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ASYMPTOTIC EXPANSIONS OF RECURSION

COEFFICIENTS OF ORTHOGONAL POLYNOMIALS

WITH TRUNCATED EXPONENTIAL WEIGHTS

HAEWON JOUNG

Abstract. Let β > 0 and Wβ(x) = exp(−|x|β), x ∈
�

. For c > 0, define
Wβ,cn(x) = Wβ(x) if |x| ≤ c1/β a2n and Wβ,cn(x) = 0 if |x| > c1/β a2n, where
a2n denotes Mhaskar-Rahmanov-Saff number for Wβ. Let γn(Wβ,cn) be the
leading coefficient of the nth orthonormal polynomial corresponding to Wβ,cn

and write αn(Wβ,cn) = γn−1(Wβ,cn)/γn(Wβ,cn). It is shown that if c > 1 and
β is a positive even integer then αn(Wβ,cn)/n1/β has an asymptotic expansion.
Also when 0 < c < 1, asymptotic expansions of recursion coefficients of the
truncated Hermite weights are given.

§1. Introduction

Let β > 0. Let Wβ(x) = exp(−|x|β), x ∈ R, and let γn = γn(Wβ) > 0

denote the leading coefficient of nth orthonormal polynomial pn correspond-

ing to Wβ. The leading coefficients γn have the following minimum property.

Denoting by Pn the set of all polynomials of degree at most n we have

γ−2
n (Wβ) = min

q∈ � n−1

∫

∞

−∞

[xn + q(x)]2Wβ(x) dx .(1.1)

Since Wβ is even, the recursion formula of the orthonormal polynomials has

the form

xpn−1(x) = αnpn(x) + αn−1pn−2(x) ,(1.2)

n = 1, 2, 3, · · ·, where α0 = 0 and αn = γn−1/γn , n ≥ 1. Associated

with the weight function Wβ , there are Mhaskar-Rahmanov-Saff numbers

an = an(Wβ), which is a positive solution of the equation

n = (2/π)

∫ 1

0
antQ′(ant)(1 − t2)−1/2 dt ,
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n = 1, 2, 3, · · ·, where Q(x) = |x|β (cf. [4]). Explicitly,

an = an(Wβ) = (n/λβ)1/β , n = 1, 2, 3, · · · ,(1.3)

where

λβ =
22−βΓ(β)

{Γ(β/2)}2
.

Using Mhaskar-Rahmanov-Saff numbers an = an(Wβ), we define the trun-

cated exponential weights Wβ,cn , c > 0, n = 1, 2, 3, · · ·, by

Wβ,cn(x) =

{

Wβ(x) if |x| ≤ c1/β a2n ,

0 if |x| > c1/β a2n .
(1.4)

Our purpose in this paper is to prove the followings.

Theorem 1.1. Let c > 1 and β be a positive real number. Then

αn(Wβ,cn)/αn(Wβ) ∼ 1 as n → ∞ .(1.5)

In other words,

αn(Wβ,cn)/αn(Wβ) = 1 + o(n−k) ,

for every integer k ≥ 1 as n → ∞ .

Combining a result of Máté, Nevai and Zaslavsky [6, Theorem 1, p. 496]

and Theorem 1.1 we have

Theorem 1.2. Let c > 1 and β be a positive even integer. Then
αn(Wβ,cn)/n1/β has an asymptotic expansion

αn(Wβ,cn)/n1/β ∼
∞

∑

k=0

c2k n−2k as n → ∞ ,(1.6)

where the constants c2k’s are independent on c.

Theorems 1.1 and 1.2 depend on infinite-finite range inequality (2.1).

When 0 < c < 1, (2.1) is not true any more. Using the recurrence equation,

we obtain following result for the truncated Hermite weights.
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Theorem 1.3. If 0 < c < 1, then α2
n(W2,cn)/n has an asymptotic

expansion

α2
n(W2,cn)/n ∼

∞
∑

k=0

d2k n−2k as n → ∞ ,(1.7)

where d0 = c/2, d2 = c
8(1−c)2

, d4 = 17c2+c
32(1−c)5

, and d6 = 1126c3+196c2+c
128(1−c)8

.

Of course if c > 1, then

α2
n(W2,cn)/n ∼ 1/2 as n → ∞ ,

as a consequence of Theorem 1.1 and α2
n(W2) = n/2 .

§2. Proof of Theorems 1.1 and 1.2

To prove Theorem 1.1 we need following infinite-finite range inequality,

which is a special case of [3, formula (3. 19) in Lemma 3.3, p. 32].

Lemma 2.1. Let β > 0 and c > 1. Then there exist a positive constant
C0 and a positive integer n0 such that, for n ≥ n0 , and for P ∈ Pn ,

∫

∞

−∞

P 2(x)Wβ(x) dx ≤ (1 + e−C0n)

∫

∞

−∞

P 2(x)Wβ,cn(x) dx .(2.1)

Proof of Theorem 1.1. Since Wβ(x) ≥ Wβ,cn(x), γn(Wβ) ≤ γn(Wβ,cn),
hence, in view of (2.1) and (1.1), we have

1 ≤ γ2
n(Wβ,cn)/γ2

n(Wβ) ≤ 1 + e−C0n for all n ≥ n0 ,

and

1 ≤ γ2
n−1(Wβ,cn)/γ2

n−1(Wβ) ≤ 1 + e−C0n for all n ≥ n0 ,

which implies Theorem 1.1.

Proof of Theorem 1.2. Máté,Nevai and Zaslavsky [6, Theorem 1, p.496]
showed that, if β is a positive even integer, αn(Wβ)/n1/β has an asymptotic
expansion

αn(Wβ)/n1/β ∼
∞
∑

k=0

c2kn−2k as n → ∞ .(2.2)

Thus Theorem 1.2 follows from (2.2) and Theorem 1.1.
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§3. Proof of Theorem 1.3

Instead of dealing with the weights W2,cn , we consider the weights wm ,

m > 0, defined by

wm(x) =

{

exp(−2mx2) if |x| ≤ 1 ,
0 if |x| > 1 .

(3.1)

Let pn(x) = γnxn + · · · , γn > 0, denote the orthonormal polynomials cor-

responding to wm . Since wm is even, the recursion formula becomes

xpn−1(x) = αnpn(x) + αn−1pn−2(x) ,(3.2)

n = 1, 2, 3, · · ·, where α0 = 0 and αn = γn−1/γn , n ≥ 1, and pn is even if n

is even and odd if n is odd. Observe that

n

αn
=

∫ 1

−1
p′n(x)pn−1(x)wm(x) dx , n ≥ 1.

Integrating by parts the right hand side of the above equation, we obtain

n

αn
− 4mαn = 2pn(1)pn−1(1)wm(1) .

Squaring both sides, we have

n2

α2
n

− 8nm + 16m2α2
n = 4p2

n(1)p2
n−1(1)w2

m(1) .(3.3)

We remark1that (3.3) can be obtained by equating leading terms in

p′n(x) = An(x)pn−1(x) − Bn(x)pn(x),

where

An(x) =
αnwm(1)p2

n(1)

1 − x
+

αnwm(−1)p2
n(−1)

x + 1

+αn

∫ 1

−1

v′(x) − v′(y)

x − y
p2

n(y)wm(y)dy,

Bn(x) =
αnwm(1)pn(1)pn−1(1)

1 − x
+

αnwm(−1)pn(−1)pn−1(−1)

x + 1

+αn

∫ 1

−1

v′(x) − v′(y)

x − y
pn(y)pn−1(y)wm(y)dy,

1We thank the referee for this remark.
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and v(x) = 2mx2 (cf. [1], [2]).

Also note that

1 + 2n =

∫ 1

−1
[xp2

n(x)]′wm(x) dx = 2p2
n(1)wm(1) + 4m(α2

n+1 + α2
n ).(3.4)

From (3.3) and (3.4), we obtain the recurrence equation

1

4
= α2

n

[

1 +
1

2n
−

2m(α2
n+1 + α2

n)

n

] [

1 −
1

2n
−

2m(α2
n + α2

n−1)

n

]

(3.5)

+
2mα2

n

n
−

4m2α4
n

n2
,

n = 1, 2, 3, · · · , where α0 = 0 and α1 = γ0/γ1 . Since

0 < αn =

∫ 1

−1
x pn(x) pn−1(x)wm(x) dx ≤

∫ 1

−1
|pn(x) pn−1(x)|wm(x) dx

≤

(
∫ 1

−1
p2

n(x)wm(x) dx

)1/2 (
∫ 1

−1
p2

n−1(x)wm(x) dx

)1/2

= 1 ,

lim
n→∞

α2
n(wm) = 1/4(3.6)

follows from (3.5). Now we show that α2
n(wm) has an asymptotic expansion.

Lemma 3.1. Let m > 0. Then α2
n(wm) has an asymptotic expansion

α2
n ∼

∞
∑

k=0

rk n−k as n → ∞ ,(3.7)

that is,

α2
n =

j
∑

k=0

rk n−k + o(n−j) ,(3.8)

for every integer j ≥ 0 as n → ∞ , where r0 = 1/4 .

Proof of Lemma 3.1. Let

H(x, y, z, w) = [y + (1/4)][1− (1/2)(2m − 1)w − 2mw(y + z)](3.9)

·[1 − (1/2)(1 + 2m)w − 2mw(x + y)]

+ 2myw − 4m2y2w2 − (1/4) .
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Then

∂H(0, 0, 0, 0)

∂x
=

∂H(0, 0, 0, 0)

∂z
= 0 ,

∂H(0, 0, 0, 0)

∂y
= 1 .(3.10)

Putting

yn = α2
n − (1/4) ,(3.11)

we have

H(yn−1, yn, yn+1, 1/n) = 0 by (3.5).(3.12)

By (3.10), (3.11), (3.6), and (3.12), the conditions of the theorem of Máté
and Nevai [5, Theorem in p. 423] are satisfied, hence,

α2
n ∼

∞
∑

k=0

rk n−k as n → ∞ ,

where r0 = 1/4 by (3.6).

Once we know (3.8) is true, we expand α2
n−1 and α2

n+1 in terms of n−k

using the binomial theorem, and then, putting them into (3.5), we find

r1 = 0, r2 = 1/16 , and r3 = m/8 .

Rewriting (3.7) as

α2
n(wm) ∼ 1/4 +

∞
∑

k=0

ek n−(k+2) as n → ∞ ,(3.13)

where e0 = 1/16 and e1 = m/8 , next we show

Lemma 3.2. The coefficient ek in (3.13) is a polynomial in m of degree
k with the leading coefficient (k + 1)/16 , and ek is even, if k is even, and
odd, if k is odd.

Proof of Lemma 3.2. When k = 0, 1, the lemma is true according to
(3.13). Using induction on k, we may assume that the lemma is true for
e0, e1, e2, · · ·, and ek−1 . Let

α2
n = 1/4 +

k
∑

j=0

ej n−(j+2) + o(n−k−2) .(3.14)
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Writing (n± 1)−j = n−j (1± 1/n)−j , and then, using the binomial expan-
sion for (1 ± 1/n)−j , we obtain

α2
n−1 = 1/4 +

k
∑

j=0

[

j
∑

i=0

(

j + 1
i + 1

)

ei

]

n−(j+2) + o(n−k−2) ,(3.15)

and

α2
n+1 = 1/4 +

k
∑

j=0

[

j
∑

i=0

(−1)j−i

(

j + 1
i + 1

)

ei

]

n−(j+2) + o(n−k−2) .(3.16)

Now, expanding (3.5) yields

0 = α2
n

[

1 +
2m

n
−

1

4n2

]

− α4
n

[4m

n
+

4m2

n2

]

+
4m2α6

n

n2
(3.17)

+
mα2

n(α2
n+1 − α2

n−1)

n2

+(α2
n+1 + α2

n−1)
[

−
2mα2

n

n
+

4m2α4
n

n2

]

+
4m2α2

nα2
n+1α

2
n−1

n2
−

1

4
.

Substituting (3.14), (3.15), and (3.16) into (3.17) yields

k
∑

j=0

Cj n−(j+2) + o(n−k−2) = 0 ,

which implies Cj = 0, for j = 0, 1, 2, · · · , k. In particular from Ck = 0, we
can express ek in terms of e0, e1, e2, · · · , ek−1 as follows. Setting

sj =

j
∑

i=0

(

j + 1
i + 1

)

ei , and tj =

j
∑

i=0

(−1)j−i

(

j + 1
i + 1

)

ei ,

for j = 0, 1, 2, · · · , k − 1 , and let

fj = sj + tj , gj = tj − sj , and hj =
sj + tj

4
+

j−2
∑

i=0

si tj−2−i ,

for j = 0, 1, 2, · · · , k − 1 . Since tj is alternating, it follows by the induction
hypothesis that

fj is a polynomial in m of degree j, and is odd, if j is odd,(3.18)

and even, if j is even,
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for j = 0, 1, 2, · · · , k − 1 ,

g0 = 0 and(3.19)

gj is a polynomial in m of degree j − 1, and is odd, if j is even,

and even, if j is odd,

for j = 1, 2, 3, · · · , k − 1 , and

hj is a polynomial in m of degree j, and is odd, if j is odd,(3.20)

and even, if j is even,

for j = 0, 1, 2, · · · , k − 1 .

Now we have

ek =
ek−2

4
+ m

[

ek−1 +
fk−1

2
−

gk−2

4
+ 4

k−3
∑

j=0

ej ek−3−j(3.21)

+ 2

k−3
∑

j=0

ej fk−3−j −

k−4
∑

j=0

ej gk−4−j

]

−m2
[fk−2

4
+ hk−2 + 2e0 (ek−4 + fk−4)

+ 2e1 (ek−5 + fk−5) −
k−4
∑

j=0

ej ek−4−j + 4
k−4
∑

j=0

ej hk−4−j

+
k−6
∑

i=0

(ei + fi)
(

2ek−4−i + 4
k−6−i
∑

j=0

ej ek−6−i−j

)]

.

Since the coefficient of mj in fj is (j + 1)/8 and the coefficient of mj in hj

is (j + 1)/32, j = 0, 1, 2, · · · , k − 1, Lemma 3.2 follows from (3.18), (3.19),
(3.20), and (3.21) and the induction hypothesis.

By Lemma 3.2 we write

ek = ek(m) = bk,0 mk + bk,1 mk−2(3.22)

+ bk,2 mk−4 + · · · + bk,[k/2] m
k−2[k/2] ,

where [·] denotes the integer part. Note that b2p,p is the constant term in

e2p and b2p,p = b2p−2,p−1/4 by (3.21). Since b0,0 = 1/16,

b2p,p =
1

4p+2
, p = 0, 1, 2, · · · .(3.23)
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We need more information about b2p+k,p as k → ∞, that is, we want that

for each p = 0, 1, 2, · · · , b2p+k,p can not grow too fast as k → ∞ so that
∑

∞

k=0 b2p+k,p ck converges provided 0 < c < 1. In fact we show that for

each p = 0, 1, 2, · · · , b2p+k,p is a polynomial in k whose degree depends

only on p. For p = 0,

bk,0 = (k + 1)/16 , k = 0, 1, 2, · · · ,(3.24)

by Lemma 3.2. When p = 1, we find

b2+k,1 =
( 3

256

)

(k + 4)(k + 3)(k + 2)(k + 1)(3.25)

−
( 17

384

)

(k + 3)(k + 2)(k + 1) ,

for k = 0, 1, 2, · · ·, as follows. Note that b2+k,1 is the coefficient of mk in

e2+k . Comparing the coefficient of mk in both sides of (3.21) with 2 + k

replacing k, we obtain

b2+k,1 − 2b2+(k−1),1 + b2+(k−2),1(3.26)

=
bk,0

4
+

(k + 1)(k + 2)bk−1,0

2
+

(k + 1)bk−1,0

2

−
k(k + 1)bk−2,0

2
− 6(b0,0bk−2,0 + b1,0bk−3,0) + 8

k−1
∑

j=0

bj,0bk−1−j,0

−2

k−2
∑

j=0

bj,0bk−2−j,0 − 6

k−4
∑

j=0

bj,0bk−2−j,0 .

Substituting (3.24) into (3.26), it follows that

b2+k,1 − 2b2+(k−1),1 + b2+(k−2),1 =
9k2

64
+

5k

32
+

1

64
,

for k = 1, 2, · · ·. Solving the above difference equation with b2,1 = 1/64 by

(3.23) and b1,1 = 0 yields (3.25). When p = 2, similarly as done above, we

have

b4+k,2 =
21(k + 7)(k + 6)(k + 5) · · · (k + 1)

20480
(3.27)

−
17(k + 6)(k + 5) · · · (k + 1)

1280

+
563(k + 5)(k + 4)(k + 3)(k + 2)(k + 1)

15360
,
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for k = 0, 1, 2, · · · . Now using induction on p we assume that b2i+k,i is

a polynomial in k for i = 0, 1, 2, · · · , p − 1 . Replacing k by 2p + k in

(3.21) and then comparing the coefficient of mk in both sides we find that

b2p+k,p−2b2p+(k−1),p+b2p+(k−2),p can be expressed in terms of k and b2i+j,i ,

i = 0, 1, 2, · · · , p−1 , j = 0, 1, 2, · · · , k . Using the induction hypothesis yields

b2p+k,p − 2b2p+(k−1),p + b2p+(k−2),p = a polynomial in k .

Then the following lemma follows by solving the above difference equation.

Lemma 3.3. For each p = 0, 1, 2, · · · , b2p+k,p is a polynomial in k
whose degree depends only on p.

Recall the definitions of wcn in (3.1). Now we prove

Lemma 3.4. Let 0 < c < 1. Then α2
n(wcn) has an asymptotic expan-

sion

α2
n(wcn) ∼

1

4
+

∞
∑

p=0

δ2p n−2p−2 as n → ∞ ,(3.28)

where δ0 = 1
16(1−c)2 , δ2 = 17c+1

64(1−c)5 , and δ4 = 1126c2+196c+1
256(1−c)8 .

Proof of Lemma 3.4. From Lemma 3.1 and (3.13)

α2
n(wm) ∼ 1/4 +

∞
∑

k=0

ek(m)

nk+2
as n → ∞ ,

for each fixed m > 0. If we replace m by cn, then, with the notations in
(3.22),

ek(cn)

nk+2
=

[k/2]
∑

p=0

bk,p ck−2p

n2p+2
.

Since
∑

∞

k=0 b2p+k,p ck converges for each p = 0, 1, 2, · · · , by Lemma 3.3, we
have

α2
n(wcn) ∼

1

4
+

∞
∑

p=0

δ2p n−2p−2 as n → ∞ ,

where δ2p =
∑

∞

k=0 b2p+k,p ck . From (3.24), (3.25), and (3.27), we obtain
δ0, δ2, and δ4, completing the proof of Lemma 3.4.
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Proof of Theorem 1.3. Since

α2
n(wcn) =

α2
n(W2,cn)

2cn
,

Theorem 1.3 follows from Lemma 3.4 .
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