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LINEAR SYSTEMS OF NONOSCILLATORY DIFFERENTIAL
EQUATIONS WITH DELAYED ARGUMENTS

K. GOPALSAMY

Sufficient conditions are obtained for a not necessarily

scalar system of the form

"x(t) + r-U""1 A(t)X(t-T(t)) = 0
dtn

to be nonoscillatory.

1. Introduction

The purpose of this paper is to obtain a set of sufficient

conditions under which the n-th order nonautonomous differential

difference equations of the form

(1.1) d XltJ + C-i;""1 I a.(t)x(t-x.(t)) = 0

dtn j=l J °

where n and m are positive integers (nil, mil) will have a non-

oscillatory solution and subsequently generalise this result for non-

scalar systems. Although the literature concerned with oscillation of

differential equations with and without deviating arguments is quite

extensive (see Kartsatos [2]) published work dealing with the existence

of nonoscillatory solutions of differential difference equations is rather

scarce. Using the characteristic equation associated with an autonomous

majorant of (1.1) we will obtain first sufficient conditions for (1.1) to

have nonoscillatory solutions.

As it is customary we will say that (1.1) is oscillatory if and
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only if all solutions of (1.1) defined on an interval of the form [a,°°)

for some real constant a have zeros on every interval of the form [3,°°)

for 3 i Ot. (1.1) will be called nonoscillatory if (1.1) has at least one

solution which has no zeros on an interval of the form [Y,°°) for some

Y £ a.

2. Nonoscillatory scalar systems

We will examine (1.1) under the following assumptions:

(H ) a-, T. (j = 1,2,...,m) are bounded continuous functions
1 3 3

defined on [0,00) such that the following hold;

(2.1)

0 S a At) £ a*.
d 3

0 i t-T .(t)
J

= 1,2,...,n ; t > 0

( I ai) T
•7 = X

(2.2) (H2) ( I ai) T W S 1 ,- T -

Let us now consider the autonomous "majorant" of (1.1) in the form

(2.3) ^ L + r-i;""
1 I a%(t-^) = o .

dtM j=i J J

The characteristic equation associated with (2.3) is given by

„ m

(2.4) Xn = (-l)n I a*. expf-Xxi]

which with X = -y reads
m

(2.5) u" = la*. exp[yx.] .
J=l J °

We will show that when (2.2) holds, (2.5) has a real positive root.

Suppose first m = 1 and consider g : [0,°°) •* (-00,00) defined by

g(\i) = u" - a* exp[uT*] .

It will follow from
g(0) = -a* < 0

and
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> 0

that g has a zero on [0, n/T ]. The general case with m 2 2 is

treated as follows. We rewrite (2.5) in the form

m , .
(2.6) a = 2, a • exp[T .(Ô  ]

= hfoj (say).

Since

dh(a) v * , *, ,l/n,/ *, <, t(l-n)/n
•, = I a. explx.(o) ](j-/n)(a) ,
^^ 7=1 3 3 3

we have for a e [0, min(n/Ti) ] ,

dh(o)

- e

for some e, 0 < £ < 1

& 1 - e for 0 < a < a* = min TM/TIJ

One can now show that a sequence {a,} , k= 0,1,2,... defined by

k=0,l,2,...

for an arbitrarily chosen a e (0,0 ) will converge to a limit say

0 > 0 which is a root of (2.6). Corresponding to this O we have a

negative root of the characteristic equation given by X = -(a )

We are now ready to formulate the following:

THEOREM 2.1. Suppose the coefficients a. and the delays
3

T. (j =1,2,...,n) satisfy the hypotheses (H ) and (H ). Then (1.1) is

nonosciIlatory.
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Proof. We consider a sequence {y^t), k = 0,1,2,...} of functions

defined as follows:

(2.7) yQ(t) = exp[-(aQ)
1/nt] s t > -T , T = sup xA(t) , t > 0.

exp[-foo//nt] ; t e [-T.,0]

m <™ (s t) n~1

A direct verification leads to

i(t) = J ) 7CTT Uj

t > 0

S 1/ ftj ; t > 0

from which one can derive that

y2(t) s y±(t) ; t > o.

In a similar way one derives

(2.9) yQ(t) Z yx(t) 5 ... i yk(t) S yk+1(t) S ... > 0

t > 0 .

It will follow from (2.9) that the following limit exists in a pointwise

sense;

1 y*(t) (say) for t > 0

yQ(t) for t e [-T,0] .

By the Lebesgue's convergence theorem it follows from (2.10) that

(2.11) y*(t) = £ ( - j ^ L a.(B)y*(8-T.(8))d8.j ^ a.

The positivity of t/* on [0,°°) follows from that of (2.11). Since y*

in (2.11) is differentiable w-times for t > 0 the result follows and the

proof is complete.

3. Nonoscillatory vector systems

Let us now generalise our previous analysis to systems of the form
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(3.1) dX(t) + (_1)
n-1A(t)X(t-T(t)) = 0, t > 0

dtn

with the following assumptions:

(H ) X(t) = {x (t),...,x (t)} is an m-vector

(H ) Aft) = {a.-ft)} is an m xm matrix of bounded continuous

functions defined on [0,°°) such that
0 i a. .ft) £ I. . for all t i 0 ,

1-3 T-0

%... being positive constants for i,j = 1,2,... ,n .
T-3

(H ) x(t) is bounded and continuous for t i 0 such that

t-x(t) 5 0 for t i 0

0 i T(t) i a for t i 0 and a > 0 is a constant.

Definitions of oscillatory and nonoscillatory systems of nonscalar

equations have not become standard in the literature. In fact the

literature concerned with oscillation and nonoscillation of vector matrix

systems is quite scarce. We will adopt the following.

DEFINITION. The system (3.1) is said to nonoscillatory if at least

one component of the vector X(t) = \x (t),...3x (t)} is nonoscillatory

on [0,°°) .

We note that the above is not the only way of generalising the

notion of nonoscillation of scalar systems. For some work on oscillation

of linear systems we refer to [/].

We will first derive the following:

LEMMA 3.1. Let B= (I.J, (i,j = 1,2,... ,m) be an m x m matrix of
1-3

positive constants and let o be a positive constant. Then the

autonomous linear system

(3.2) UlilL + (-D^hyft-a) = 0
dtn

is nonoscillatory if

(3.3) (enana)/nn < 1

where a is a positive Perron eigenvalue of B .

Proof. A famous theorem of Perron says that B has a positive

eigenvalue corresponding to which B has a positive (componentwise)
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eigenvector. Let a ,a ,. . . ,am be the eigenvalues of B of which at

least one is positive; let it be denoted by a . Let the corresponding

eigenvector be Z = (s ,z ,...,z ). The characteristic equation

associated with (3.2) is given by

(3.4) det.[XnI+ (-l)n~XBe~Xa] =0

(J being the m * m identity matrix). Since we can rewrite (3.4) in the

form

(3.5) det.l(-X)nI-Be~Xa] = 0

we have from (3.5) that

(3.6) det.[ynJ - BeV°] = 0 ~ TTtpn-a,eya] = 0 •

Let a denote a real eigenvalue from (01 ,a ,...,a ). Then as in the

case of our scalar analysis, it will follow from (3.3) and the equation

l/1 - ae»° = 0

that (3.4) has a real negative root say -X . It is now immediate that

-\*t
Y(t) = Ze , t i -a

is a nonoscillatory solution of (3.2) and the proof is complete.

We can now formulate our main result as follows:

THEOREM 3.1. Suppose the non-negative matrix A in (3.1) is

dominated (elementwise) by a positive constant matrix B and the

t-dependent delay x(t) is dominated by a positive constant a as in

(H ) - (H ). Let a be a real eigenvalue of B. If (3.3) holds then

(3.1) is nonoscillatory.

Proof. Proof is surprisingly simple and is quite similar to the

scalar case; we define a sequence [X-,(t)} of non-negative vectors as

follows:

\*t
(3.7) XQ(t) = Ze , t i -T

(3.8) Xk+1(t) =

Ze~X t ̂  t e [-T,

f l -
- A(s)Xv(s- i(s))ds t t > 0

t

where Z is the positive eigenvector associated with the positive
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eigenvalue a of B . By componentwise comparison one can now show as in

the scalar case that the sequence \X,(t)} has a positive (componentwise)

pointwise limit say X*(t) which is a solution of (3.1); we will omit

the details since they are exactly similar to the scalar case.

4. Comments

It is interesting to ask what can be said if (2.2) does not hold.

We can say that when (2.2) is violated all bounded solutions of (2.3) will

be oscillatory; to verify this assertion let us suppose

m
(4.1) f \a*(T*)n~\ en/nn > 1

and let (2.3) have a bounded nonoscillatory solution. Then (2.4) will

have a real nonpositive root say —y with y 5 0 satisfying

m
(4.2) yn = I a*. exptYT^] .

J=l 3 J

Since y cannot be zero, we have y > 0 and hence (4.2) leads to

m { m

which contradicts (4.1). Thus without (4.1), (2.3) cannot have a bounded

nonoscillatory solution. Similar remarks and arguments also apply to our

condition (3.3) for the system (3.2) since we can consider a relevant

factor of the characteristic equation in (3.6) (see also [J]). We mention

some possible generalisations of our results; theorem (2.1) can be

generalised to scalar systems of the form

dtn j=o ° dt3

with the assumption that a . , T . are positive constants satisfying
3 3

< 1 ;

theorem 3.1 can be generalised for nonlinear systems of the form

(t) + r-i;""1 A(t)f(t,X(t-\(t))) = 0
dtn

where f is componentwise non-negative and nondecreasing with respect to
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i t s vector argument such that

0 S A(t)f(t,X(t)) £ BX(t) for X(t) e J?+
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