T ′(x)>0} +a2 1{τ ·T ′(x)<0})λ21(dx) for all h ∈ Cc(R2)+.
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As the limit is positive and finite for h ≡ 1, we have, as remarked above, proved that limδ↓ νδ
exists in the weak sense, the limit being a finite nonzero measure concentrated on ∂C. In fact,
we know the form of the limit. From here on, to obtain an appropriate version of Lemma 3, we
may proceed exactly as above, the corresponding constant c being given by∫

∂C

ϕ(x)2|τ · T ′(x)|2α|τ · n(x)|(a1 1{τ ·T ′(x)>0} +a2 1{τ ·T ′(x)<0})λ21(dx),

which is nonzero if

c =
∫
∂C

ϕ2(x)|τ · n(x)|λ21(dx) > 0.

The proof of Theorem 1 for − 1
2 < α < 0 proceeds along the same line of ideas and is

therefore omitted.
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