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Abstract

In this paper we focus on the problem of the degree sequence for a random graph process
with edge deletion. We prove that, while a specific parameter varies, the limit degree
distribution of the model exhibits critical phenomenon.
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1. Introduction and statement of the results

In the past decade, a lot of effort has been devoted to studying large-scale real-world networks
and modeling their properties. For a general introduction to this topic, we refer the reader to [1],
[3], [7], [20], and [24]. Although the study of real-world networks as graphs can be traced back
a long time, such as the classical model proposed by Erdös and Rényi [15] and Gilbert [16],
recent influential activity perhaps started with the work of Watts and Strogatz [25] about the
‘small-world phenomenon’ published in 1998. Another influential work may be due to the
scale-free model proposed by Bollobás and Albert [5] in 1999. Since then, various forms of
scale-free phenomenon have been widely revealed. In particular, power-law degree distributions
have been extensively investigated. Many new models have been introduced to circumvent the
shortcomings of the classical models introduced by Erdös and Rényi [15] and Grilbert [16].
One class of these new models aimed to explain the underlying causes for the emergence of
power-law degree distributions; see, for example, [8], [9], [11], [12], [13], [14], and [18].
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Besides the power-law degree distributions (see [2] and [10]), other forms of the degree
distributions can also be observed in real-world networks (see [4] and [22]). For example,
Gaussian distributions can be observed in the acquaintance network of Mormons [6], and
exponential distributions can be observed in the power grid of southern California [25]. On the
other hand, the degree distribution of the network of world airports [4] interpolates between
Gaussian and exponential distributions, whereas the degree distribution of the citation network
in high energy physics [19] interpolates between exponential and power-law distributions. For
more forms of degree distributions, we refer the reader to [21].

Different models often lead to different forms of degree distributions. An interesting problem
arises naturally: does there exist some dynamically evolving random graph process which brings
forth various degree distributions by continuous changing of its parameters only? To the best
of the authors’ knowledge, it seems that the problem and its answer have not been formulated
in a mathematically rigorous manner. In this paper we focus on a model with edge deletions
and provide precise analysis to show, while a parameter varies, that the model exhibits various
degree distributions.

We begin by introducing our model and then state our main results. Consider the following
process which generates a sequence of graphs Gt = (Vt , Et ), t ≥ 1. Write vt = |Vt | and
et = |Et |.

Time step 1. Let G1 consist of an isolated vertex x1.
Time step t ≥ 2. (i) With probability α1 > 0 we add a vertex xt to Gt−1. We then add

m random edges incident with xt . In the case in which et−1 > 0, the m random neighbors
w1, w2, . . . , wm are chosen independently. For 1 ≤ i ≤ m and w ∈ Vt−1,

P(wi = w) = dw(t − 1)

2et−1
, (1.1)

where dw(t − 1) denotes the degree of vertex w at the beginning of substep t . Thus, neighbors
are chosen by preferential attachment. In the case in which et−1 = 0, we add a new vertex xt

and join it to a randomly chosen vertex in Vt−1.

(ii) With probability α − α1 ≥ 0 we add m random edges to existing vertices. If et−1 > 0 then
both endpoints are chosen independently with the same probabilities as in (1.1). Otherwise,
we do nothing.

(iii) With probability 1 − α ≥ 0 we delete min{m, et−1} randomly chosen edges from Et−1.

Now we assume that
1
2 < α ≤ 1, 0 < α1 ≤ α. (1.2)

For given α and α1 satisfying (1.2), define

αc := 4α − 2, η := mαc

2
, (1.3)

and choose ε = ε(α, α1) ∈ (0, η) such that

ρε := max

{
m(αc − α1)

2(η − ε)
,

1

2

}
< 1. (1.4)

Let

β = αc

αc − α1
, γ = 1 − α1 − αc

2(1 − α)
, θ = 2αc − α1

2αc

, µ = αc

2(1 − α)
. (1.5)
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To obtain our main results, besides (1.2), we assume that

α1 < 2αc. (1.6)

Now, let Dk(t) be the number of vertices with degree k ≥ 0 in Gt and let D̄k(t) be the
expectation of Dk(t).

The main results of this paper are as follows.

Theorem 1.1. Assume that (1.2) and (1.6) hold. Then αc defined in (1.3) is a critical point for
the degree sequence of the model satisfying the following conditions.

1. If α1 < αc then there exists a constant C1 = C1(m, α, α1) such that, for any ν ∈
(0, 1 − ρε), ∣∣∣∣ D̄k(t)

t
− C1k

−1−β

∣∣∣∣ = O(tρε+ν−1) + O(k−2−β). (1.7)

2. If α1 > αc then there exists a constant C2 = C2(m, α, α1) such that
∣∣∣∣ D̄k(t)

t
− C2γ

kk−1+β

∣∣∣∣ = O(t−θ ) + O(γ kk−2+β). (1.8)

3. If α1 = αc then there exists a constant Cc = Cc(m, α, α1) such that, for any ν ∈ (0, 1
2 ),

∣∣∣∣ D̄k(t)

t
− Ccuc(k)

∣∣∣∣ = O(t−1/2+ν) (1.9)

uniformly in k, where uc(k) = ∫ 1
0 tk−1e−µ/(1−t) dt .

With help of computer calculation, we know that uc(k) satisfies

lim
k→∞

ln uc(k)

−k
= lim

k→∞
− ln k

ln uc(k)
= 0.

Remark 1.1. Compared with the model G(α1, α − α1, 0, 1 − α, m) in [12], Theorem 1.1
extends the range of power laws from the case α1 < 2α − 1 to α1 < 4α − 2 = αc, where αc

is the critical point. Theorem 1.1 also extends the results of [14] with α0 = 1 − α; actually,
Cooper [14] showed that, in case of α0 being small enough, the model possesses power-law
degree distributions.

Based on Theorem 1.1, we can obtain the following two corollaries, which provide a complete
distinction with respect to the parameters between the degree sequences for the present model.

Corollary 1.1. If the parameters satisfy

1. α > 2
3 , or

2. α ≤ 2
3 and α1 < αc,

then the present random graph process has power-law degree sequence (1.7).

Corollary 1.2. Assume that α ≤ 2
3 .

1. If αc < α1 < 2αc then the present random graph process has exponential degree
sequence (1.8).

2. If α1 = αc then the present random graph process has critical degree sequence (1.9).
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Remark 1.2. When α > 2
3 , for any α1, the inequality α1 ≤ α < αc = 4α − 2 holds always;

therefore, part 1 of Corollary 1.1 follows from part 1 of Theorem 1.1. Parts 2 of Corollary 1.1
and Corollary 1.2 are straightforward from Theorem 1.1.

Remark 1.3. No result has been obtained for the case in which α ≤ 2
3 and 2αc ≤ α1 ≤ α.

Clearly, this case can only appear when α ≤ 4
7 . It is natural to conjecture that the model

possesses an exponential degree sequence in this case.

2. Proof of Theorem 1.1

We first note that the methodology of our proof follows the standard procedure, which can
be found in [13] and [14].

For times s and t with 1 ≤ s ≤ t , let dxs (t) be the degree of vertex xs in Gt . If xs is not
added in time step s, i.e. at time step s one of the other two substeps is executed, set dxs (t) = 0.

Cooper et al. [14] derived

|vt − α1t | ≤ ct1/2 log t quite surely

for any constant c > 0. We say that an event happens quite surely (q.s.) if the probability of the
complimentary set of the event is O(t−K) for any K > 0. The estimate for et can be derived
by the similar argument that

|et − ηt | ≤ ct1/2 log t q.s. (2.1)

for any constant c > 0.
By a standard argument in large deviation theory (see [23]), we can further show that, for

any ε > 0, there exist c1, c2 > 0 such that

P(|et − ηt | ≥ εt) ≤ c1 exp{−c2t} (2.2)

for all t ≥ 1.
The following is our bounding for dxs (t); note that our result is based on the exact estimation

(2.2) for et .

Lemma 2.1. For any α ∈ ( 1
2 , 1] and α1 ∈ (0, α],

dxs (t) ≤
(

t

s

)ρε

(log t)3 q.s., (2.3)

where ρε is given in (1.4).

Proof. Fix s ≤ t . Suppose that xs is added in time step s. Let Xτ = dxs (τ ) for τ = s,
s + 1, . . . , t , and let Y be the {1, 2, 3}-valued random variable with

P(Y = 1) = α1, P(Y = 2) = α − α1, P(Y = 3) = 1 − α.

Conditional on Xτ = x and eτ ≥ m, we have

Xτ+1 = x + 1{Y=1} B

(
m,

x

2eτ

)
+ 1{Y=2} B

(
2m,

x

2eτ

)
− 1{Y=3} S

(
m,

x

eτ

)
, (2.4)

where B(m, p) is the binomial random variable with parameter (m, p) and S(m, x/eτ ) is the
super geometric random variable with parameter (eτ , x, m).
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If eτ in (2.4) is substituted by ητ , (2.3) can be derived by a standard argument which is given
in the proof of Lemma 3.1 of [14]. Actually, with the exact estimate (2.2) of et , (2.3) follows
from a random modification of such a standard argument. Details can be found in [26].

Now we follow the basic procedures in [14] to establish the recurrence for D̄k(t). Set
D−1(t) = 0 for all t ≥ 1. For k ≥ 0, we have

D̄k(t + 1) = D̄k(t)

+ (2α − α1)m E

(
−kDk(t)

2et

+ (k − 1)Dk−1(t)

2et

+O

(

t

et

) ∣∣∣∣ et > 0

)
P(et > 0)

+ (1 − α)m E

(
(k + 1)Dk+1(t)

et

− kDk(t)

et

+ O

(

t

et

) ∣∣∣∣ et ≥ m

)
P(et ≥ m)

+ α1 1{k=m} P(et > 0) + O(P(et = 0)) + O(P(et < m)),

where 
t denotes the maximum degree in Gt and the term O(
t/et ) accounts for the probability
that we create larger than one degree changes for some vertices at time step t + 1. By (2.2) and
Lemma 2.1, we have


t

et

≤ O(tρε−1(log t)3) q.s. (2.5)

With the help of (2.1), (2.2), (2.5), and Lemma 2.1, we obtain the recurrence for D̄k(t) as
follows: D̄−1(t) = 0 for all t > 0 and, for k ≥ 0,

D̄k(t + 1) = D̄k(t) + (A2(k + 1) + B2)
D̄k+1(t)

t
+ (A1k + B1 + 1)

D̄k(t)

t

+ (A0(k − 1) + B0)
D̄k−1(t)

t
+ α1 1{k=m} +O(tρε−1(log t)3), (2.6)

where

A2 = 1 − α

2α − 1
, A1 = − 2 − α1

2(2α − 1)
, A0 = 2α − α1

2(2α − 1)
,

B2 = B0 = 0, and B1 = −1.

Note that the term O(tρε−1(log t)3) in (2.6) is independent of k, which follows from the fact
that et = O(t) and kDk(t) ≤ 2et = O(t) uniformly in k.

Recurrence (2.6) corresponds to the following recurrence in k: d−1 = 0 and, for k ≥ −1,

(A2(k + 2) + B2)dk+2 + (A1(k + 1) + B1)dk+1 + (A0k + B0)dk = −α1 1{k=m−1} . (2.7)

The following lemma shows that (2.7) is a good approximation to (2.6).

Lemma 2.2. Let dk be a solution to (2.7) such that |dk| ≤ C/k for k > 0 and a constant C.
Then

1. if α1 ≤ αc, for any ν ∈ (0, 1 − ρε), there exists a constant M1 > 0 such that

|D̄k(t) − tdk| ≤ M1t
ρε+ν (2.8)

for all t ≥ 1 and k ≥ −1,
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2. if αc < α1 < 2αc, there exists a constant M2 > 0 such that

|D̄k(t) − tdk| ≤ M2t
1−θ (2.9)

for all t ≥ 1 and k ≥ −1, where θ is given in (1.5).

Proof. This proof follows the methodology of Cooper et al. [14]. Specifically, we provide
some details in order to analyze the case in which

0 < ε0 := A2 + B1 + 1 − A0 = α1 − αc

αc

< 1,

which provides very important evidence for revealing the critical phenomenon. Note that
Cooper et al. [14] only dealt with the case in which ε0 ≤ 0.

Let �k(t) = D̄k(t) − tdk , and let k0 = k0(t) = �tρε (log t)3�. Lemma 2.1 implies that

0 ≤ D̄k(t) ≤ t−10 for k ≥ k0(t). (2.10)

1. Equation (2.10) and dk ≤ C/k imply that (2.8) holds for k ≥ k0 uniformly, i.e. there
exists a constant N1 > 0, independent of k and t , such that

|D̄k(t) − tdk| = |�k(t)| ≤ N1t
ρε

for all k ≥ k0(t) and t ≥ 1.
Let L be the hidden constant in O(tρε−1(log t)3) of (2.6). For any ν ∈ (0, 1 − ρε), let

R ≥ L, satisfying
Ltρε−1(log t)3 ≤ Rtρε+ν−1

for all t ≥ 1. Let N2 = R/(ρε + ν) + 1, take σ > 0 such that

1 − R

N2
− (1 + σ)(1 − ρε − ν) ≥ 0, (2.11)

and take δ ∈ (0, 1) such that
δ1+σ < e−1 < δ.

Let t1 > 0 be an integer such that

k0(t) ≤ − t

A1
= 2(2α − 1)

2 − α1
t (2.12)

and

δ1+σ ≤
(

1 − 1

t + 1

)t+1

,

(
1 − 1 − R/l

t + 1

)(t+1)/(1−R/l)

≤ δ, (2.13)

for all t ≥ t1 and l ≥ N2.
Now, for the above t1, let N3 ≥ N1, satisfying

|�k(t)| ≤ N3t
ρε+ν for all 1 ≤ t ≤ t1 and k ≥ −1. (2.14)

Take
M1 = max{N2, N3}. (2.15)
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We will prove that (2.8) holds for the above M1 by induction. Our inductive hypothesis is

H1
t : |�k(t)| ≤ M1t

ρε+ν for all k ≥ −1.

Note that (2.14) and (2.15) imply that H1
t holds for 1 ≤ t ≤ t1.

It follows from (2.6) and (2.7) that

�k(t + 1) = �k(t) + A2(k + 1)
�k+1(t)

t
+ (A1k + B1 + 1)

�k(t)

t

+ A0(k − 1)
�k−1(t)

t
+ O(tρε−1(log t)3). (2.16)

For t ≥ t1, by (2.12), we have t + A1k + B1 + 1 ≥ 0 and then (2.16) implies that

|�k(t + 1)| ≤ (t + ε0)M1t
ρε+ν−1 + Rtρε+ν−1.

Since α1 ≤ αc, we have ε0 ≤ 0. Then, combining (2.11), (2.13), and (2.15), we have

(t + ε0)M1t
ρε+ν−1 + Rtρε+ν−1

M1(t + 1)ρε+ν
≤ δ(1−R/M1−(1+σ)(1−ρε−ν))/(t+1) ≤ 1.

The induction hypothesis H1
t+1 has been verified and the proof of part 1 is complete.

2. In this case we have αc < α1 < 2αc, and then, for some ν ∈ (0, 1
2 ), ε0 ≤ ρε + ν < 1 − θ

(note that in this case ρε = 1
2 ). Proceeding as in the proof of part 1, for certain σ > 0 and

δ ∈ (e−1, 1), we have

(t + ε0)M2t
−θ + Rt−θ

M2(t + 1)1−θ
≤ δ(1−ε0−R/M2−(1+σ)θ)/(t+1) ≤ 1

for sufficient large t and M2. This is enough for an inductive proof of (2.9).

Remark 2.1. Lemma 2.2 remains open for the case in which ε0 ≥ 1, and this leads to
condition (1.6).

Proof of Theorem 1.1. Theorem 1.1 is proved in two steps. Firstly, the Laplace method
(see [17]) is used to solve (2.7) in the following three cases: (i) α1 < αc, (ii) α1 > αc, and
(iii) α1 = αc. Secondly, the resulting solutions of (2.7) are checked to see if they satisfy the
requirements of Lemma 2.2. For details, we refer the reader to [26].
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