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INTRODUCTION

A conventional practice in standard risk theory considerations has been to assume
that claims are paid immediately as they have incurred (see BPP, item 3.1c, BPP
is used as an abbreviation for the book "Risk Theory", 1984 edition, by Beard,
Pentikainen, Pesonen). The delay of the claims settlement has been, of course,
a central aspect in reserve calculation theory and practices, and numerous valuable
works have been published on this topic in recent years. However, its regard in
general model building and in risk theory considerations has gained little attention
until recent years. The purpose of this paper is to contribute to this research
work by discussing how the "run-off" risk, i.e., the variability due to the delay
of the claims payment, could be incorporated into the standard risk theory models
as a separate entry (see BPP, item 10.2e) and to find some evaluation of the order
of magnitude of the "extra" (if any) fluctuation so rendered. We expect that the
proposed technique can also be utilized in testing different reserve calculation
methods and in comparing their effectiveness. The main ideas follow very much
along the lines given by RANTALA in his doctoral thesis (1984).

One should appreciate the fact that any risk theory model can never be more
than an idealization of real-life processes. An intricate problem for practitioners
is to evaluate the uncertainties ensuing from the fact that the model, more or
less, ignores or only approximates the factors affecting the real events, and that
the practical applications are often based on and their necessary parameters
estimated from observed data that are subject to random fluctuations and to
many other kinds of uncertainties. The problem complex of the run-off risk, when
understood in a broad sense, is so wide that it requires a series of studies, and
this paper should be regarded as a first step only. The posing of the problem
follows the conventional risk theory approach by using the mixed compound
Poisson process further allowing for long-term variations of risk exposure
("cycles"), and now extending the model to cope with the delayed settlement of
the claims. At this stage of the on-going researchwork the impact of the parameter
estimation is excluded from consideration. Therefore, our results and the numeri-
cal examples, as given in what follows, do not describe the total uncertainty of
the claims or the reserves.

The structure of the paper is the following. First, the main assumptions are
given in Chapter 1, then the effect of the run-off phenomenon on the variance
of the claims fluctuation is evaluated for the going-concern case in Chapter 2
and for the break-up case in Chapter 3. Some numerical examples will be given
in Chapter 4 and finally in Chapter 5 the same effect is considered by using the
simulation technique, which allows for more general assumptions on inflation
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114 PENTIKAINEN AND RANTALA

and the other pertinent features involved. As mentioned above, the handling of
the parameter estimation problem is deferred to a future paper. The estimation
of claims reserves has already been explored in numerous meritorious treatices,
see e.g., the Survey published by the NATIONALE NEDERLANDE (1981), the GISG
Working Party summary paper of the British actuaries (1983), TAYLOR (1986)
and many others. One of the early papers on the building of "a run-off theory"
was published by PHILIPSON (1965). NORBERG (1985) when dealing with estima-
tion techniques makes use of partially similar development functions as will be
employed in this paper.

1. DEFINITIONS, NOTATIONS

1.1. Paid and Not Paid Claims

We are going to consider a claims process X. (The stochasticity of the variables
is indicated by boldface letters.) The issue is the fact that it always takes some
time until a claim is notified to the insurer after it has been incurred. A further
time delay occurs until it is paid. For the claims which are not notified a statistically
constructed reserve should be established, the so called IBNR-reserve (incurred
but not reported). Some insurers also use statistical, collective reserves for some
classes of outstanding claims, irrespective of whether or not they are notified, in
order to rationalize the administration (and possibly for stabilizing the flow of
business). Furthermore, often the information concerning already notified but
still outstanding claims may be defective, which precludes the insurer from making
an exact case estimate. So is it e.g., if the claim depends on an on-going court
trial. All these reasons occasion uncertainty in the evaluation of the business
outcomes. An inaccuracy in the claims reserve reflects as an inaccuracy in the
profit so long as the claim is not finally settled. The purpose of this paper is to
evaluate this uncertainty.

In the following we assume that the claims are either paid or outstanding. For
brevity we (somewhat loosely) define as "paid" a claim which is notified and is
so well documented that its final amount can be reliably determined. All other
claims are "not paid", i.e., either IBNR, collectively reserved or defectively
informed. Of course, it depends on the practice and on the purposes of the
considerations just how the interdisciplinary boundary between "paid" and
"not-paid" claims should be defined. For example, there is nothing which prevents
the treating of the IBNR-claims only and ignoring the other uncertainties which
are beyond the scope of this consideration. Another alternative is to separate the
(unknown) exact value of the already notified claims and its estimate and to
handle the difference as if it were an unknown claim. We also use the terminology
as if only one payment would correspond to each claim. Another interpretation
would be to take "claim" as "claim payment". Then e.g., the number of paid
claims should be read as the number of claim payments. Of course, the distribu-
tions and some of the initial data depend on the definitions which are selected
in any particular application, but the theoretical apparatus is very much the same,
even though the handling of data, parameter estimation, etc. differ.
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RUN-OFF RISK AS A PART OF CLAIMS FLUCTUATION 115

1.2. Cohort

The claims are grouped as "cohorts" according to the year of origin t0, during
which they have been incurred. The payment of the claims of the cohort are
distributed to years t0, f o + 1 , . . . , to + u,..., to + T, as shown in fig. 1.1 T is the
maximum time for the claims settlement. The "current time" (or the year of
observation) is denoted by t and the elapsed time from the birth of the cohort
by s = t — t0. The claims of the cohort t — s paid in year t — s + u are denoted by
X(t-s, u, u) and those paid together in years t-s + uu . ., t-s + u2 by

(1-1)
U 2

X(t-s,uuu2) = I X(t-s,u,u)

Notations. As above for X, an argument (t-s; u,, u2) will be used for the variables
to indicate that the event to which the variable is related has occured in year
t — s and its settlement happens in the period ranging from the beginning of year
t-s + Ui until the end of year t-s + u2, e.g., n(t-s; ux, u2) for the number of
claims. Furthermore, the argument (t-s) indicates the whole cohort, e.g., X(t-s)
or n(t-s) represent the total amount or the total number of claims respectively
of the cohort of the year t - s.

t-s
- tQ - year of origin

t-s+u, t-S+Ur t-s+T

FIGURE 1 1 A cohort of claims The current year is denoted by t and the year of the origin of the
cohort by t — s The pillars describe the distribution of the settlement of the claims inside the cohort

1.3. Basic Assumptions

We shall choose our assumptions so that X(t; 0, T) will be a mixed compound
Poisson process (in a broad sense).

Firstly, the intensity of the occurrences of claims is allowed to change from
year to year, hence from cohort to cohort. This effect is incorporated into the
model via a randomly varying Poisson parameter n(t-s) (expected number of
claims, BPP, item 2.7c)

(1.2) n(t-s) = n-q(t-s)- In(t~s)
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116 PENTIKAINEN AND RANTALA

where n is a non-random volume parameter and the stochasticity is introduced
via the structure variable q(t — s). The parameter n indicates, in fact, the expected
number of claims for the whole cohort of a suitably chosen basis year th.

q(t-s) is "a structure variable" indicating variations in the risk exposure from
cohort to cohort, as shall be specified in item 1.5; (see BPP, item 2.7c). In(t~s)
is a volume index indicating the volume of the risk portfolio for the cohort of
year t — s compared with the basic year tb, hence scaled to have In(tb) = l. More
details are discussed in item 1.6. This index allows, if so desired, for a regard
for the growth of the business volume, e.g., occasioned by the acquisition of new
policies.

It is often useful to choose the current year t as the basic year of indexes. Then
the monetary quantities are obtained in the current value of money.

Secondly, the amounts of individual claims are assumed to change from year
to year so that the shape of the d.f. S of the claim size Z is preserved but the
mean claim size EZ varies according to rules which will be specified later.

Furthermore, the distribution of the claims payment delays inside each cohort
is controlled by functions gn{u), gm(u) and gx(u), which may be separately given
for the claims numbers (n), average claim sizes (m) and for the total amount of
claims (X) paid in the uth development year. These functions will also be specified
later in more detail. We assume that these functions are common for all cohorts,
i.e., independent of the time points t — s. The reason for the introduction of three
development functions instead of a conventional one only (gx(«)) is to also allow
for the variation of the average claim size inside the cohorts, e.g., trends up or
down which may appear when delayed and early paid claims are compared.

On the other hand, the assumption that the functions g are the same for all
cohorts is, of course, a restriction. It proved to be necessary in order to get the
theoretical treatments in Chapters 2 and 3 reasonably tractable. Fortunately these
restrictions can be dropped in the simulation approach.

1.4. Detailed Assumptions

We shall now present our assumptions in a more detailed form as follows:
The variables X(t — s; u, u) for u = 0 , 1 , . . . , T are conditionally, for a given

q(t — s), mutually independent and distributed according to the compound
Poisson law (BPP, item 3.2b) having the parameter (=the expected number of
claims) (cf. (1.2))

(1.3) n(t-s;u,u) = n(t-s)- gn(u)

= «• In(t~s) • q(t-s) • gn(u).

gn(u) is "a development function" of the claims numbers inside the cohort:

(1.4) gn(u) = En(t-s;u,u)/En(t-s;O,T).

Let S(Z; t-s; u, u) be the d.f. of the sizes of the claims that occurred in year
t - s and were paid in year t-s + u. We assume that the shape of this distribution
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is the same for all values of t — s and u, but the scale is changed so that the
expected value of the claim size variable Z is:

(1.5) EZ(t-s;u,u) = m-Im(t-s)-gm(u)

where, in addition to those given above, the following concepts and notations
are used:

m is the mean size of the claims of the cohort of the basic year tb and paid in
the same year.

Im(t-s) is an index for the mean size of the claims of the cohort t — s and
paid in the same year t - s (indicating the effect of inflation and other potential
movements, again Im(th) = 1).

gm(w) represents the development of the average claim size inside a cohort. It
indicates (1) the effect of inflation compared with its level at the first year of the
cohort (= t — s), and (2) changes (if any) for any other reason which may result
in upward or downward trends in the real size of delayed claims. It will be scaled
to have gm(0) = l.

Note that the payments X{t — s; u, u) for consecutive development years u are
correlated owing to the assumption that the structure variable q is the same for
the whole cohort, but they are conditionally uncorrelated when q is given. In
practice there may appear circumstances that also render other correlations, for
instance, if the working capacity of the claims settlement is changed in some
particular year, it likely renders a negative correlation. These kinds of features
are not accounted for in our paper, but supposedly they and other similar changing
conditions can be properly observed on a case basis, if deemed necessary.

1.5. The Structure Variable q

The structure variable q controls the variations of risk exposure from cohort year
to cohort year caused by various reasons such as the impact of weather conditions,
business cycles and trends. It can be given either as a deterministic function or
as a stochastic time series or as any mixture of both. It will be exemplified as an
autoregressive time series in Chapter 4. We shall limit our considerations only
to the cases where q(t) is weakly stationary, i.e., the following characteristics
exist and are finite:

(1.6) Eq = \; Var<j = o-2,; Cov (q(t), q(t+ i)) = y(i).

1.6. Inflation

Inflation between the cohorts is controlled by the above index Im. We assume
that the inflation between the development years inside the cohort is amalgamated
into the development function gm(u).

Note that we need not assume that the inflation between the cohorts and inside
the cohorts should be the same. Policy conditions and other reasons may cause
differences, for which our model allows. A restriction is, however, that the inflation
rates within the cohorts, as amalgamated in the development functions gm, are
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118 PENTIKAINEN AND RANTALA

assumed to be the same for all cohorts as was stated in item 1.3. This assumption
can be, however, relaxed in the simulation as presented in Chapter 5.

1.7. Function gx(u)

We further introduce a third development function to indicate the development
of the total amount of claims inside any cohort. It can be defined by means of
the other two as follows

(1-7) g*(«) = gn(«)gm(u).

Thus EX(t-s; u, u)- nmln(t-s)lm(t-s)gx(u). When any two of the develop-
ment functions are given, then the third is determined from (1.7).

REMARK 1. Often the distribution of the total payments inside the cohort is
readily available and therefore used as a basic development function. It is in
terms of our concepts

(1.8) EX(t~s;u,u)/EX(t-s;O,T) = gx(u)/Gx(T)

where Gx is the accumulated development function obtained from gx(u) by
summation (see (1.12) below).

REMARK 2. Possibly only the function gx(u) may be available, not the claim
size development gm(u). This can be the case e.g., in ingoing reinsurance. Then
e.g., taking.gm(w)= 1 avoids the model breaking down. It implies gn(u) = gx(u).
Another alternative is to assume that the inflation within the cohorts and between
them is the same, which makes it possible to construct gm(u) accordingly. Of
course, some of the model outcomes are sensitive to these kinds of simplifications,
but likely not in a fatal way, as some examples given later seem to indicate.

1.8. The Moments of the Claim Size Distribution

The moments about zero of the claim size distribution are, according to the
assumptions (item 1.4) that the scaling only is changed from year to year, as
follows:

(1.9) a,(t-s-u,u)=\ Z'dS{Z;t-s;u,u)
Jo

= a,-Im(t-sy-gm{Uy (, = 1,2,3,...)

where S is the distribution function of the claim size and a, = a,(f6; 0, 0) is a
basic amount calculated from (1.9) replacing there 5 by S(Z; tb;0,0) for the
basic year tb of the indexes.
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RUN-OFF RISK AS A PART OF CLAIMS FLUCTUATION 119

1.9. Composition of the Development Years

Our assumptions imply that the sum variable (1.1) is again a mixed compound
Poisson variable having the parameter

(1.10) n(t-s;u1,u2)= £ n(t-s;u,u).

Here and in the sequel the n's not printed by bold-face letters denote the expected
values n{ ) = En{ ) of the various claim numbers.

REMARK. If gm(u) were =1 , then the claim size distributions of the develop-
ment years u of each cohort separately would be identical. Then we could reverse
the order of the assumptions, i.e., if the cohort variable X(t — s; 0, T) is assumed
to be compound Poisson distributed for any fixed q and the development times
are i.i.d. random variables then the development variables X(t-s; ul7 u2) for a
given q(t-s) are i.i.d. compound Poisson variables (see KARLSSON 1974).

The moments related to any development period («,, u2) are obtained from
the equation (see BPP, item 3.7a)

(1.11) n(t — s; M,, u2) • a,(< — s; w,, u2) = £ n{t — s\ u, u) • a f(f — s; u, u)

which expresses the characteristics of a sum variable in terms of the corresponding
characteristics of the component variables.

1.10. Accumulated Development Functions

Accumulated development functions are denoted by corresponding capital letters
and defined as follows

u

(1.12) Gj,.{u)= £ g*(v) (replace * here by n, x respectively).
u = 0

These functions are scaled by the conditions (cf. (1.4))

(1-13) Gn(T) = l; gm(0) = l.

Owing to (1.7) gx{u) is then uniquely determined. In addition, we define G%(u) = 0
for u *£ 0.

1.11. The Mean Total Claim Amount

The mean total amount of claims for the cohort interval ux, u2 is now

(1.14) EX(t-s;ul,u2) = X0-Ix(t-s)-[Gx(u2)-Gx(u1-l)]

where

(1.15) X0=nm and Ix = IJm.
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Here Xo is the average basic amount of the total amount of claims for the cohort
tb, (see BPP, item 3.3c). Ix transforms the business volume and the monetary
values to the level of the birth of the cohort / - s, and the difference of the Gx

functions in (1.14) allocates the shares of the claims to the period u,, u2 adjusting
also the monetary value to correspond to the level of the time payment.

1.12. The Variances of the X Variables

The variances of the X variables are still needed as primary building blocks for
the further considerations. We have, according to the standard risk theory (see
BPP, item 3.3c) and by using the above concepts and notations, the variance for
the one year payment

VarX(t-s; u, u) = n(t-s; u, w) • a2(t-s; u, u) + a-2
q- (EX(t-s; u, u))2

= n • a2- In(t-s) • gn(u) • Im(t-s)2 • gm(u)2

+ a2
q-n

2-m2-Ix(t-s)2-gx(u)2.

Introducing the notations

(1.16) D0=n-a2; vq = cr\ • X\

for the basic amounts of the "pure Poisson" variation and of the structure
variation, we can write the above expression in the form

(1.17) Var X(t-s; u, u) = vQ- Ix(t-s) • Im(t-s) • gm(u) • gx(u)

+ vq-Ix(t-s)2-gx(u)2.

Let

(1-18) Gmx(u)= I gm(v)-gx(v)

be another development function. Then the corresponding variance for the
payment period w,, u2 can be written as

(1.19) VarX(t-s ; u1,u2) = v0 • Ix(t-s) • Im(t-s) • [Gmx(ti2)-Gmx(ti1-1)]

+ vq • Ix(t-s)2 • [Gx(u2) - Gx(ux - I)]2

in a similar way as (1.17) by using the rule (1.11) (see BPP, item 3.7).

1.13. The Yield of Interest

The yield of interest is provided to be given as a separate entry into the
comprehensive models and it is not needed to be taken into account in the context
of the claims variable (see BPP, item 10.2a). However, for calculation of the
necessary premium rates and for evaluation of the proper amount of the reserve
for outstanding claims an assumption of the rate of interest is needed, if the
discounting of future yield of interest is considered appropriate. We use a constant
rate of interest i, in Chapters 2-4 and a randomly varying rate for simulations
in Chapter 5. The discounting factor is denoted by

(1.20) v = 1/(1 + «,).
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1.14. The Discounted Future Claims Expenditure

The model is now extended to allow for the discounting of the future payments.
We shall need only summations from the end of the current year t to the end of
each cohort:

(1•21)

where in an

(1.22)

EXv(t-s;

analogy with

S +

(1.

a

1,T)

12)

Xs) =

T

T

= I Xov
(u's

= X0Ix(t-s)Gx

T

FX(

:(S)

(u)

t-s;u,

(t-s)g

u)

is a modified accumulated development function. The subscript v of the X
indicates the discounting and the bar over G both the discounting and the fact
that this function is a complement of the function Gx(s) as given by (1.12).
However, their sum G + G is not usually equal to 1, unless v = 1 and gm(u) is
equal to 1 for all the u values.

Note that the discounting is made to relate to current yeat t.

1.15. The Reserve of Outstanding Claims

The reserve of outstanding claims has a central role in all run-off issues. The
run-off errors understandingly depend on the rules and practices applied in
reserve calculations. As we already stated above, the estimation problems of the
parameters introduced above will not be dealt with. Instead we shall assume that
the claims reserve in the year t for the "unpaid" claims for the cohort t — s
(as defined in item 1.1 above) is given by a general formula (see RANTALA

1984, p. 38)

(1.23) C(t,t-s) = cp(s)-P(t-s) + cx(s)-X(t-s;O,s), s = 0,1,2,..., T- 1

where P(t — s) is the premium related to the cohort t — s and the coefficients cp

and cx can be interpreted as weights to balance the general past experience (the
first term) and the fresh experience obtained just from this particular cohort up
to year / (the second term) in the evaluation of the reserve. In order not to have
any safety margin (+ or —) hidden in the claims reserve we demand that the
expected value of C{ t, t - s) should be equal to the expected value of outstanding
unpaid claims:

(1.24) EC(t,t-s) = EX0(t-s;s + l,T), s = 0,1, 2 , . . . , 7 - 1 .

Otherwise these coefficients are freely eligible for applications.
Many of the generally used rules are covered by the formula (1.23) as special

cases (see Survey of the NATIONALE NEDERLANDE 1981). If cx = 0, then we have

https://doi.org/10.2143/AST.16.2.2015004 Published online by Cambridge University Press

https://doi.org/10.2143/AST.16.2.2015004


122 PENTIKAINEN AND RANTALA

a "premium based" rule, which is often used as a first approximation. The choice
cp = 0 represents a method which is close to the various chain ladder approaches
and the combinations of the two terms represents a variety of mixtures of these
alternatives among them rules of experience rating character as will be shown in
Chapter 4.

REMARK. The above formula (1.23) was adopted mainly to find a concrete
illustration, not claiming that it would be the most suitable in all environments.
Other reserve calculation procedures can likely be treated by using the same
technique with obvious modifications. Furthermore, if there had occurred sig-
nificant changes or disturbances in the claim process (renewed policy conditions,
changed judicial practice, etc.) or in the claims settlement handling, they should
be properly observed by making the necessary corrections to the relevant formulae.

The total reserve consists of the current cohort reserves

(1.25) = l C(t,t-s).

The premium income will be defined for our applications by means of the
formula

(1.26) P(t-s)= I v("H)EX(t-s;u, u)
u=0

where

a JT\ P = Y • Ci (-W

Note: An alternative approach to the conditions (1.24) would be to provide
only the unbiasedness for the total amount of the claims reserve:

(1.28) EC(t)=
s=0

Then the cohort reserves may be biased. This is the case in the reserving rule
"opt 1" which will be introduced for numerical examples in Chapter 4.

2. RUN-OFF ERROR, GOING-CONCERN

2.1. The Problem

We are now ready to examine the effects of a run-off pattern on the claims
expenditure in conventional income statements. The claims expenditure is given
as the amount of claims paid in the accounting year t irrespective of the year of
the origin of the claims added by the increment of the reserve of outstanding
claims:

(2.1) Xp{t)= I X(t-s;s,s) +
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The run-off errors consist of the differences between the eventually settled
amounts of the claims and their estimates such as are taken into the reserve of
the outstanding claims. They are not revealed until in the year of the final
settlement. Any amendment in the reserve calculation affects the profit or loss
for the year during which it is made.

The errors and effects of concern will be measured by means of the variances
of the relevant variables. Therefore, we shall first derive a programmable
expression for the variance of Xp.

Note: It would be possible to tender the following presentation in a more
compact form by using overall vector notations for the variable sets as will be
demonstrated in the Appendix 1. We chose, however, a more conventional
approach which may be easier to read because the background tie-ins are more
clearly recognizable.

2.2. The Variance of the Claims Expenditure

The expression (2.1) can be written by using the definitions (1.23) and (1.25) as
follows

(2.2) Xp(t)= £ X{t-s;s,s)p(
5=0

I (cp(s) • P(t-s) + cx{s) • X(t-s;0, s))cp(
s=0

I (
5 = 1

cx(s~l)-X(t-s;O,s-l)).

In order to get the lengths of the summations and later the corresponding
vectors to have a uniform dimension F + l we introduce the conventions

(2.3) cp(w) = cx(u) = 0 for M < 0 and for M> T - 1 ,

Gx(u) = Gmx(«) = 0 fo ru<0 ,

X(-,-,u) = 0 f o r u < 0 .

Since X(t — s;0, s) = X(t — s;0, s — 1) + X(t — s; s, s), the above expressions can
be reordered:

(2.4) Xp(t)=la(s)-X(t-s;s,s) + lb(s)

+ lk(s)-P(t-s)

where

(2.5) a(s) = l + cx(s); b(s) = cx(s) - cx(s -1);

k(s) = cp(s)-cp(s-l).
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All the summations are from 0 to T here and in the sequel unless otherwise
stated. The S's stand briefly for the three sums above. In terms of them we have

(2.6) p

The terms will now be calculated each in turn. Firstly

(2.7) VarS1=Y.a(s)2-VarX(t-s;s,s)

+ X a(s)-a(u)-Cow (X(t-s;s, s),X(t-u;u, «)).

The variance terms are readily available from (1.19). In addition we need, here
and in the sequel, covariances, which will be derived next.

2.3. The Covariances

The covariances which are building blocks in our considerations are of the form

(2.8) Cov (X(t-s; u,, u2), X(t-w;vlt v2)).

For s ^ w w e have (see RANTALA (1984) and equations (2.3,3.4)) and (1.14) above

(2.9) Cov(-,-) = y(\s-w\)EX(t-s;ul,u2)EX(t-w;vl,v2)

= yo(\s-w\) • UAt-s) • (Gx(u2)~Gx(ul-l))]

•[ /*(*-*) • ( G J C ( B 2 ) - G X ( I > , - 1 ) ) ]

where in terms of the covariances y of the structure variable (see (1.6))

(2.10) yo(\s-w\) = y(\s-w\)Xl

Providing M, *£ u2 < vx =£ v2 the covariance expression (2.9) also holds for s = w.

2.4. The variance VarS{

The variance VarS, is obtained by substituting (1.17), (2.9) and (2.10) into (2.7)

(2.11) VarS , = I a(s)2v0 • Ix(t-s) • Im(t-s) • gm(s) • gx(s)

+ Za(s)2-vq-Ix(t-s)2-gx(s)2

+ I 7o(\s-u\)[a(s)-Ix(t-s)-gx(s)]

•[a{u)-Ix{t-u)-gx(u)l

2.5. Vector Representation

The formulae tend to become long and complicated even though they are simple
in concept. Therefore, we shall adopt vector notations, which help to maintain
a survey over the structures and which are also useful in computer programming.

The first two terms of (2.11) can be written in the form

(2.12) v0- V'axVam + vq- V'axVax.
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where the capital letter symbols represent T + l dimensional column vectors:

(2.13) Vax = (V

and V[ V2 are the conventional (scalar) vector products = XS Vl(s)V2(s).
Note that the vectors depend also on the current time t.
It is rewarding to introduce a short operative symbol for the covariance

summation:

(2.14) CS[V,, V J = I yo(i) I V1(s)-V2(u)
i=l \s-u\ = i

Oss s,us£T

where V, and V2 are two vectors of length T+l and the elements are indexed
from 0 to T.

Hence we can write

(2.15) yuSl = v0V'axVam + vqV'axVax + CS[Vax, Vax].

(Cf. equation (3) of Appendix 1.)

2.6. Summary

The other terms in (2.6) can be handled in a similar way and the following
formula results:

(2.16)

+ CS [ Vax, Vax] + CS [ Wbx, Wbx] + 2CS [ Vax, Wbx]

where the vectors involved are

(2.17) Vax = (a(s)-Ix(t-s)-gx(s)Y

Vam = (a(s)-Im(t-s)-gm(s))'

Wbx = (b(s)-Ix(t-s)-Gx(s-l)Y

Wbm = (b(s)-Im(t-s)-Gmx(s-l)Y

Wu = (b(s)-Ix(t-s)Y.

For convenience of the reader we shall recap by stating that the functions a(s)
and b(s) are given by (2.5), the indexes / in items 1.3 and 1.4, gx and gm in (1.7)
and in item 1.4, Gmx in (1.18) and the operation CS by (2.14). The cases where
a simple development function g or an accumulating G is contained in the vector
are discerned using symbols V or W respectively. (Cf. also equation (7) of
Appendix 1.)

3. RUN-OFF ERROR, BREAK-UP

3.1. Problem

We examined above the impact of the estimation error of the claims reserve C(t)
on the profit or loss of the current fiscal year. Now we are asking what is the
total error contained in C(t). The problem setting is equivalent to an assumption
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that the insurer would discontinue his business and the claims, which are related
to events in year t or earlier, are paid from C(t). As before we do not deal with
the estimation problem, instead we assume the reserve rules given in form (1.23).

The sought after error, denoted by R(t):

(3.1) R(t) = C(t)- I Xv(t-s;s + l,T)

is what is left (+ or - ) when all the claims are finally settled. The yield of interest
is taken into account discounting the claims payments to the initial time point t.

3.2. A Solution

A solution can be found by using a similar technique to that used in Chapter 2.
We give the final formulae:

(3.2) Var R( t) = v0 • (W'cl Wcm + V, Wvm) + », • (W'cx Wcx + W'vx Wvx - 2 W'cx Wvx)

+ CS [ Wcx, Wa] + CS [ Wm, Wvx] - 2 CS [ Wcx, Wvx]

where

(3.3)

and

(3.4)

Wcl=(cx(s)-

Wcm = (cx(s)-

Wvm = (Im(t-

Wcx = (cx(s)-

Wvx = (Ix(t-

V, = (Ix(t-

T

Gmx(s)= I v*

L

s)

h
s)

s))

:•*-.

(t-s)Y

,{t-s)Gmx

• Gmx(s)Y

(t-s)-Gx

• Gx(s)Y
•

(s)Y

(s)Y

The index s is now running from 0 to T—\. (Cf. also equation (10) of Appendix
1.)

4. EXAMPLES

We are going to give some examples of the application of the formulae presented
in the previous chapters. Therefore, the data and functions involved must first
be specified.

4.1. The Structure Function

The structure function q(t) is given by a first order autoregressive time series:

(4.1)
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where a is a coefficient 0=£ a < 1 and e, "the noise" is a normally (0, cre) distributed
stochastic term. According to the standard formulae of the time series theory
(asymptotically)

(4.2) cr, = < r . M l - a 2 ) ,

y(i) = a''o* (i = 0 ,1 ,2 , . . . ) .

4.2. Reserve Rules

Reserve rules are given according to the following four alternatives:
Premium based rule (abbreviation "pr-bas" in the tables) is defined by

(4.3) cx(s) = 0

cp(s) = X0Gx(s)/P0

which is derived by applying the conditions of (1.24).
The "learning" rule (abbreviation "learn") proposed originally by BENKTAN-

DER (1976) and recently developed for reinsurance practice by among others
HOVINEN and the Kansa-companies (1981, 1984), is obtained by composing two
reserve rules. Firstly, the "premium based" reserve rule is the same as (4.3). The
other rule is "claims based", and it is obtained putting cp's = 0 in (1.23). Then
according to (1.24) cx(s) • EX(t-s; 0, s) = EXv(t^s; s + 1, T), which implies in
the terms of our development functions cx(s) = Gx(s)/Gx(s). The former rule
utilizes the past experience contained in the premium P and the latter one the
fresh experience received from the accumulating X(t — s;0,s). The idea is to
combine them first giving more weight to the premium-based rule and later more
weight to the claims-based rule. Following an intuitive experience rating principle
the reserve for outstanding claims is eventually obtained from them by using the
weights

Gx(s)/[Gx(s)+Gx(s)] and Gx(s)/[Gx(s)

Then the following coefficients are the results

(4.4) cp(s)=^Gx(s
2

The rule is nicknamed "learning" because all the time, while the cohort is aging,
it is adapting according to the freshest claims experience.

Optimal rule 1 (optl) is based on linear regression theory. It is derived seeking
coefficients cx which minimise the variance of the (unbiased) break-up error R(t)
(see (3.1)). Recapitulating the formulae given in Appendix 1 in matrix form we
have

(4.5) cx
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where, in the terms used above,

(4.6) M{Xk) = (Cov (X(t-s; 0, s), X(t-u; 0, M)))

and s and u run from 0 to T — 1.
Note that only the coefficients cx are denned, not the coefficients cp. This is

due to the fact that only the former are affiliated with the stochastic terms in Xp

(see (2.2)) and in R(t) (see (3.1)). The coefficients cp should be determined, if
needed, e.g., by the equations (1.24).

Optimal 2 (opt2) is also presented in the Appendix 1, equation (13), based on
the optimization of the cohort reserves separately each in turn. Formally, it results
from (4.5) if y(i)'s are set equal to zero for i>0 .

4.3. The Growth Rates and Indexes

The growth rates and indexes to be applied in this chapter are assumed to be
constants according to the following formulae:

(4.7) In(ts) = r'-'; Im(t-s) = r'-'; gm(u) = r"c

where rn is the growth factor on the volume parameter n, and rm and rc for the
inflation between and inside the cohorts, respectively. They as well as the constant
rate of interest (i = i, above) are given under the pertinent headings in the table.

4.4. The Run-Off Tails

The run-off tails are given as three alternatives, the values of gn(u) being according
to the ascending w = 0 , 1 , . . . , T as follows:

(a) Long tail T=12: 0.15, 0.25, 0.15, 0.15, 0.10, 0.05, 0.05, 0.02, 0.02, 0.02,
0.02, 0.01, 0.01 (see RANTALA (1984)).

(b) Medium tail T = 3: 0.6, 0.2, 0.15, 0.05.
(c) Short tail T = 2: 0.8, 0.15, 0.05.

The long tail may be suitable for e.g., marine and reinsurance lines, the other
two for various classes of domestic business.

4.5. The Claim Size Distribution

The scale of the monetary quantities was chosen so that the unity may suitably
correspond to about £100 000. We do not need the specification of the claim size
d.f., only its lowest three moments, which were assigned the values 0.006, 0.001
and 0.0001 respectively. This means that the average claim size is £6000. This
closely corresponds to the industrial fire distribution that is presented in BfP, p.
86, as a standard example of a rather heterogeneous portfolio provided that the
maximum net retention per claim is about £400 000.
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4.6. Explanation for Table 4.1

Table 4.1. sets out a number of examples grouped in subsets, each of which is
aimed at describing some particular feature of the run-off effects. In order to
show the "canals" of the influence the relative magnitudes of the terms in the
variance expressions (2.16) and (3.2) are given. The main indicators are the
increment Aax of the standard deviation o-x compared with the value a0 it would
have, if no run-off delay were in existence. Furthermore, ax is given as a
percentage of the premium income Po (see (1.27)). Similarly the "break-up" crR

is presented as a percentage of the expected reserve C = EC{t) (see (1.25)) and
of the premium income Po.

The effect of the reserve rule is experimented with for cases having varying
tail lengths and the size of the collective, measured by n. As seen in the decomposi-
tion lines VXi/ VX and VRi/ VR (i = 1,2,..., 8) referring to the terms of the
formulae (2.16) and (3.2), the Poisson terms (predominantly VXl/VX and
VR2/ VR) determine the outcomes for small collectives, and the structure terms
(VX3/ VX and VRi/ VR for i = 3, 4) the behaviour of large collectives as seen,
in particular, in the example 11. The covariance terms (6, 7, 8) have significance
only in large collectives. Note also the existence of negative terms.

Furthermore, the influence of the structure variation is demonstrated providing
a possibility to compare the cases where it is present with the cases from which
it has been removed (examples 16, 17 and 18). The effect of the autocorrelation
was removed from the example 15, it is to be compared with the case 12.

4.7. Some Observations

Expectedly, the reserve rule has a considerable influence on the run-off variation
in the going-concern consideration. The premium based rule reduces the variance
in most cases. In fact, it equalizes the fluctuation tops between the consecutive
years, it "hides" them in the increased errors in the claims reserve (as evaluated
on the break-up bases). The other rules mostly increase the variance from the
level which it would have, if there were no run-off delay. This is due to the
construction of the reserve, which is affected more immediately by the variation
tops in the claims process.

Also the assumptions made on the growth of the portfolio and the inflation
rate inside and outside the cohorts have some influence on the behaviour of the
system as can be seen when the examples 18...22 are compared with the
corresponding other cases in Table 4.1, the growth and inflation data being totally
removed from those examples. If, in addition, the structure variation is also
removed (example 18), then the run-off delay has no effect in the going-concern
variation. It is a clear outcome observing that then both processes Xp(t) and
X(t; 0, T) are composed of similar pieces which are each independent compound
Poisson processes. Furthermore, cases 16 and 17 are identical, since premium
based reserving rules is in fact the "optimal" one, if the structure variation is
missing.
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The break-up errors, measured by aR, are rather large in small collectives, but
somewhat unexpectedly the reserve rules have only a slight influence on it. This
is obviously due to the fact that the cohort outcomes equalize each other irrespec-
tive of what a rule may be applied.

4.8. Remarks

Let us recall anew the restrictions already stated in the introduction. The consider-
ations are subject to specified conditions, excluding among other things the
uncertainty involved in the parameter estimation. Therefore, our results should
not be understood as describing the total actual fluctuation but only specific
components of it. Furthermore, in order to keep this paper in reasonable limits,
the autocovariances of the Xp{t) or the R{t) variables (t varying) were not dealt
with, nor the correlations between these variable sets. This would be done by
using the same building blocks as introduced above. The autocovariance structure
of Xp(t) may be clearly different from that of the "undelayed" conventional X(t).
For instance, if the latter were the compound Poisson process having zero
autocovariances, the first T autocovariances of the Xp(t) process would be
non-zeros, on the contrary to one of the standard assumptions of the conventional
risk theory.

5. SIMULATION

5.1. The Problem

It is also useful to handle the run-off patterns by using the simulation technique.
Its merit is in the easy possibility to relax some of the restrictive assumptions
made above, e.g., a stochastic inflation and interest can be incorporated into the
model without any noticeable complications. We shall draft the method both for
the break-up case and for the going-concern consideration, but first a number of
definitions and modifications are necessary.

5.2. Inflation

Inflation is simulated by the following first order autoregressive time series:

(5.1) L(t)-im0=am-[im(t-l)-im0\ + o-mem(t)

where

(5.2) im(t) =

is the rate of inflation and lm the index of inflation between the cohorts (cf.
(1.5)). The variable e is a normally (0,1) distributed random number and
coefficient o-m controls its magnitude.

The equation (5.1) is, with minor modifications, the same as that proposed by
Professor Wilkie (1984). The investigation of the inflation index series of numerous
countries (Appendix 2) revealed that seem to be lengthy "peaceful" periods
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during which the rates are moderate and obviously distributed in a way which
can be appropriately simulated by the original Wilkie formula. But often a
peaceful period is broken by a considerably excessive inflation lasting some few
years. Because such an event can occasion considerable trouble for the insurance
industry, we considered it justified to supplement the model by providing the
possibility of giving an additional impact to the "normal" flow of inflation as a
"shock". We applied a deterministic shock in some of our examples given in the
sequel. However, it is no problem to also make this term stochastic. The shock
can be given as an addition to the values which are first generated by equation
(5.1) for the whole time horizon or they can be added every year to the current
value im(t) in (5.1) so that they autoregressively affect the subsequent values.
The latter procedure creates a tendency for the flow curves to keep soaring for
lengthy time periods, which may not be always in good consistency with
experience (see Appendix 2). Therefore, we applied the former alternative in our
examples.

Another observation was that the rate of inflation is, as a rule, positive and
that there seems to be some positive lower limit under which it never or very
seldom falls. Therefore, it may be suitable to provide the model with condition:

(5.3) L(t)»imm.

Note that the Wilkie model seems to also produce negative rates when his
standard data are used.

We used the following standard values for the parameters involved im0 = 0.06;
am = 0.7; am= 0.015; <min = 0.03.

5.3. The Interest Rate

The rate of interest (including also asset appreciations and depreciations) seems
to be one of the most problematic links in model building. Its behaviour essentially
differs in different countries depending on the size and the character of the capital
market in the particular country, on the investment practices of the insurers and
on the valuation principles of assets (especially whether or not it is allowed to
create buffers by undervaluating them). Professor Wilkie has proposed models
for some investment categories based on the British experience. His idea is to
make the rates and values dependent on inflation. A high rate of inflation is
gradually increasing the rate of the return on investments so that the investors
can have inflation losses compensated for in the long run.

We have had to postpone further investigations of the asset models to a future
date and have made use of a simplified equation as follows:

(5.4) i,(t)-i,o=al-[i,(t-l)-i,o\+Kim(t-td) + im(t-td-l)-2imO] + (Tle,

where i,(t) is the rate of interest earned on an average for to the whole investment
portfolio; il0 is the average value of i, (a parameter to be given); a, a coefficient
to introduce an autoregressive element into the process; and e, is again a normally
(0,1) distributed random variable introducing additional noise to the process.
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The second term compensates for the inflation in two years with a time delay
U-

We used the following standard values for the parameters il0 = 0.07; a, = 0.1;
o-,=0.01.

Note: Owing to the choice im> im an expectation of a positive yield of interest
in real terms is assumed.

It is convenient to introduce function

(5.5)
/.(*)= «•,(«))

in analogy with In(t) (cf. (5.2.))

5.4. Examples

Figure 5.1 provides examples of the simulation results obtained by means of the
above formulae.

0.20

0.10
Rate of Interest

""Rate of Inflation

0.20[-

i / ' v o.io

\ Rate of Interest

Rate of Inflation

10 10 20

FIGURE 5.1. The rate of inflation and the rate of interest (dotted line) simulated by the algorithms
(5.1) and (5.4). A shock of 0.14 was assumed in the right hand side diagram for the years t = 2, 3.

5.5. Simulation of the Break-up Error

As the primary building blocks of the simulation procedure the claims amounts
X{t-s; u, u) are needed for various s and u values and they are generated as
described in the next items. The claims expenditure, which fall due for payment
in the years t + k (k = 1,2,... , T) are obtained by summing up the relevant pieces
as demonstrated in fig. 5.2. by a shaded pillar. In the simulation of the process
in a break-up situation these amounts are paid from the claims reserve C until
all of them are settled, the latest ones according to our assumptions in year t + T.
What is left (+ or - ) of the initial reserve C(t), is just the simulated run-off
error. This is obtained by running the algorithm from k = 1 up to k = T:

T-k

(5.6) C'(t + k)=C'(t + k-l)- I V(t, k)X(t-s;s + k,s + k)
s = O

where C'(t) = C(t) and a discounting auxiliary function was introduced in the
terms of the interest product (5.5) as follows

(5.7) V(t, k)
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t-T+1 t-s t t+k t+T

F I G U R E 5.2. T h e run-of f p a t t e r n c o m p o s e d o f t h e c o h o r t s (, t - 1 , . . . ,t- T + 1 .

where the last term represents the special case, where the rate of interest is
deterministic and constant t» = l / ( l + i,). The value to be assigned to the index
/,( •) for a half year argument can suitably be taken as the mean of values at
the beginning and at the end of the year.

To make the algorithm workable a generator is needed to get the X's for the
summation.

5.6. A Random Number Generator

A random number generator for the production of the claims amount may
conveniently be of the type, which is described in BPP, Section 6.8.3. It is based
on the assumption that the distribution function F(X) of the total amount of
claims inherent from some specified collective and period can be approximated
by a formula of the type

(5.8) F(X) = N(f(X))

where N is the standard normal d.f. and / is some suitable transformation which
replaces the variable by (as far as possible) a symmetric one (see BPP, Section
3.11) The well-known NP-approximation is an example belonging to this family
of approximations. In the sequel we use the Wilson-Hilferty approximation (BPP,
item 3.5b). Then compound Poisson distributed random numbers can be generated
as follows:

(1) Generate a normally (0,1) distributed number (BPP, item 6.8f) rn.
(2) Do the transformation rv =f~1(rn) so arriving at a random number, which

has the mean, st. deviation and skewness 0, 1 and yx respectively.
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(3) rx = mx + rxa-x is then the requested (approximately) compound Poisson
distributed random number having the mean, st. deviation and skewness mx, crx,

The Wilson- Hilferty transformation is

(5.9) rv=f-\rn) = cl-(rn-c2y-ci

where, denoting g = lyx.

C! = g2/3; c2 = g - l / g ; c3 = 2/g.

(See BPP, equation (3.5.14), p. 71, a report on this and related approximations
will be published by Pentikainen in near future)).

Furthermore, we need the mean, st. deviation and skewness for each relevant
X in the summation (5.6).

5.7. The Basic Characteristics

We recapitulate the formulae of the above mentioned basic characteristics:

(5.10) mx(t — s; u, u) = n(t — s; u, u,)m(t — s; u, u)

ax(t-s; u, u) = \/[n(t-s; u, w) • a2{t-s; u, u)]

y'x(t-s; u,u) = ix3(t-s;u,u)/ax(t-s;u,u)3

(see BPP, equation (3.3.9), p. 54).
The variable n(t-s; u, u) can be obtained from (1.3) without any need for

modifications. The structure variable q(t-s) is to be generated separately for
each cohort (and for each realization of the simulation process). For instance,
the autoregressive algorithm (4.1) or any similar one can be used. The noise term
e(t) may be generated assuming it to be normally distributed.

The development function gm(u) will be modified separating the influence of
inflation and the possible change in the real value of the delayed claims, the
latter given by a function go(u). In our simulations we employ the formula

(5.11) gm(u) = g0(u)Im(t-s + u)/Im(t-s).

Also go(«) can be made cohort dependent or dependent on the current time t + k,
if there is found a justification for it.

The characteristics needed in the generator can now be written as follows

(5.12) mx(t-s; u, u) = m • Im(t -s) • go(u) • Im(t-s + u)/Im(t-s)

= m- Im{t-s + u) • go(u)

<rx(t-s; u, u) = Im(t-s + u) • go(u) -y/[n(t-s; u, u) • a2]

yx(t-s; u,u)=^75
' a\'2 An(t-s;u,u)Y

The monetary quantities are obtained at the level of year t-s + u.
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C'(t)/C(0)%

100

-50 -

-100

FIGURE 5 3 A simulated run-off pattern The data are the same as in the case 12 in Table 4 1, but
inflation is now made stochastic Sample size 100 Mean = 0 5% (the theoretical value =0 in Table

4 1) and standard deviation =10 6% (10 7% in Table 4 1) The "safety margin" M = 30%

C'(t)/C(0)%

100

-50 -

-100

FIGURE 5 4 The same run-off pattern as in Fig 5 3 but now assuming an inflation shock of 14%
in addition to the simulated normal inflation in years t + 3 and r + 4 Mean -22%, standard deviation

11 9% and the margin M = 37%
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5.8. Examples

Figures 5.3 and 5.4 display two examples of the simulation outcomes of break-up
processes.

In order to have the results comparable with the deterministic value of Table
4.1 the interest was kept deterministic, the stochasticity as introduced in item 5.3
being incorporated in the going-concern simulation in the next following items.

That part M of the variation range of the residue which falls below the zero
line in figs. 5.1 and 5.2 can be used as an estimate for the margin necessary to
be incorporated into the claims reserve, if it is required that the run-off of the
reserve in a break-up situation may not result in a negative residue by a desired
probability.

5.9. The Simulation of the Going-Concern Process

In order to arrive at a conception of the influence of the run-off impact the ratio

(5.13) x(t) = Xp(t)/B(t)

will be simulated for some time period. Here Xp is the claims expenditure as
defined by (2.1) and

(5.14) B(t) = P(t) + i,(t) • \[C'{t)+C{t-1)]

is, what can be called underwriting income, the premium income (1.26) supple-
mented by the interest earned by the claims reserve (5.1).

In order to simulate, so far as possible, the conventional income statements it
is assumed that the incomes are received and the payments made in the middle
of each year. Therefore, the premium income differs slightly from that defined
in item 1.15. The latter should now be multiplied by i>1/2 to make the process
consistent.

Another indicator is the relative run-off error

(5.15) r(t) = R(t)/B(t)

where R is the error as defined by (3.1).
Both x and r are composed of a number of claims amounts X(t — s, u, u) as

it can be found in similar way as described above for the break-up case.

5.10. Graphic Examples

Figure 5.5 exhibits simulated curves of the above target ratios x and r. The former
was simulated in parallel omitting the run-off effect (x0) and taking it into account
(x). The former is, in fact, what the claims amount would be if it were possible
to evaluate the outstanding claims without any estimation error. The correspond-
ing r curve is set out. We see how some part of the actual fluctuation of the
annual claims amount x is smoothed away from x0 and "hidden" in the fluctuating
run-off error r. This feature is characteristic of the premium based reserve rule
(cf. item 4.3) which was applied in this example.

https://doi.org/10.2143/AST.16.2.2015004 Published online by Cambridge University Press

https://doi.org/10.2143/AST.16.2.2015004


RUN-OFF RISK AS A PART OF CLAIMS FLUCTUATION 139
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FIGURE 5.5. A simulated flow of the claims ratios assuming that the run-off error is = 0(*o) and
taking it into account (x) according to our standard assumption. The corresponding relative run-off
error r is set out for the same process. A shock as described in item 5.2 was assumed. The asterisks
indicate the maximum or minimum point of the curve concerned and they will be adapted as indicators

of the volatility of the process as will be later explained.

Note that according to the definition of the run-off error (3.1) a negative value
of it indicates a case where the reserve of outstanding claims was not sufficient
to meet the simulated claims.

A survey of the process concerned can be obtained repeating the simulation
numerous times according to the Monte Carlo method as we already did in the
case of the break-up process. Figure 5.6 displays an example of a process with
and without an inflation shock.

5.11. Tabular Results

If the effect of different reserve rules and other relevant issues are to be evaluated
and compared, the differences in the results often are difficult to ascertain from
diagrams such as exemplified above. Therefore, it is useful to present the simula-
tion results also in a numerical form. We experimented with the following idea.
First the maximum value of x(t) and the minimum of r(t) (t running over the
test period) are picked up from the curves of Fig. 5.5. They are earmarked by
asterisks.

The Monte Carlo process as that of Fig. 5.6. then produces a sample of the
distribution of these quantities MAX [x(t)] and MIN [r(0] and an approximate
evaluation for the risk probabilities

(5.16) Prob{MAX[x(t)]>xe} = ex and Prob{MIN re} = er.

If information about the range of adverse fluctuation is needed in a concise form,
the limits xe and re may be useful indicators, when the e's are fixed at some
suitable level, say 0.01 or 0.05.
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FIGURE 5.6. Simulated going-concern processes. The data are the same as in the case 2 of Table
4.1. An inflation shock such as shown in Fig. 5.1 is assumed in the lower diagram. Note, when
comparing the outcomes of the table and the diagrams, that the denominators of x and r are slightly

different as seen in the heading of Table 4.1. and in equations (5.13) and (5.15).
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FIGURE. 5.6 (Continued)
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Note that the conventional indicators such as the standard deviation or its
multiples may not be suitable in this context, if a temporary inflation shock or
business cycles are included in the process.

Table 5.1 exhibits some few examples of the above indicators. The tail is the
run-off period as defined in item 1.2. The basic data are as given above. Test
period 10 years, sample size 1000.

No.

1
2
3
4
5
6
7
8

n

10 000
10 000
10 000
10 000
10 000
10 000
10 000

100

Tail

0
12
12
12
12
12
3

12

TABLE
SIMULATION RESULTS,

Reserve

learn
learn
learn

pr-bas
Optl
learn
learn

Inflation

det, no shock
stoch. no shock

stoch +shock
stoch + shock
stoch + shock
stoch + shock
stoch + shock

5.1
G O I N G - C O N C E R N

Interest

det
stoch
stoch
stoch
stoch
stoch
stoch

1.27
1.25
1.27
1.32
1.25
1.34
1.31
1.98

C0 05

1.23
1.21
.23

1.27
1.21
.28

1.26
1.95

Jo oi

-0.30
-0.36
-0.57
-0.60
-0.56
-0.26
-0.98

'0 5

-0.28
-0.28
-0.50
-0.50
-0.47
-0.23
-0.93

6. SOME CONCLUDING REMARKS

6.1. The above examples were intended only to demonstrate the methods
described above, the direct calculations and the simulations. To make an analysis
and to obtain a view of the behaviour of various run-off patterns was beyond
the scope of this paper. However, some very tentative observations can be quoted.

6.2. In the case of going-concern considerations the effect of the run-off errors
on the conventionally counted claims expenditures seems to be noticeable only
when the run-off tail is rather long and the rate of inflation varies widely. The
effect is likely to be greatly strengthened if the rate of interest cannot fairly flexibly
follow the movements of the rate of inflation, but these aspects were not studied.

The size of the portfolio seems to be one of the relevant factors as is seen
comparing example rows 4 and 8 in Table 5.1.

6.3. Our plan is to extend the studies to also cover the solvency margin, which
is constituted as the accumulated profits or losses. It is obvious that aspects such
as are applied in control theories concerning the continuous adjusting of premiums
and other pertinent quantities according to the ever present changing state of the
process may have an important role (RANTALA 1984). As already noted another
planned extension is to incorporate the parameter estimation procedure into the
model.

6.4. Expectedly, the run-off phenomenon can also play a significant role in the
evaluation of the solvency conditions of insurers. The effect depends essentially
on whether the break-up principle or the going-concern alternative should be
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adopted as the basic philosophy, because in the case of a break-up situation the
run-off error is to be taken into account in one way or another in full whereas
in the going-concern consideration it may be sufficient to only regard its influence
on the loss ratio x. A discussion of whether or when the break-up basis is
appropriate to be accepted falls beyond the scope of this paper (the topic is
discussed in the transactions of the Conference on Insurance Solvency,
PENTIKAINEN (1986)).

6.5. The modelling of the rate of interest (asset risk) is one of the points which
was left open for future studies. A weakness of our tentative equation (5.4) is
that it does not regard the possibility of such a major plunge in the yield, as that
which occurred in some countries when the values of equities and some assets
dropped immensely in the mid-1970s (not to speak of the Great Depression at
the beginning of 1930s). Possibly this shortcoming can be compensated for by
inserting into the model a deterministic or stochastic adverse impact similar to
the "shock" we incorporated into the inflation equation (5.1).
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APPENDIX 1
MATRIX PRESENTATION FOR Var(Xp(f)) AND Var («(()), OPTIMAL CLAIMS RESERVES

1. Var (*„(())
Let

,0),X(t-l;l,\),...,X(t-T; T, T))'

X2(t) = (X(t; 0, -1), X(t-l;0,0),...,X{t-T; 0, T-l))'

a = (a(0), a ( l ) , . . . , a(T))'- b = (6(0), 6(1),... , 6(7))'.

(for notations see Chapter 2). Then (2.4) can be written briefly as

(1) Xp(0 = a'*i(0 + b'*2(') + non-stochastic terms.

Hence

(2) Var (Xp) = a'M(Xt)a + b'M(X2)b + 2a'M(Xi, X2)b,

where M(X, Y) denotes the covariance matrix of random vectors X and Y and M(X) = M(X, X)
and the arguments are dropped from the notations. The necessary covariances can be obtained from
(1.19) and (2.9). In fact, we have

(3) ^T^-= vP • D(IxImgmx) + D(Ixgx)M(q)D(Ixgx),

(4) ^T^ = % • D(IJmGmx) + D(IxGx)M(q)D(IxGx),

(5)

where vp = volX% and D(Z) denotes a diagonal matrix with the elements of the vector Z on the
diagonal. The covariance matrix M(q) is

\V(T) y(T-l)

By reordering we obtain

Var (X )
(7) . V =vp[a'D(IxImgmx)a + b'I

+ a'D(Ixgx)M(q)D(Ixgx)a + b'D(IxGx)M{q)D(IxGx)b

+ 2a'D(Ixgx)M(q)D(IxGx)b.
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2. Var(Jf(f))
Let

Xk(t) = (X(t; 0, 0), X(t- 1; 0 ,1) , . . . , X(l~ T+Vfi, T- 1))'

Xu(t) = (Xv(t; 1, T), *„(( - 1; 2,T),...,Xv(t-T+l; T, T))'.

In order to have a linear and unbiased total claims reserve the reserve formula should be of the form

(8) C = c'xXk-c'xEXk + VEXu,

where 1 = ( 1 , 1 , . . . , 1)' and EXk and EXU are given by (1.14) and (1.21). Then the variance of the
run-off error

(9) R = C-VXU

can be obtained from

(10) Var(R) = c'xM(Xk)cx + VM(Xu)1-2cxM(Xk,Xu)1,

where the covariances needed are given by (1.19), (2.9) and (2.11) with slight modifications to take
into account the effect of discounting. The covariance matrices in (10) can be expressed as functions
of vp and M(q) in the similar way as in (7).

3. The optimal claims reserve

It follows from the theory of linear regression models that the expected mean square error E(R2) =
Var (R) of the claims reserve is minimized when

(11) cx = M(Xky'M{Xk,Xu%

Note that in our general framework cx depends on current time ( due i.a. to time-dependent
Poisson-variance.

In some cases it may be desirable to compute an optimal (in the mean square error sense) claims
reserve for each cohort separately. Then the coefficients cx(s) are

Co\(X{t-s;0, s), Xv(t-s;s + \, T))
(12) cx(s) = -

Va.T{X(t-s;O,s))

vq-Ix(t-s)Gx(s)Gx(s)

v0- Im(t-s)Gmx(s) + vq- Ix(t-s)Gx(s)2'

which in the general case depends on t. However, if /n = l (which implies lm = lx) then cx(s) is
independent of t and can be written as

, , , , , , Gx(s) • GJs)
(13) cx{s) = — 2.

vQ/vq • Gmx(s) + Gx{sY
If further qm(u) = 1 then Gmx = Gx and (13) reduces to

vo/vq + Gx(s)

which, in fact, corresponds to the traditional linear credibility coefficient of credibility theory.
RANTALA (1984) contains a numerical example on the differences between (11) and (12).
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APPENDIX 2
CONSUMER PRICES

Percentage changes from previous year
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RUN-OFF RISK AS A PART OF CLAIMS FLUCTUATION
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