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Abstract

In modeling change over time, developmental theories often emphasize meaningful quantities like peaks,
inflections, timing, and tempo. However, longitudinal analyses typically rely on simple polynomial models
that estimate powered terms of time in a linear, additive form which are disconnected from these mean-
ingful quantities. While these linear parameterizations are computationally efficient and produce stable
results, the quantities estimated in these models are difficult to directly connect to theoretical hypotheses.
To address this disconnect between estimation and theory development, I propose several approaches for
linear estimation with nonlinear inference (LENI), a framework that transforms results from stable, easily-
estimated linear models into nonlinear estimates which align with theoretical quantities of interest through
a set of principled transformation functions. I first outline derivations for the interpretable nonlinear
parameters, and transform the results of the corresponding linear model—including fixed and random
effects as well as conditional covariates effects —into the results we would have obtained by fitting a nonlin-
ear version of the model. I conclude by summarizing a linearized structural equation model approach which
can flexibly accommodate any known nonlinear target function within a linearly-estimable framework.
I conclude with recommendations for applied researchers and directions for fruitful future work in this area.
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1. Introduction

The issue of interpretability is one of widespread concerns in modeling outcomes of interest across
many different disciplines. At the extremes, approaches like large language or deep learning models can
be composed of hundreds of thousands of parameters, none of which can be meaningfully interpreted
individually. These issues are not isolated to large machine learning approaches, however, and filter
down to more common linear models within the social and behavioral sciences. Often, standard models
are fit using equations that optimize numerical stability and have relatively simple fit functions—
often a crucial feature that allowed these models to be feasibly estimated before modern computing
power—rather than the interpretability of the parameters obtained. While simple linear effects solve for
both ease of fit and interpretability, they are limited in their ability to test more complex and specific
substantive hypotheses (e.g., timing, inflection points). Some fields have sought a balance between
these extremes. For instance, the field of cognitive computational modeling has developed a wide array
of mathematical expressions that seek to describe mental state representations guiding overt action
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(Farrell & Lewandowsky, 2018; Wilson & Collins, 2019). While these expressions are relatively complex,
a strong emphasis of computational modeling is that the parameters of these models are linked with
specific cognitive or behavioral processes. As such, individual (or group) differences in these parameters
can ideally be linked directly back to cognitive or neural processes of interest (e.g., Mareschal & Thomas,
2007; Patzelt et al., 2018; Pleskac et al., 2019; Wilson & Collins, 2019). Outside of these computational
models, however, there has only been slow progress in the adoption of interpretable parameter
models.

The bio-behavioral and clinical sciences are dominated by the use of linear models—specifically
models which are linear with respect to the parameters, including popular polynomial models (e.g.,
quadratic and cubic) which chart out a non-linear relationship. These linear parameter models have
many attractive features for estimating relationships between variables—they are identified across an
infinite range of parameter values associated with the predictors (i.e., β’s), they are purely additive
in form, and they are widely implemented in available software. As such, results can be easily and
efficiently obtained, often with closed-form solutions (e.g., ordinary least squares regression) or other
well-behaved likelihood functions. Unfortunately, the parameters of these models also often do not test
specific hypotheses that are of substantive interest (Cudeck & du Toit, 2002; Preacher & Hancock, 2015;
Ram & Grimm, 2007). To address these issues, prior work has derived alternative nonlinear expressions
(Cudeck & du Toit, 2002; McNeish et al., 2021), or worked to reparameterize known nonlinear expres-
sions into linear forms (Blozis, 2004; Feng et al., 2019; Grimm et al., 2013; Johnson & Hancock, 2019;
Preacher & Hancock, 2012, 2015; Zhang et al., 2012). Unfortunately, these models do not appear as stan-
dard options in major software packages, and many applied researchers remain unaware of their poten-
tial utility. Additionally, nonlinear expressions present additional estimation challenges—especially in
growth modeling contexts with random effects—and for these reasons, largely remain the provenance
of researchers with training in and access to more advanced statistical methods and software options.

Here, I address several extant issues for formulating polynomial models with interpretable and
meaningful parameters, with an eye for expanding the utility and accessibility of these approaches. First,
I review a history of interpretable parameter models and walk through a general approach for deriving
new parameters of interest, highlighting the quadratic form outlined by Cudeck and du Toit (2002).
I then extend these principles and derive two alternative forms of a cubic polynomial with meaningful
parameters and show how this new model is related to the standard linear parameter version. I also
discuss a multiphase version of this model which can serve as an approximation of S-shaped nonlinear
models (e.g., logistic functions). To address the common estimation issues with nonlinear versions of
these alternative models, I lay out an approach of linear estimation with nonlinear inference (LENI),
where the standard linear parameter model is estimated, and then results are transformed post hoc into
the parameters of interest from the nonlinear alternative models. I derive transformation equations for
the point estimates and standard errors of fixed, random, and conditional effects, allowing inferences
to be made on the meaningful parameters as if we had directly estimated the nonlinear equation.
Finally, extending prior work (Feng et al., 2019; Preacher & Hancock, 2015), I derive a linearized
structural equation model for all of the models discussed, focusing on implementation in freely-
available software. Throughout, I discuss these models largely in the context of growth models using
mixed-effects multilevel or latent curve structural equation models (McCormick et al., 2023; McNeish &
Matta, 2018; Meredith & Tisak, 1990), with artificial and real data examples, but the discussion of fixed
effects derivations would apply equally to traditional regression analysis with no additional variance
components. I then end with a discussion of implementation options for applied researchers and open
avenues for future work in this area.

2. Interpretable parameter models

In efforts to address mismatches between theoretical and statistical models, prior work has focused
on deriving new expressions which equivalently trace out the same nonlinear curves as standard
polynomial models, but using parameters that more-closely match theoretical quantities of interest.
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A prime example of these efforts is work by Cudeck and du Toit (2002), who derived a new quadratic
expression with meaningful parameters. The familiar linear parameter version of the quadratic for
repeated measures outcome yti is

yti = β0+β1xti+β2x2
ti, (1)

for person i at time t, where β1 and β2 are the linear and quadratic effect of the covariate xti, respectively,
while the alternative expression takes the following form (Cudeck & du Toit, 2002):

yti = αy−(αy−α0)(
xti

αx
−1)

2
, (2)

Here, αx and αy represent the (x,y) location for the vertex (i.e., peak or trough) of the quadratic
parabola, while α0 is equivalent to β0 in Equation 1—that is, the predicted level of y when x = 0. This
alternative quadratic model is nonlinear with respect to the parameters (e.g., αx is in the denominator)
but otherwise describes the exact same parabolic shape as in Equation 1 (note that we can ignore the
residual term, εti, here when discussing alternative models because if we have done our job correctly, it
will be identical across model versions). The advantage of Equation 2 is that the αx and αy parameters
give a direct estimate of the location of the vertex, which in developmental contexts might relate to the
timing of changes in sensitivity to the external environment (Braams et al., 2015; McCormick et al., 2021;
Nunes et al., 2020; Orben et al., 2022; Shaw et al., 2008; Somerville et al., 2013), or reflect the optimal
arousal levels or dosage needed to maximize the desired response (Chaiken, 1994; Cudeck & du Toit,
2002; Preacher & Hancock, 2015). Cudeck and du Toit (2002) also described a second alternative model

yti = α0−γ[(xti

αx
−1)

2
−1] or yti = αy−γ(xti

αx
−1)

2
, (3)

where γ represents the difference in the level of the outcome y between the intercept and the vertex
(γ = αy−α0) rather than estimating αy (Equation 3, left) or α0 (right) directly. To highlight the fact that
we can retain any combination of meaningful parameters that we wish, we can also lay out another
alternative quadratic form below where we estimate αx and αy but retain β2 as αc (i.e., half of the
acceleration, which controls the degree of curvature for the parabola) rather than α0:

yti = αy+αc (xti−αx)2 . (4)

Detailed derivations for all of these models are available in the Supplementary Material.

2.1. Deriving new quantities
While these parameters represent mathematically meaningful points on a quadratic parabola (e.g.,
location of the vertex), we might also wish to understand something about the curve at a particular value
of x. Examples of this kind of question include things like the number of words acquired by 20 months-
of-age (Huttenlocher et al., 1991), or level of drug and alcohol use upon entry to university (Derefinko
et al., 2016). This is an interesting inversion of time-to-criterion models (Johnson & Hancock, 2019),
where the focus is on estimating how long it takes for some outcome to reach a pre-defined level, or
nonlinear models for measuring potential (e.g., McNeish & Dumas, 2017) where the rate of approach
towards an average or individual-level learning “capacity” is of interest. Here, we might instead be
interested in group- or individual-level status achieved on some outcome by a certain developmental
milestone. We can use this example to highlight how to go about translating new quantities of interest
into statistical parameters that we can estimate from alternative model expressions. For a quadratic of
the form derived by Cudeck and du Toit (2002), we can express the level of the outcome at any pre-
defined value of x = s through the parameter αs with the equation

yti = αs−(αs−α0)(
xti− s

αx
−1)

2
. (5)
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To emphasize, s is predefined when estimating the model based on a theoretically interesting value of
x, and not estimated as a unique parameter. This could be accomplished alternatively as part of a data
management step, where s is subtracted from x before entering the model. In that approach, the original
expression in Equation 2 should be used, as the identity of α0 has been changed through centering
(Aiken & West, 1991) rather than through the model equation.

It might occur to the reader that this new parameter αs in particular is easily achieved by simply
entering the theoretically interesting value of x = s into the linear parameter quadratic equation
(Equation 1) and generating a predicted value of y. However, this approach only returns a point estimate
for αs and not a standard error or random effect variance; therefore, it should preclude us from making
inferences on that predicted value (although applied research frequently does so). For instance, many
developmental applications calculate and interpret the vertex of a quadratic trajectory (Eggleston et al.,
2004; Giedd et al., 2015; Lenroot et al., 2007; LeWinn et al., 2017) or inflection of a cubic (LeWinn
et al., 2017; Mills et al., 2016) as a quantity of interest without also obtaining a standard error. Without
some measure of uncertainty, interpreting these point estimates can lead to erroneous conclusions about
developmental timing, or differences among individuals or groups thereof (Giedd et al., 2015; Karriker-
Jaffe et al., 2008; Pfefferbaum et al., 2018). We will return to the issue of obtaining these measures of
uncertainty (see Linear estimation, nonlinear inference (LENI)).

When considering new interpretable quantities, it is important that we be able to generate specific
mathematical definitions. Assuming that we can do this, we can generate an infinite combination of
meaningful model expressions that directly estimate parameters of interest. In the following section,
I will build on the principles outlined here to derive nonlinear alternatives to the standard cubic model,
with interpretable parameters linked to meaningful developmental phenomena.

3. Deriving alternative cubic models

As a natural extension of the quadratic, the cubic polynomial is another option for modeling nonlinear
change over time. The common expression of the cubic model is as follows for y for person i at time t:

yti = β0+β1xti+β2x2
ti+β3x3

ti, (6)

which is linear with respect to the parameters. However, like the quadratic expression (Cudeck & du Toit,
2002), the parameters of this model are not readily identifiable with a specific developmental feature
that might be of theoretical interest. The lower order terms β1 and β2 are conditional effects specific to
where x = 0, and β3 is not easily expressible in meaningful terms (i.e., the change in the acceleration of
the curve) for most researchers. Here I will draw out two alternative expressions of the linear parameter
cubic model with theoretically-interesting parameters. In its initial form, this model expression is best
suited to cases where both extrema (i.e., local minimum and maximum) occur within the range of x,
although that condition is not necessary for this alternative expression to obtain meaningful results.
For modeling increases which subsequently plateau (e.g., Somerville et al., 2013), the multiphase form
outlined in Multiphase cubic model for S-shaped trajectories would likely be preferable.

3.1. Expressing meaningful model parameters
For defining the alternative form of the cubic formula, we can consider 4 parameters of interest,
two location parameters—xN and yN—which locate the inflection point (N) of the curve, and two
stretch parameters—δ (delta) and h (height)—which determine the horizontal and vertical distances
respectively between the inflection point and the extrema of the cubic function. These parameters have
well-defined geometric properties and can be used to solve polynomials in terms of their roots (Nickalls,
1993). To obtain xN , we take the second derivative of the linear parameter model

d2f
dx2 = 2β2+6β3x, (7)

https://doi.org/10.1017/psy.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.2


Psychometrika 51

which can be set to zero and rearranged such that

xN =
−β2

3β3
, (8)

which nicely resembles the form of αx from the quadratic expression (Cudeck & du Toit, 2002). For full
details on these parameter derivations, see the Supplementary Material.

The value obtained at the inflection point (yN) is expressed by evaluating Equation 6 at Equation 8
and simplifying

yN = β0+β1xN +β2x2
N +β3x3

N

= β0+β1(
−β2

3β3
)+β2(

−β2

3β3
)

2

+β3(
−β2

3β3
)

3

= β0−
β1β2

3β3
+ 2β3

2
27β2

3

, (9)

Now that we have identified the location parameters of the inflection point for the cubic function, we
need to define the stretch parameters. The most convenient way to do so is to lay out expressions which
identify the extrema—or local maximum and minimum—and defining our parameters as the distances
between the inflection point and extrema. A cubic has two extrema locations (xextrema), but since the
function is symmetric, we only need to derive a single expression for δ or h that will define the positive
and negative distance. A convenient way to obtain δ is to set the first derivative of the cubic equal to 0

df
dx
= β1+2β2x+3β3x2 = 0, (10)

and solve using the quadratic formula where a = 3β3, b = 2β2, and c = β1

xextrema =
−(2β2)±

√
(2β2)2−4(3β3)(β1)
2(3β3)

, (11)

which, through substitution and simplification (see here), results in

xextrema = xN ±
√

β2
2−3β3β1

3β3
, (12)

which means that

xextrema = xN ±δ, (13)

and that

δ =
√

β2
2−3β3β1

3β3
, (14)

We can enforce positive distance values by defining δ =
√

δ2 where

δ2 = β2
2−3β3β1

9β2
3

. (15)

Finally, by defining h as the difference between y obtained at the extrema (yxN±δ) and the inflection
point (yN)

h = yxN+δ −yN

= [β0+β1(xN +δ)+β2(xN +δ)2+β3(xN +δ)3]−
[β0+β1xN +β2x2

N +β3x3
N]

. (16)
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Figure 1. The interpretable parameters are superimposed on an idealized cubic function. Location parameters (xN and yN) are indicated

with dashed lines, stretch parameters (δ and h) are indicated by single-headed arrows over the relevant distance, and the slope of the

tangent at the inflection point (βN) is indicated by a single-headed arrow tracing the tangent line at that point.

Simplifying this expression (see Supplementary Material for full details) results in

h = −2β3δ3. (17)

One final meaningful parameter we might define is the slope of the cubic function at the inflection point,
βN . Here solve the first derivative of Equation 6 at the inflection point and substitute

df
dx
= β1+2β2xN +3β3x2

N

= (3β3x2
N −3β3δ2)+2(−3β3xN)xN +3β3x2

N

βN = −3β3δ2

. (18)

A schematic of these parameters is displayed in Figure 1. Note that the sign of h (or alternatively βN)
determines whether the cubic has an overall increasing (h < 0) or decreasing (h > 0) function (the
direction of change locally between the extrema is opposite of change globally).

As we saw with the quadratic, we have a great deal of flexibility in terms of which nonlinear
parameters we wish to use, so long as we can derive these transformation functions. Importantly,
however, between any two given sets of parameters, the transformation functions are unique and
deterministic because we must maintain the same functional form for the equations defined by the
two parameter sets to be equivalent.

3.2. Defining the nonlinear model
Now we can substitute the expressions for the meaningful parameters (xN , yN , δ, h) into the linear
parameter model (Equation 6) to derive the nonlinear expression for an interpretable cubic.

y = β0+β1x+β2x2+β3x3

= [yN +3β3xNδ2−β3x3
N]+[3β3x2

N −3β3δ2]x+[−3β3xN]x2+β3x3

= yN +β3 [(x−xN)3−3δ2 (x−xN)]

= yN +(
−h
2δ3 )[(x−xN)3−3δ2 (x−xN)]

, (19)
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Figure 2. Cubic age-related changes in Nnegative aAffect across the adult lifespan. The fitted cubic relationship is plotted over the raw

data points.

which results in

y = yN −(
h
2
)[(x−xN

δ
)

3
−3(x−xN

δ
)] . (20)

Alternatively, substituting Equation 18 instead of Equation 17 results in

y = yN −(
βNδ

3
)[(x−xN

δ
)

3
−3(x−xN

δ
)] . (21)

For complete details on how we arrive at these expressions, see the Supplementary Material. Note
that these expressions are equivalent to the linear parameter model (Equation 6), and should fit the
same functional form. We can use a real data example to see how this model fits in empirical settings.

3.2.1. Data example 1: Negative affect and aging
To briefly highlight how Equation 20 produces meaningful inferences, we can turn to an empirical
example. Here I extracted aggregated scatter plot data from Teachman (2006) (see Figure 2) and fit
a cubic model using Equation 6 and Equation 20 to model age-related differences in negative affect in
adults, ages 17–93.

Results of the two models are presented in Table 1. While both models have the same fit to the
data (see log-likelihood and BIC values; the standard R2 is only available in the linear parameter
model), it is immediately apparent that the parameter values in the nonlinear parameter model have
intuitive meaning—the inflection point in negative affect is around 57 years-of-age and decreases by
approximately 0.4 units across the 21 years between either extrema (xN ± δ) and the inflection point.
By contrast, the values of the linear parameter model are virtually meaningless from a substantive
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Table 1. Fitting linear and nonlinear parameter cubic models

Linear parameter model Nonlinear parameter model

β0 −2.288** (0.802) xN 57.428*** (2.162)

β1 0.174** (0.052) yN −0.050 (0.051)

β2 −0.004*** (0.001) δ 21.508*** (1.711)

β3 2.0410-5** (6.1010-6) h −0.406*** (0.068)

Num.Obs. 69 69

R2 0.355

� −33.286 −33.286

Num.Params. 5 5

BIC 87.7 87.7

Note: * p< 0.05, ** p< 0.01, *** p< 0.001; � is the log-likelihood, k is the number of model
parameters.

standpoint without plotting. To emphasize, neither model is wrong — indeed they are identical in
the model-implied curve—however, the nonlinear parameter model is more useful if our goal is to
interpret meaningful points in the age-related change with precision (rather than the frequent practice
of “eyeballing” a plot) and crucially, the appropriate level of uncertainty (via the standard errors).

3.3. Multiphase cubic model for S-shaped trajectories
While the cubic model in its full form offers an ability to derive meaningful conclusions about
developmental patterns, cubic polynomials can also be used to capture plateaus (e.g., Somerville et al.,
2013) because of the saddle-point of the cubic. However, there is often less made inferentially about
subsequent acceleration after that plateau, although any full cubic will continue off into infinity in
principle. If we want better approximate developmental plateauing, or other S-shaped functional forms
(e.g., logistic, Gompertz), then a multiphase (or piecewise) version of the cubic may offer an attractive
alternative. McNeish et al. (2021) showed that two reparameterized quadratics (Cudeck & du Toit, 2002)
can be linked together at the inflection point of a hypothetical S-shaped functional form in a multiphase
polynomial model (Cudeck & Klebe, 2002; Flora, 2008). Additional pieces are specified such that once
these linked quadratics reach their model-implied vertices (αx), they stay fixed at the y value obtained
at the vertex (αy, see McNeish et al., 2021, for full details).

We can use a similar approach here, taking advantage of the interpretable parameters I derived in
Equation 20. If we take the case of a 4-parameter logistic function as an exemplar of an S-shaped curve,
this function is defined for outcome y for person i at time t by

yti = Alower +
Aupper −Alower

1+( xti
xN
)
−Hill , (22)

where Aupper and Alower are the upper and lower asymptote, xN is the x-location of the inflection point,
and Hill is related to the steepness of change at the inflection point. These parameters conceptually
map on to several of the interpretable cubic parameters (Equation 20 or Equation 21) nicely, with xN
capturing the inflection point, βN capturing the rate of change at that point, and the upper and lower
asymptotes approximated by yN±h. I use “approximate” advisedly because the multiphase cubic actually
obtains the value of yN ±h, while Equation 22 only ever infinitely approaches Aupper and Alower . We can
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Figure 3. Multiphase cubic model. A) Using a multiphase cubic function (Equation 23 or Equation 24), we can approximate an

S-shaped function with three components. The component between onset and offset is defined by the cubic function, while outside

this range is defined by yN ±h. B) Alternative models were fit to pubertal developmental data, including a 4-parameter logistic (red),

the multiphase cubic (green) and standard linear parameter cubic model (blue). The logistic and multiphase models do not enforce

continued acceleration at the edges of the curve—an advantage over the standard cubic. While the logistic model continues increasing

asymptotically, the multiphase cubic models stability outside of the cubic extrema.

define the multiphase cubic function for the same yti as

yti =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yN −h, if xti ≤ xN −δ
yN −( h

2)[(
xti−xN

δ )
3−3( xti−xN

δ )], if (xN −δ) < xti < (xN +δ)
yN +h, if xti ≥ xN +δ

, (23)

or alternatively

yti =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yN − 2
3 βNδ, if xti ≤ xN −δ

yN −( βN δ
3 )[(

xti−xN
δ )

3−3( xti−xN
δ )], if (xN −δ) < xi < (xN +δ)

yN + 2
3 βNδ, if xti ≥ xN +δ

. (24)

A schematic of the multiphase model with the relevant features highlighted can be seen in Figure 3.

3.3.1. Data example 2: Pubertal development
To illustrate this model, I drew pubertal data from an accelerated longitudinal study of adolescent
development (BrainTime; Braams et al., 2015; McCormick et al., 2021). Adolescents were assessed up to
three times at two-year intervals and self-reported on their level pubertal development (Petersen et al.,
1988). Prior work (Braams et al., 2015) determined that a standard cubic model was the best fit to these
data compared with linear and quadratic polynomial alternatives. Here, I fit three random-intercept
growth models to these data: 1) a 4-parameter logistic curve (4-PL; Equation 22), 2) the multiphase
cubic model (Equation 23), and 3) a standard linear parameter version of the cubic (Equation 6).
I modeled Alower , yN , and β0, respectively, as random terms to equate the complexity of the random
effects structure for all three models (code and full results for all three models are available in the
Supplementary Material).

The primary fixed effects of interest in each model are presented in Table 2. As reflected in
Figure 3, the three models achieve reasonably similar results in terms of fitting a curve to the data.
However, note that the BIC indicates that the 4-PL and multiphase-cubic models both fit better than
the standard cubic function, due in large part to their different edge behavior (they asymptote or
offset rather than continuing to accelerate). However, from a model interpretation stand-point, the
4-PL and multiphase cubic have clearly interpretable parameters that match substantively interesting
features of the developmental trajectory. The estimates between these two models largely draw the
same conclusions about both the levels of y at the asymptotes and where the inflection point is located.
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Table 2. Alternative S-shaped trajectories

4-Parameter logistic Multiphase cubic Standard cubic

Alower 1.460*** (0.107) xN 12.780*** (0.142) β0 18.865*** (3.305)

Aupper 3.524*** (0.069) yN 2.348*** (0.054) β1 −4.757*** (0.767)

xN 13.210*** (0.150) δ 3.198*** (0.298) β2 0.406*** (0.058)

Hill 14.196*** (2.172) h 1.047*** (0.054) β3 −0.011*** (0.001)

Marg. � −180.43 −167.51 −186.86

k 6 6 6

BIC 394.54 368.70 407.40

Note: * p< 0.05, ** p< 0.01, *** p< 0.001; � is the marginal (Marg.) log-likelihood, k is the number of model
parameters.

I additionally fit Equation 24 to compute βN (0.491, SE = 0.034, p < 0.001), which is expressed directly
as the slope of the tangent at the inflection point unlike the Hill parameter, which controls the overall
shape of the curve in the 4-PL model but is not in easily-interpretable units.

There are some additional theoretical advantages to the multiphase cubic compared with the 4-PL
model. Unlike the asymptotic nature of the logistic, the multiphase cubic here and quadratic outlined
by McNeish et al. (2021) obtain the minimum and maximum model-implied values. For outcomes
measured on some natural scale—as opposed to the probability scale where asymptotic behavior
is desirable — these multiphase models likely represent more realistic developmental conditions,
especially when the scale has a natural or measurement boundary (i.e., floor or ceiling; Feng et al.,
2019). For instance, pubertal development is not an infinitely-occurring process—that is pre- and post-
puberty are meaningful terms. Other processes such as cortical thinning (Fuhrmann et al., 2022; Mills
et al., 2016; Tamnes et al., 2017) also reach some (at least local) minimum before other processes take
over into the adult phase of development. Here the multiphase cubic could even be extended, with
additional growth components modeled in the offset period, or to model processes of punctuated
equilibrium, where change occurs in bursts followed by periods of stability, by linking several multiphase
cubic functions. This approach is familiar in generalized additive (mixed) models where cubic splines
have featured prominently (e.g., Wood, 2000). However, unlike GAMs, which focus on description
and prediction, the multiphase cubic model maintains a primary focus on an explanatory model
with interpretable parameters. Nevertheless, GAMs can be potentially valuable tools for conducting
sensitivity analyses on interpretable parameter models to ensure that data-driven curves descriptively
resemble the a priori functional forms fit to the data. Substantial departure from these imposed forms
can reveal whether theory-driven models are indeed suitable to model the data at hand. For the various
empirical examples, this GAM-based sensitivity approach was used to confirm the suitability of the
functional forms used in the analysis (see the Supplementary Code for these results).

4. Linear estimation, nonlinear inference (LENI)

Thus far, I have outlined a history of efforts to improve the interpretability of models by deriving alter-
native forms with theoretically meaningful parameters, including applications of the reparameterized
quadratic (Cudeck & du Toit, 2002; Grimm et al., 2013; McNeish et al., 2021; Preacher & Hancock, 2015)
and how to build on these principles to derive new quantities of interest. I then extended these ideas
to the cubic model, deriving a set of new expressions with 5 interpretable parameters (Equation 20 and
Equation 21), and a multiphase version of the cubic to model S-shaped curves. However, despite clear
theoretical advantages and substantive interest in things like developmental “peaks” in the literature,
these alternative models have remained largely restricted to advanced applications. In the remainder of
this paper, I will lay out current challenges for the adoption of meaningful parameter models, and then

https://doi.org/10.1017/psy.2024.2 Published online by Cambridge University Press

https://doi.org/10.17605/OSF.IO/5DMY3
https://doi.org/10.1017/psy.2024.2


Psychometrika 57

offer a set of analytic approaches to address key limitations. The techniques discussed—which involve
linear estimation with nonlinear parameter interpretation (LENI) — apply to both standard regression
analysis, as well as and major classes of longitudinal modeling, including mixed-effect (multilevel) and
structural equation growth models (McCormick et al., 2023; McNeish & Matta, 2018).

4.1. Limitations of nonlinear models
While there are strong theoretical arguments for the use of interpretable parameter models, a number
of technical challenges have historically been barriers to their widespread adoption. Many of these
challenges stem from the relative difficulty of estimation in nonlinear parameter models compared to
their linear parameter alternatives. First, linear parameter models are defined across all possible values
of the parameters, whereas many nonlinear equations are undefined at specific values. For instance, the
alternative quadratic (Cudeck & du Toit, 2002), (Equation 2) is undefined at αx = 0, and the alternative
cubic (Equation 20) is undefined at δ = 0. As parameter estimates approach these values, the model-
implied values of the outcome become more unstable. By contrast, in the linear parameter models
(Equation 1; Equation 6), any parameter βp = 0 merely indicates an absence of that component of the
polynomial function. This issue is not universal for alternative expressions, as the additional alternative
quadratic derived in Equation 4 is defined at all parameter values, but it is a common problem with
nonlinear equations.

An additional disadvantage of nonlinear alternative models is a lack of clearly hierarchical structure
to the parameters of the model, both for the fixed effects and for the ordering of random effects (McNeish
et al., 2021). For instance, as mentioned above, when a linear parameter βp = 0, this is informative
about the complexity of a curve. If β3 = 0, then the cubic function devolves back to a quadratic one,
and so forth. By contrast, the nonlinear alternative (Equation 20) cannot be reduced to a quadratic
by setting any single parameter to 0, nor can we do nested model comparisons (i.e., likelihood ratio
tests) to determine the optimal polynomial complexity of the curve. The lack of hierarchical structure
additionally complicates model specification when the random effects structure needs to be constrained
to achieve convergence (McNeish & Bauer, 2022). In the linear parameter model, we would typically
constrain random effects from the highest-order (τβ3 ) to the lowest (τβ1 ). However, in the interpretable
parameter model, the ordering of which random effects to constrain is less clear. The parameter
transformation equations might give us some sense of a reasonable ordering—for instance, yN is the
only interpretable parameter that is a function of the intercept (β0), and xN is the only parameter that
is not a function of β1. This might suggest that xN be constrained first, and yN always be modeled in a
random effects model, but this ordering is much less clear than in the linear parameter case.

Finally, two related challenges stem from the relative difficulty of estimating nonlinear parameter
models compared to linear parameter alternatives. Even in the relatively simple regression case,
nonlinear models lack a closed-form solution and require iterative fitting procedures (Fox & Weisberg,
2011). These estimation challenges only increase when fitting mixed-effects or structural equation
growth models, where likelihoods in nonlinear models can be more poorly-behaved (S. A. Blozis, 2007)
and more likely to result in local solutions, in addition to the challenges of improper solutions (e.g.,
δ → 0). Due in part to these challenges, nonlinear parameter models are often not easily accessible
for applied researchers within widely-available software packages, requiring custom syntax and diffi-
culty implementing these non-standard model equations. Paired with less wide-spread knowledge of
alternative interpretable models, this creates a negative feedback loop, where software providers are not
incentivized to develop resources for models that users are unlikely to fit.

The linear estimation with nonlinear inference (LENI) approach laid out in the following sections
addresses each of these challenges, drawing on the strengths of estimation and simplicity in the linear
parameter model but without sacrificing the interpretability of the nonlinear alternative models.

4.2. LENI for fixed effects
The idea of deriving some meaningful quantity from an estimated linear parameter model is not
without precedence. Substantive applications have occasionally used the formulations for αx and δ to
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identify the peaks (e.g., Braams et al., 2015; LeWinn et al., 2017), especially when comparing trajectories
across groups (often between males and females; e.g., Giedd et al., 2015). However, these formulations
only return a point estimate without an associated standard error. Nor does it allow for conditional
effects of covariates of interest predicting the interpretable parameters. In the following sections, I lay
out a general approach for deriving the meaningful parameters of the nonlinear alternative models
discussed throughout, entirely from the results of a linear parameter model for the same functional
form (quadratic or cubic). Note that for the fixed effects, these transformations apply equally to standard
regression, mixed-effects (or multilevel) models, and structural equation models. For SEM growth
models specifically, we can return to other, more direct, LENI approaches at the end of this treatment.

For considering fixed effects, we will estimate the following linear parameter models. Here we will
consider a standard regression model with no random effects, but these approaches generalize to models
with random effects structures without alteration (as shown in later sections). Thus, for person i,

yi = β0+β1xi+β2x2
i + εi

yi = β0+β1xi+β2x2
i +β3x3

i + εi where, εi ∼N(0,σ2)
. (25)

4.2.1. Point estimates
To obtain point estimates for the interpretable parameters, we need only to apply the relationships
derived previously by Cudeck and du Toit (2002) and here in Deriving alternative cubic models. Namely,
for the alternative quadratic model, the expressions for the interpretable parameters are as follows:

α0 = β0 αx =
−β1

2β2
αy = β0−

β2
1

4β2
γ = − β2

1

4β2
αc = β2, (26)

and for the alternative cubic model, the expressions are

xN =
−β2

3β3
yN = β0−

β1β2

3β3
+ 2β3

2
27β2

3
δ =
√

β2
2−3β3β1

3β3
,

h = −2β3δ3 βN = −3β3δ2

. (27)

Nothing more need be done to obtain these point estimates beyond some algebra. One note of
caution, however, is that we can in theory compute more interpretable parameter point estimates
than we estimate in the linear parameter model. On one hand, the interpretable parameters are not
independent (there is an especially tight relationship between γ and αy, and between h and βN for
instance), so we would just be repackaging the same information and thus only support the same
conclusions. However, on the other hand, I would recommend that best practice would be to focus
interpretation only on a set of parameters that would be estimated in a single nonlinear model (e.g., h
or βN , not both) to avoid over-extracting the results. Selecting which set of interpretable parameters to
extract should be guided by the conclusions that researchers wish to draw, much like model selection
proceeds generally.

4.2.2. Standard errors
For these point estimates to be useful inferentially, we need a LENI approach to deriving the standard
errors for the interpretable parameters. For an unknown quantity equal to a function of two quantities
(θ1 and θ2) with known values and uncertainty (i.e., fixed effects and standard errors), the unknown
uncertainty, Var(f (θ1,θ2)), can be approximated by the quadratic expression of partial derivatives:1

1Note that here I will use VAR(θ) and COV(θ) notation to denote the asymptotic variance–covariance terms. In contrast,
I will use τθ or ψθ notation for the random effect variance–covariance terms in future sections.
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Var(f (θ1,θ2)) ≈(
∂f (θ1,θ2)

∂θ1
)

2

Var(θ1)+2(∂f (θ1,θ2)
∂θ1

)(∂f (θ1,θ2)
∂θ2

)Cov(θ1,θ2)+

(∂f (θ1,θ2)
∂θ2

)
2

Var(θ2)
. (28)

Thus, for xN , we can take Equation 8 and express the expected variance of the parameter as

Var(xN) ≈ (
−1
3β3
)

2

Var(β2)+2( −1
3β3
)( β2

3β2
3
)Cov(β2,β3)+(

β2

3β2
3
)

2

Var(β3). (29)

Taking the square root of Var(xN) yields the standard error, which can be used to compute a p-value or
confidence interval as desired.

However, many of the nonlinear parameters are significantly more complex functions of the linear
parameters. As such, this scalar equation approach quickly becomes tedious and error-prone. Alterna-
tively, we can take a matrix approach and pre- and post-multiply the asymptotic covariance matrix of
the linear parameter model- – ACOV(β)—by the Jacobian of partial derivatives with respect to each
linear parameter for a given nonlinear parameter transformation expression (e.g., JxN ).2

Var(xN) ≈ J′xN ACOV(β) JxN . (30)

If we expand the Jacobian with additional columns of partial derivatives corresponding to each
nonlinear transformation, we can obtain the entire asymptotic covariance matrix of Equation 20 rather
than only the variance of each parameter individually.

ACOV(f (xN,yN,δ,h)) ≈ J′f (xN,yN,δ,h) ACOV(β) Jf (xN,yN,δ,h). (31)

The square root of the diagonal of the resulting matrix is the vector of standard errors for the
interpretable nonlinear parameters.

While this analytic approach works very well at approximating the ACOV matrix that would
have resulted from directly fitting the nonlinear model (the error of approximation is very small; see
Supplementary Code for complete details), we could alternatively use a bootstrapping approach to build
an empirical standard error and confidence interval. This empirical alternative uses straightforward
applications of the bootstrap, and thus, I will arrogate the details of such a procedure to the Supplemen-
tary Code for interested readers. We will see that the bootstrapping approach is more useful for other
components of the LENI approach in future sections.

4.2.3. Simulation example 1: Fixed effects
Before moving on to the random effects derivations, I first demonstrate the performance of these
derivations in a simulated example of both the quadratic and cubic models. Here data were simulated
from the nonlinear equations Equation 2 and Equation 20. The parameters of the quadratic are α0 = 1,
αx = 2, and αy = 8, resulting in a concave quadratic function with a vertex at x,y = (2,8). The parameters
of the cubic are xN = 0, yN = 10, δ = 3, and h =−2, resulting in a cubic function where the local maximum
occurs before the inflection point, the local minimum occurs after, and the vertex is at (x,y) = (0,10).
For both models, I simulated data for 250 individuals 1,000 times. I then fit the linear parameter model
(linear estimates), generated LENI estimates through the transformations outlined in the prior sections,
and then fit the nonlinear parameter model directly (nonlinear estimates) with the true parameter values
as starting values to avoid estimation issues. The mean parameter values across all iterations for each
approach can be compared in Table 3. Notably, the LENI and nonlinear point estimates and standard
errors are nearly identical, with correspondence out to the 8th or 9th decimal place (see Supplementary
Material for full precision details).

2Note that the partial derivatives with respect to parameters that do not appear in the transformation expression (e.g., β0
and β1 for xN ) are simply 0.
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Table 3. LENI approach to fixed effects estimation

Pop. θ Linear estimates LENI estimates Nonlinear estimates

Quadratic model

α0 1 β0 1.020 (0.468) α0 1.020 (0.468) α0 1.020 (0.468)

αx 2 β1 6.987 (0.476) αx 1.997 (0.049) αx 1.997 (0.049)

αy 8 β2 −1.749 (0.111) αy 8.002 (0.446) αy 8.002 (0.446)

R2 0.5 0.503

Marg. � −738.80 −738.80

k 4 4

BIC 1499.68 1499.68

Cubic model

xN 0 β0 10.00 (0.139) xN −0.003 (0.115) xN −0.003 (0.115)

yN 10 β1 −1.004 (0.080) yN 10.00 (0.094) yN 10.00 (0.094)

δ 3 β2 2.6410-4 (0.013) δ 3.008 (0.105) δ 3.008 (0.105)

h −2 β3 0.037 (0.005) h −2.013 (0.130) h −2.013 (0.130)

R2 0.5 0.506

Marg. � −447.04 −447.04

k 5 5

BIC 921.69 921.69

Note: Parameter estimates and standard errors (in parentheses) are the mean values across 1000 iterations of
data generation and model fitting. Pop θ indicates the generating value for each parameter. Linear Estimates
indicate the fitted values from the linear parameter model. LENI Estimates indicate the transformed estimates
of the nonlinear parameter model based on the Linear Estimates. Nonlinear Estimates indicate the fitted values
from directly estimating the nonlinear parameter model. R2 is the proportion of variance explained (only
available in the linear parameter model), Marg. � is the marginal log-likelihood, k is the number of model
parameters, and BIC is the Bayesian Information Criterion.

4.3. LENI for random effects
While the fixed effects are often the focus for empirical studies, we can also develop a set of trans-
formations for the random effects. Random effects allow for individual variability in parameters of
interest, and form the basis for more complex models, including conditional models (Biesanz et al.,
2004; Curran et al., 2004; Raudenbush & Bryk, 2002) and models with distal outcomes (McCormick
et al., 2024). Here the target is to transform the covariance matrix for the random effects obtained in the
linear parameter version of the model into the covariance matrix; we would have obtained from fitting
the nonlinear parameter model directly. I will also show how to obtain standard errors associated with
these (co)variance estimates.

To assess the generality of the LENI approach, I consider a maximal random effects model for both
the quadratic and cubic model— that is all random effect variances (e.g., τax , τδ) and covariances (e.g.,
τα0,αy , τyN,h). Substantive applications might restrict the full covariance matrix (T in MLM, or Ψ in
SEM growth models), usually for reasons of under-identification, either theoretically due to too few
individual repeated measures or empirically due to a non-positive definite full matrix. Here the LENI
approach takes advantage of the clear hierarchical structure of the linear parameter model, and we can
restrict the random effects variances in sequence from highest-order (τβ3 ) to lowest (τβ1 ) as indicated.

4.3.1. Variance estimates
In a beautiful bit of symmetry, we can apply the same approach for obtaining the standard errors
that outlined above to obtain the variance–covariance matrix of the random effects for the nonlin-
ear parameter model (Tf (xN,yN,δ,h)). That is, we can use the Jacobian of partial derivatives of each
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transformation function with respect to the linear parameters. However, instead of the ACOV(β)
matrix as in Equation 31, here we will use Tβ—the variance–covariance matrix for the linear parameter
model—instead.

Tf (xN,yN,δ,h) ≈ J′f (xN,yN,δ,h) Tβ Jf (xN,yN,δ,h). (32)

Unlike the standard error approach, the resulting Tf (xN,yN,δ,h) matrix can be used directly, and the
off-diagonal covariances (e.g., τxN,yN ) or standardized correlations are often of direct theoretical interest.

4.3.2. Variance standard errors
While conceptually similar to deriving the standard errors of the fixed effects, deriving analytic
expressions for the standard errors of the variance components in Tf (xN,yN,δ,h) require us to consider
additional transformations. Namely that the point estimates expressions of the variance components
that we must compute the Jacobian partial derivatives on are now the quadratic expressions given by
Equation 32.

While the full set of transformations is outlined in the Supplementary Material, prior work has shown
that analytic expressions are unlikely to provide optimal estimates for these standard errors in practice
because of the asymmetric nature of variance estimates, a point proven by the simulation results. As is
the case with variance–covariance parameters in standard linear parameter models (Bolker, 2016), it
is preferable to generate bootstrap confidence interval estimates instead and apply the point estimate
transformations from Equation 32 to obtain confidence intervals on the nonlinear parameter model
estimates.

4.3.3. Simulation example 2: Random effects
To test the LENI approach to random effects, I simulated data for 1000 replicated samples from the
nonlinear equations with saturated random effects structures (quadratic: N = 500, t = 4; cubic: N = 750,
t = 6). Like before, I present results from the linear parameter model (linear estimates), transformed
results (LENI estimates), and from a nonlinear parameter model directly (nonlinear estimates). In
contrast to the tight correspondence between LENI and nonlinear point estimates (Table 3), the
estimates for the variance (τ) and correlation (ρ) parameters differ to a greater extent from one another,
and from the population-generating parameters. While the results for the quadratic model appear
reasonable, the estimates for the cubic model are much less accurate for either LENI or nonlinear
approaches, with wide standard errors, reflecting the general difficulty of fitting such high-dimensional
random effects models (Table 4). Follow-up investigation of the results suggests that this is due to
poor recovery of the linear parameter covariance matrix elements, where the standardized bias in
the quadratic (Mabs.val. = 0.535, rangeabs.val. = 0.166−1.164) and cubic (Mabs.val. = 0.681, rangeabs.val. =
0.049− 1.839) models were high. The substantially better fit of the nonlinear model, as indicated by
the lower average BIC, is likely driven by two factors: 1) the population-generating model is from the
nonlinear equation while the LENI estimates are approximations, and 2) population values were input
into the nonlinear model as starting values because of convergence issues, meaning that these are best-
case estimates of the nonlinear model. Despite these discrepancies in the random effects results, the
LENI estimates for the fixed effects in these models still perform well (see Supplementary Material for
full details). This suggests that if the fixed effects are of key theoretic interest, the LENI results can still
perform well, while if the covariances/correlations are key to testing the substantive theory, alternative
methods should be utilized. One would be to directly fit the nonlinear model (although recovery is likely
to still be poor in the cubic model), or alternatively to utilize the structural equation model approach
outlined in a later section.

4.4. LENI for including predictors of interest
4.4.1. Conditional effects
The point estimates, variance–covariance terms, and associated standard errors of the interpretable
parameters offer important information about the developmental process under consideration;
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Table 4. LENI approach to random effects estimation

Pop. θ Linear estimates LENI estimates Nonlinear estimates

Quadratic model

τα0
1 τβ0

1.044 (0.307) τα0
1.044 (0.307) τα0

0.934 (0.331)

ταx 0.1 τβ1
1.557 (0.577) ταx 0.157 (0.057) ταx 0.092 (0.023)

ταy 0.25 τβ2
0.232 (0.077) ταy 0.378 (0.175) ταy 0.246 (0.121)

ρα0,αx 0 ρβ0,β1
−0.730 (0.124) ρα0,αx 0.003 (0.198) ρα0,αx −0.092 (0.264)

ρα0,αy 0.3 ρβ0,β2
0.497 (0.163) ρα0,αy 0.252 (0.252) ρα0,αy 0.320 (0.241)

ραx,αy −0.2 ρβ1,β2
−0.914 (0.044) ραx,αy −0.356 (0.248) ραx,αy −0.355 (0.313)

R2 0.5 0.506

Marg. � −4469.58 −4440.13

k 10 10

BIC 9015.03 8942.41

Cubic model

τxN 0.2 τβ0
3.696 (1.342) τxN 0.253 (0.057) τxN 0.195 (0.053)

τyN 0.25 τβ1
0.455 (0.166) τyN 1.047 (0.553) τyN 0.702 (0.310)

τδ 0.2 τβ2
0.016 (0.003) τδ 0.269 (0.045) τδ 0.202 (0.027)

τh 0.5 τβ3
0.001 (2.4110-4) τh 2.265 (0.884) τh 1.259 (0.569)

ρxN,yN 0.4 ρβ0,β1
0.076 (0.244) ρxN,yN 0.231 (0.273) ρxN,yN 0.099 (0.327)

ρxN,δ 0 ρβ0,β2
−0.855 (0.079) ρxN,δ −0.004 (0.126) ρxN,δ −0.006 (0.118)

ρxN,h −0.2 ρβ0,β3
−0.049 (0.180) ρxN,h −0.049 (0.218) ρxN,h −0.119 (0.331)

ρyN,δ −0.1 ρβ1,β2
−0.041 (0.200) ρyN,δ −0.042 (0.207) ρyN,δ 0.046 (0.273)

ρyN,h 0.35 ρβ1,β3
−0.819 (0.064) ρyN,h 0.044 (0.318) ρyN,h 0.223 (0.278)

ρδ,h 0.15 ρβ2,β3
0.020 (0.144) ρδ,h 0.243 (0.190) ρδ,h 0.128 (0.254)

R2 0.5 0.514

Marg. � −16 199.67 −16 131.59

k 15 15

BIC 32 498.64 32 362.48

Note: Parameter estimates and standard errors (in parentheses) are the mean values across 1,000 iterations of data
generation and model fitting. Pop θ indicates the generating value for each parameter. Linear estimates indicate the fitted
values from the linear parameter model. LENI estimates indicate the transformed estimates of the nonlinear parameter
model based on the linear estimates. Nonlinear estimates indicate the fitted values from directly estimating the nonlinear
parameter model. τ parameters represent variances, ρ parameters represent correlations, R2 is the proportion of variance
explained (only available in the linear parameter model), Marg. � is the marginal log-likelihood, k is the number of model
parameters, and BIC is the Bayesian information criterion.

however, by themselves, they are largely descriptive of the pattern of change over time. Many important
developmental questions involve testing predictors of growth parameters (Bauer & Curran, 2005;
Curran et al., 2004), and we can derive a LENI approach to this as we did with the fixed effects of
the unconditional growth model.

Here we need to distinguish between time-varying and time-invariant covariates (Curran & Bauer,
2011; McNeish & Matta, 2019). The relevant difference here is that time-varying covariates predict
the repeated measures outcome directly, while time-invariant covariates predict the repeated measures
indirectly through the growth parameters. The central insight here is that this indirect prediction results
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in interaction terms in the growth equation. As such, we can use basic principles of interactions in
regression analysis (Aiken & West, 1991) to derive point estimates and standard errors for conditional
effects. Consider a binary time-invariant covariate wi which is included in the cubic equation, predicting
all growth parameters. For person i at time t, the resulting growth model would have the form

yti = β0+β1xti+β2x2
ti+β3x3

ti+
β4wi+β5wixti+β6wix2

ti+β7wix3
ti
. (33)

We can therefore use what we know about the expected value of this equation at different levels of wi
to define the conditional effect on the nonlinear parameter. For instance, for wi = 0, the expected value
of xN is

xN∣(w=0) =
−β2

3β3
, (34)

while for wi = 1 then the expected value is

xN∣(w=1) =
−(β2+β6)
3(β3+β7)

, (35)

because β6 is the expected change in β2 when wi is shifted one unit, and β7 is the expected change in β3
across the same change in wi.

Taking the difference of Equation 35 and Equation 34 gives the change in xN per unit change in wi
(denoted here as πxN,w).

πxN,w =
ΔxN

Δw = 1
= −(β2+β6)

3(β3+β7)
− −β2

3β3
. (36)

The conditional effects of each of the interpretable nonlinear parameters can be derived in this
fashion, and the standard errors can be obtained using the same Jacobian or bootstrapping approaches
outlined in Standard errors.

4.4.2. Simulation example 3: Conditional effects
I simulated a conditional version of each nonlinear equation, where wi was used to predict each growth
term. The covariate was simulated wi as both a binary (wi ∼ Bernoulli(0.4)) and a continuous (wi ∼
N(0,0.252)) covariate in separate simulations for generality, but the LENI computations of the relevant
conditional effects apply across predictor types. Below, the results of the binary simulations are reported,
but the continuous results can be seen in the Supplementary Material. Like in the unconditional model,
the LENI approach does an excellent job of approximating the nonlinear results in the fixed effects for
both the quadratic and cubic models (Table 5).

4.5. LENI real data example
As an empirical demonstration of the LENI approach, I drew network modularity data from the
BrainTime sample (McCormick et al., 2021) and used self-reported sex (female = 0; male = 1) as a
predictor of the curve components. I then fit the following conditional random-intercept model:

modularityti = γ00+γ10 ageti+γ20 age2
ti+γ01 malei

+γ11 malei ageti+γ21 malei age2
ti+u0i+ rti

, (37)

with both main effects and interactions with the predictor. I also considered models hierarchically —
a benefit of the linear estimation component of LENI—with linear and quadratic random effects, but
these models were singular. Using the defined transformations, I then examined the implied nonlinear
results and interpreted sex-specific trajectories of brain network organization.
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Table 5. LENI approach to conditional effects estimation

Pop. θ Linear estimates LENI estimates Nonlinear estimates

Quadratic model

α0 5 β0 5.008 (0.133) α0 5.008 (0.133) α0 4.988 (0.146)

αx 2 β1 −4.014 (0.189) αx 2.002 (0.043) αx 2.000 (0.042)

αy 1 β2 1.004 (0.059) αy 0.991 (0.105) αy 0.993 (0.100)

πα0,w −0.5 β3 −0.506 (0.211) πα0,w −0.506 (0.211) πα0,w −0.505 (0.232)

παx,w 0.25 β4 0.907 (0.299) παx,w 0.258 (0.109) παx,w 0.260 (0.107)

παy,w 0 β5 −0.313 (0.094) παy,w 0.005 (0.164) παy,w 0.006 (0.154)

R2 0.5 0.467

Marg. � −2007.62 −1990.89

k 8 8

BIC 4070.51 4025.94

Cubic model

xN 0 β0 10.01 (0.279) xN −0.001 (0.047) xN −0.006 (0.047)

yN 10 β1 3.751 (0.104) yN 10.00 (0.192) yN 10.13 (0.189)

δ 4 β2 −1.9610-4 (0.011) δ 4.000 (0.031) δ 3.998 (0.031)

h 10 β3 −0.078 (0.003) h 10.01 (0.262) h 10.00 (0.262)

πxN,w 0 β4 0.237 (0.441) πxN,w 0.001 (0.073) πxN,w 0.001 (0.073)

πyN,w 0.25 β5 −0.019 (0.164) πyN,w 0.245 (0.305) πyN,w 0.243 (0.301)

πδ,w −0.1 β6 4.0510-4 (0.017) πδ,w −0.098 (0.047) πδ,w −0.098 (0.047)

πh,w −0.3 β7 −0.004 (0.004) πh,w −0.294 (0.413) πh,w −0.298 (0.414)

R2 0.5 0.504

Marg. � −8089.88 −8059.37

k 10 10

BIC 16 239.68 16 178.66

Note: Parameter estimates and standard errors (in parentheses) are the mean values across 1000 iterations of data
generation and model fitting. Pop θ indicates the generating value for each parameter. Linear estimates indicate the fitted
values from the linear parameter model. LENI estimates indicate the transformed estimates of the nonlinear parameter
model based on the linear estimates. Nonlinear estimates indicate the fitted values from directly estimating the nonlinear
parameter model. π parameters represent conditional effects of wi on the nonlinear parameters, R2 is the proportion of
variance explained (only available in the linear parameter model), Marg. � is the marginal log-likelihood, k is the number
of model parameters, and BIC is the Bayesian Iinformation cCriterion.

Plotting the data, we can see that the trajectory for network modularity in female adolescents (red)
peaks at 19.04 years-of-age (SE = 0.670) with male adolescents (blue) appearing to reach this vertex
somewhat later (implied at 19.95 years) and at lower peak levels (Figure 4). While common practice
has been to simply assert this difference as meaningful (i.e., “boys show delayed development compared
with girls”), the LENI approach allows us to build a direct statistic test for sex-specific differences in
meaningful parameters of these trajectories. The LENI results suggest that while female adolescents do
show a higher peak value in modularity at the vertex (αy) than male adolescents (παy,male = −0.392, SE =
0.114, t =−3.429; p< 0.001), there is no significant sex difference in the age at which the vertex is reached
(παx,male = 0.908, SE = 0.935, t = 0.971, p = 0.332). This demonstrates the importance of parameterizing
statistical models to test meaningful hypotheses with appropriate uncertainty (here the standard errors)
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Figure 4. Sex-specific trajectories of brain network organization. While the implied trajectory for male adolescents (blue) appears to

have a delayed peak compared with female adolescents (red, αx), the inference test on the nonlinear parameter (παx,male) derived from

the LENI approach shows that they are statistically indistinguishable.

rather than relying solely on point estimates to draw inferences about developmental theories (e.g., sex-
specific delays in maturation).

4.6. Linearized structural equation models
In the prior sections, I laid out a series of transformations that allow us to transform the results from
a linearly-estimated model to approximate the results of directly estimating the nonlinear model- –
with attendant advantages related to estimation, measures of R2, and hierarchical specification of the
random effects structure. I have highlighted these transformations thus far primarily using mixed-
effects (multilevel) models on time-unstructured data for maximum generality, although these methods
could easily be applied in more time-structured cohort data without issue. Indeed, the set of LENI
transformations could be equally useful in structural equation growth models like the latent curve
(Meredith & Tisak, 1990) and latent change score models (McArdle et al., 2009).

However, adopting the SEM framework allows us to extend the LENI conceptual framework in
a more interesting way by estimating a linearized version of the nonlinear model directly within the
latent variable software (S. A. Blozis, 2004; Browne, 1993; Preacher & Hancock, 2012, 2015).3 That
is, rather than estimating the familiar linear parameter model and applying post-hoc transformations
to obtain the nonlinear inferences, we can specify a linearized SEM to allow for direct estimation of
the nonlinear parameters within a linear estimator. Prior work has used this approach to model a
wide array of potential nonlinear functions within a linear SEM framework, including logistic curves
(Choi et al., 2009), multiphase (piecewise) models with random knots (Feng et al., 2019; Preacher &

3It should be noted that this form of linearization is also possible within a Bayesian mixed-effects framework due to the full
flexibility of that set of modeling approaches.
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Hancock, 2015), half-life with negative exponentials (S. A. Blozis, 2004; Preacher & Hancock, 2015),
and time-to-criterion models (Johnson & Hancock, 2019), among others.

The general procedure for fitting linearized SEM has been detailed in full by prior work (S. A.
Blozis, 2004, 2007; Feng et al., 2019; Preacher & Hancock, 2012, 2015), so I briefly review the relevant
modeling steps here and then move into the specific use-cases of the models discussed thus far. First
(1), we need to define the nonlinear equation—either a reparameterization such as the alternative
quadratic or cubic, or a natively nonlinear function (e.g., logistic, negative exponential)—with a set
of parameters that correspond to theoretically meaningful quantities. Then (2), to make the nonlinear
function compatible with the Linearly-estimated SEM, we linearize the function through a first-order
Taylor series approximation by taking the partial derivative of the nonlinear function with respect to
each parameter at the mean value of all other parameters. Once we have these partial derivatives (3), we
use a structured latent curve model (SLCM; S. A. Blozis, 2004; Browne & Du Toit, 1991; Browne, 1993)
approach where we set the factor loadings of each latent variable- – which now represent the meaningful
nonlinear parameters—as the partial derivative with respect to that same parameter, and specify each
observed repeated measure intercept as the mean of the target nonlinear function at that value of time.
Finally (4), with this model specification, we can estimate the linearized model with standard SEM
software and obtain direct estimates and standard errors for the meaningful nonlinear parameters.

The resulting SLCM (Browne, 1993) models both average and individual-level change, although
with some notable differences in interpretation compared with both the standard latent curve model
(Meredith & Tisak, 1990) as well as fully nonlinear mixed-effects growth models. In the standard latent
curve model, individual trajectories must follow the same functional form as the average trajectory,
whereas the SLCM relaxes this constraint to allow for increased flexibility to fit unique patterns of
change that do not follow the average (S. A. Blozis & Harring, 2017). However, like the standard latent
curve model, SCLMs show dynamic consistency—that is the model for the population mean response
is equal to the average of the individual-level effects—in contrast with fully non-linear models where
this equivalence is not imposed (for an in-depth treatment of these issues and how they impact model
interpretation, see Blozis & Harring, 2016; Harring & Blozis, 2016).

While differing in this way from fully nonlinear mixed-effects models, adopting the SLCM frame-
work allows us to take advantage of the full flexibility of the SEM to model additional complexities to the
core linearized function, including covariates (Curran et al., 2004; Preacher & Hancock, 2015), distal
outcomes (McCormick et al., 2023; McCormick et al., 2024), and approaches for parameter moderation
(Bauer, 2017). We can next turn to the alternative polynomials as examples of this process.

4.6.1. Alternative polynomial models
Here I will focus on the alternative cubic, as a linearized version of the alternative quadratic model
(Cudeck & du Toit, 2002) has been demonstrated previously (Preacher & Hancock, 2015), however,
the code for both models can be found in the Supplementary Material. We can use either Equation 20
or Equation 21 as the target nonlinear equation from, so I will define the partial derivatives for all
five nonlinear parameters (note only four are modeled at any given time). The partial derivatives for
Equation 20 are

∂f (xN,yN,δ,h,xti)
∂xN

= −
3h(δ2−(xti−xN)2)

2δ3

∂f (xN,yN,δ,h,xti)
∂yN

= 1

∂f (xN,yN,δ,h,xti)
∂δ

= −
3h(xN −xti)((xti−xN)2−δ2)

2δ4

∂f (xN,yN,δ,h,xti)
∂h

=
(xN −xti)((xti−xN)2−3δ2)

2δ3

, (38)
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Figure 5. Linearized SEM. We can directly model the nonlinear parameters (e.g., αx and δ) as random latent variables through a process

of linearization where we set the factor loadings to partial derivatives of the target nonlinear function with respect to each modeled

parameter and set the intercepts of the repeated measures to the mean of the target function.

and for Equation 21 are

∂f (xN,yN,δ,βN,xti)
∂xN

= −
βN (δ2−(xti−xN)2)

δ3

∂f (xN,yN,δ,βN,xti)
∂yN

= 1

∂f (xN,yN,δ,βN,xti)
∂δ

= −2βN (xN −xti)3

3δ3

∂f (xN,yN,δ,βN,xti)
∂βN

=
(xN −xti)((xti−xN)2−3δ2)

3δ2

. (39)

Once we have these partial derivatives, we can set each factor loading to the relevant expression
at each value of xti

4 and then define the intercepts of the repeated measures as the mean of the target
nonlinear function at that value of xti. The corresponding path diagram for both the alternative quadratic
(A) and cubic (B) is presented in Figure 5. Note that this specification allows us to directly model the
means, variances, and covariances of the interpretable parameters. Unlikely standard latent curve model
specifications, the estimated parameters of the latent variables are used to define the numerical value
of the factor loadings (remember that the partial derivatives are evaluated at the means of the other
parameters).

To avoid unnecessary repetition with prior sections, I will leave the full parameter comparison to the
Supplementary Material, but note that all the linearized models successfully capture the interpretable
model parameters and have near-identical fit to the standard linear versions of the polynomial LCMs
(Δχ2

quadratic = −7.713×10−5; Δχ2
cubic, h = 8.414×10−7; Δχ2

cubic, βN
= −1.126×10−6).

4.6.2. Multiphase polynomial models
Finally, I applied the linearization approach to the multiphase (or piecewise) cubic model outlined
previously. Feng et al. (2019) outlined a related approach to deal with floor and ceiling effects in modeled
variables using a 3-phase linear model. Their approach reparameterized the standard multiphase
linear model into a single equation by taking the median of the three linear functions—see Figure
1 and Equations 1–3 in Feng et al. (2019) for complete details. Unfortunately, while this approach
successfully models the multiphase trajectory for monotonic functions, like the 3-phase linear model,
for nonmonotonic functions like the quadratic and cubic, it does not appropriately define the onset and
offset of the phases (see the Supplementary Material for examples of the challenges).

4While I do not consider this extension here, the presence of the i subscript here allows for the possibility of modeling
definition variables (Mehta & West, 2000) for time-unstructured data.
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To accomplish the same idea, I parameterized a multiphase function where rather than taking the
median of the functions of each phase, I instead took the median of three quantities—(xN −δ), xti, and
(xN +δ)—which does change monotonically as a function of xti (Figure 6 B). Thus, when xti is < (xN −δ)
or > (xN + δ), its value is effectively fixed at those boundary points. This allows cubic change to only
occur within the onset-offset boundaries (Figure 6 C). As highlighted in Feng et al. (2019), the median
of three monotonic functions can be computed as

y =median(g1,g2,g3) = sum(g1,g2,g3)−min(g1,g2)−max(g2,g3), (40)

where the minimum and maximum of two quantities are

min(a,b) = 1
2
(a+b−

√
(a−b)2)

max(a,b) = 1
2
(a+b+

√
(a−b)2)

. (41)

By substituting Equation 23 or Equation 24 into these expressions, I derived the following forms for the
multiphase cubic (see Supplementary Material for full derivation details):

yti = yN −(
h
2
)
⎡⎢⎢⎢⎢⎣
(med(xN −δ,xti,xN +δ)−xN

δ
)

3

−3(med(xN −δ,xti,xN +δ)−xN

δ
)
⎤⎥⎥⎥⎥⎦

= yN −(
h
2
)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜
⎝

1
2 (
√
(xN −δ−xti)2−

√
(xti−xN −δ)2)

δ

⎞
⎟⎟⎟
⎠

3

−3
⎛
⎜⎜⎜
⎝

1
2 (
√
(xN −δ−xti)2−

√
(xti−xN −δ)2)

δ

⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= yN −(
βN δ

3
)
⎡⎢⎢⎢⎢⎣
(med(xN −δ,xti,xN +δ)−xN

δ
)

3

−3(med(xN −δ,xti,xN +δ)−xN

δ
)
⎤⎥⎥⎥⎥⎦

= yN −(
βN δ

3
)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜
⎝

1
2 (
√
(xN −δ−xti)2−

√
(xti−xN −δ)2)

δ

⎞
⎟⎟⎟
⎠

3

−3
⎛
⎜⎜⎜
⎝

1
2 (
√
(xN −δ−xti)2−

√
(xti−xN −δ)2)

δ

⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(42)

I took these equations and linearized them using the same procedure as above (see Figure 6 A for
a representative path diagram). I then generated cortical thickness trajectory data based on Fuhrmann
et al. (2022), with 100 cases observed across 12 waves. The linearized SEM (χ2

model = 84.299, df = 75, p =
0.217) captured the parameters of the growth trajectory, with an average onset of change at 12 (xN −δ
= 12.028, SE = 0.201), an inflection point at 15 (xN = 15.049, SE = 0.105) with a negative instantaneous
slope (βN = −0.337, SE = 0.022), and an offset of change at 18 years-of-age (xN +δ = 18.069, SE = 0.164;
see Figure 6 D for model-implied individual and group trajectories; see the Supplementary Material for
full code and output). This example highlights the extreme flexibility of the linearization approach for
linear estimation with nonlinear inference (LENI)—any target nonlinear function can be transformed
using the approach outlined above and accommodated within standard linear estimation software.

5. Recommendations for applied researchers

For applied research, the LENI suite of approaches offers exciting new opportunities for testing novel
theoretical hypotheses with an ultimate eye toward the development of generative models for change
over time. Hypotheses must be generated and tested on meaningful and interpretable developmental
quantities (Preacher & Hancock, 2015), and not narrowly restricted to linear parameter models that
are the default in major software implementations. The potential of LENI is for researchers to be able
to fit the model they want to test theoretically, while avoiding some of the issues inherent in nonlinear
model estimation. Here I demonstrated both mixed-effects and structural equation model options for
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Figure 6. Multiphase linearized SEM. (a) A canonical path diagram of the linearized SEM model for the multiphase cubic. (b) Because the

cubic function is non-monotonic, we need to instead take the median of (xN − δ), xti , and (xN + δ), which is monotonic as a function

of xti . (c) The boundaries formed for the predictor xti in (B) allow for the proper specification of the multiphase cubic function for

yti . (d) The multiphase cubic model was fit to generated trajectories of cortical thinning (Fuhrmann et al., 2022) which successfully

recovered individual (grey) and group (black) trajectories.

random-effects growth modeling, allowing researchers maximal flexibility in specifying the nonlinear
model within broader modeling traditions that exist in different fields. For instance, both the mixed-
effect and SEM LENI approaches allow for the additional inclusion of time-varying covariates through
direct prediction of the within-person repeated measure outcome, as well as additional time-invariant
predictors and distal outcomes at the between-person (factor or random effect) level.5

Selecting between the various LENI approaches outlined may seem daunting, but ultimately the
choice is likely far simpler than it appears. While there are many differences between mixed-effect
and structural equation modeling approaches to longitudinal data analysis (McCormick et al., 2023;
McNeish & Matta, 2018)—some important in the way that they model the repeated measures and
others simply due to conventions or idiosyncratic discipline preferences — there are no additional issues
related to the LENI set of approaches which would preference either class of modeling. For instance,
time-unstructured data is more easily accommodated in mixed-effect approaches while multivariate

5Although distal outcomes present some additional complexity with mixed-effects models because they require a two-step
procedure in a frequentist modeling framework.
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models are more naturally fit within structural equation models, but this applies equally to linear and
nonlinear/linearized versions of the two frameworks. As such, researchers should select the particular
approach that is already suitable for testing their theoretical question and for accommodating the
structure of the data that they have. LENI is here to help in that endeavor—not to impose additional
restrictions.

To aid in the application of LENI approaches in substantive research, I have developed an R package
(leni; https://github.com/E-M-McCormick/leni) which allows users to convert the output of linear
regression and mixed-effects models into nonlinear estimates using the transformations highlighted
here, as well as to generate lavaan (Rosseel, 2012) syntax for linearized SEMs.

6. Conclusions

The linear estimation with nonlinear inference (LENI) approach is a broad framework that allows
for the modeling of nonlinear parameters which represent theoretically interesting quantities while
taking advantages of the well-behaved properties of linear parameter models for estimation. My goal
was to offer a comprehensive introduction to 1) the motivation and approach for defining nonlinear
models with interpretable parameters, 2) defining a set of transformation functions to convert linear
mixed-effects models into nonlinear output, and 3) direct estimation of nonlinear parameters through
a linearized SEM approach. This foundation of the LENI approach for modeling growth offers fertile
ground for additional research and methodological development, with additional avenues for work
on small-sample behavior, methods for increasing the reliability of random effect/factor (co)variances,
optimal Bayesian approaches (e.g. transformation robustness when applied at the individual draw level),
and the role of time coding for estimation and interpretation of the nonlinear parameters. Combining
the theoretical perspective of the LENI approach—focusing on meaningful features of change over
time—with its computational efficiencies in approximating complex nonlinear equations shows great
promise for advancing developmental science and the analysis of longitudinal data broadly.

Supplementary material. The supplementary material for this article can be found at https://osf.io/5dmy3/.
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A., Sowell, E. R., & Tamnes, C. K. (2016). Structural brain development between childhood and adulthood: Convergence
across four longitudinal samples. NeuroImage, 141, 273–281. https://doi.org/10.1016/j.neuroimage.2016.07.044

Nickalls, R. (1993). A new approach to solving the cubic: Cardan’s solution revealed. The Mathematical Gazette, 77(480), 354–
359. https://doi.org/10.2307/3619777

Nunes, A. S., Vakorin, V. A., Kozhemiako, N., Peatfield, N., Ribary, U., & Doesburg, S. M. (2020). Atypical age-related changes in
cortical thickness in autism spectrum disorder. Scientific Reports, 10(1), 11067. https://doi.org/10.1038/s41598-020-67507-3

Orben, A., Przybylski, A. K., Blakemore, S.-J., & Kievit, R. A. (2022). Windows of developmental sensitivity to social media.
Nature Communications, 13(1), 1649. https://doi.org/10.1038/s41467-022-29296-3

Patzelt, E. H., Hartley, C. A., & Gershman, S. J. (2018). Computational phenotyping: Using models to under-
stand individual differences in personality, development, and mental illness. Personality Neuroscience, 1, e18.
https://doi.org/10.1017/pen.2018.14

Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report measure of pubertal status: Reliability, validity,
and initial norms. Journal of Youth and Adolescence, 17(2), 117–133. https://doi.org/10.1007/BF01537962

Pfefferbaum, A., Kwon, D., Brumback, T., Thompson, W. K., Cummins, K., Tapert, S. F., Brown, S. A., Colrain, I. M., Baker, F.
C., Prouty, D., De Bellis, M. D., Clark, D. B., Nagel, B. J., Chu, W., Park, S. H., Pohl, K. M., & Sullivan, E. V. (2018). Altered
brain developmental trajectories in adolescents after initiating drinking. American Journal of Psychiatry, 175(4), 370–380.
https://doi.org/10.1176/appi.ajp.2017.17040469

Pleskac, T. J., Yu, S., Hopwood, C., & Liu, T. (2019). Mechanisms of deliberation during preferential choice: Perspectives from
computational modeling and individual differences. Decision, 6(1), 77–107. https://doi.org/10.1037/dec0000092

Preacher, K. J., & Hancock, G. R. (2012). On interpretable reparameterizations of linear and nonlinear latent growth curve
models. IAP Information Age Publishing.

Preacher, K. J., & Hancock, G. R. (2015). Meaningful aspects of change as novel random coefficients: A general method for
reparameterizing longitudinal models. Psychological Methods, 20(1), 84–101. https://doi.org/10.1037/met0000028

Ram, N., & Grimm, K. (2007). Using simple and complex growth models to articulate developmental change: Matching theory
to method. International Journal of Behavioral Development, 31(4), 303–316. https://doi.org/10.1177/0165025407077751

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. SAGE.
Rosseel, Y. (2012). Lavaan: An r package for structural equation modeling. Journal of Statistical Software, 48, 1–36.

https://doi.org/10.18637/jss.v048.i02
Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., Greenstein, D., Clasen, L., Evans, A., Rapoport, J. L.,

Giedd, J. N., & Wise, S. P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. The Journal of Neuroscience,
28(14), 3586–3594. https://doi.org/10.1523/JNEUROSCI.5309-07.2008

Somerville, L. H., Jones, R. M., Ruberry, E. J., Dyke, J. P., Glover, G., & Casey, B. J. (2013). The medial pre-
frontal cortex and the emergence of self-conscious emotion in adolescence. Psychological Science, 24(8), 1554–1562.
https://doi.org/10.1177/0956797613475633

https://doi.org/10.1017/psy.2024.2 Published online by Cambridge University Press

https://doi.org/10.1037/a0015857
https://doi.org/10.1016/j.dcn.2023.101281
https://doi.org/10.1037/met0000663
https://doi.org/10.1016/j.neuroimage.2021.117784
https://doi.org/10.1080/00273171.2020.1830019
https://doi.org/10.1037/met0000407
https://doi.org/10.1080/00273171.2016.1253451
https://doi.org/10.3758/s13428-017-0976-5
https://doi.org/10.1080/10705511.2019.1627213
https://doi.org/10.1037/1082-989X.5.1.23
https://doi.org/10.1007/BF02294746
https://doi.org/10.1016/j.neuroimage.2016.07.044
https://doi.org/10.2307/3619777
https://doi.org/10.1038/s41598-020-67507-3
https://doi.org/10.1038/s41467-022-29296-3
https://doi.org/10.1017/pen.2018.14
https://doi.org/10.1007/BF01537962
https://doi.org/10.1176/appi.ajp.2017.17040469
https://doi.org/10.1037/dec0000092
https://doi.org/10.1037/met0000028
https://doi.org/10.1177/0165025407077751
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.1523/JNEUROSCI.5309-07.2008
https://doi.org/10.1177/0956797613475633
https://doi.org/10.1017/psy.2024.2


Psychometrika 73

Tamnes, C. K., Herting, M. M., Goddings, A.-L., Meuwese, R., Blakemore, S.-J., Dahl, R. E., Güroğlu, B., Raznahan, A., Sowell,
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