REMARKS ON QUASI-HERMITE-FEJER INTERPOLATION

A. Sharmai)

(received May 10, 1963)

1. Introduction. Let

-1 < ..
(1) 1 x1<x2< <xn<1

be n+Z distinct points on the real line and let us denote the
corresponding real numbers, which are at the moment arbitrary,
by

(2) YorYe' Y2 ' Yn' Y

The problem of Hermite- Fej€r interpolation is to construct the
polynomials which take the values (2) at the abscissas (1) and
have preassigned derivatives at these points. This idea has
recently been exploited in a very interesting manner by P. Szasz
[1] who has termed quasi-Hermite-Fejér interpolation to be that
process wherein the derivatives are only prescribed at the points

xi, xZ, ...,x and the points -1,+41 are left out, while the
n

values are prescribed at all the abscissas (1). The correspond-
ing theorems give interesting analogues to the theorems of
Fejér [2], Egervdry and Turan [4], and Grunwald [3]. The
interpolatory formulas have been obtained by Egervidry and
Turan in a special case from a different point of view.

In the present note we extend these results by observing
that analogous theorems hold true if the derivatives are pre-
scribed at all the points except only at either of the end-points.
We prove the corresponding theorems of convergence as well.

1) The author is grateful for financial support under U.S, Air
Force Grant AF-AFOSR-62-198 and AF49(638)-574 while
at Harvard University.
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This brings a sort of asymmetry in the formulas but the results
remain similar. The terms "strongly normal' and "normal"
abscissas can be defined in an analogous fashion. In the special
case we are able to take the abscissas as zeros of Jacobi poly-

(e, B)

nomials P (x), where 1<a<2 and 0<B< 1. To bring
n %= P2

out the similarity with the results of P. Szasz the case o =1,
B =0 is treated separately in § 3.

2. Step Parabolas. We then begin by constructing the
corresponding step parabolas q(x) as in Fejér [2], given by
the 2n+2 conditions

q(-1)=Y0, q(xi)zYi, i=1,2,...,n, q(1)=Yn‘H
q'(xi) =0, i=1,2,...,n+1.
We put xn+1 =41. By an elementary calculation we have
(1-x)2m2(x) (1+x)(1+cn+1(x-1)) 2
Awx) =Yg+ Y 2 w (x)
40 (-1) 2w (1)
(3) ) . 5
wW
+Z Y. (xix o ) 1:x . {1+cv(x—xv)}
v=1 v c')'i(xv, *y
where
w(x) = (x-x,) ... (x-x)
1 n
4
(4) 0,9 = (x-1) w(x)
and
w”(x )
1 1
= -0 - »Zy' ’
(5) Cv Tem w'i(x ) (v =1 n)
1 2w'(1)
(6) “n+i 2" o(1)

The corresponding polynomials Q(x) with the properties
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(7) Q(-1) = Q(xv) = Q) =0, (v=1,2,...,n)

1 - 1 -
Q (xv) =y, (v =1,2,...,n+1)
are given by
n 2 2
1-x w (x) 1-x
= [ -
Qx) = = Yy 2 (x xv) (x-x ) w(x ) 1-x
v=1 1-x v v v
(8)
2. 2
+ 1 (1-x )w (X)
yn+1 )

-2 mz(i)

Then the interpolatory polynomial s(x) of degree < 2n+2
which takes the values (2) at the abscissas (1) and whose deriva-
tive at the abscissas xi’XZ’ ..., x ,1 takes the values

n

y'i, yjz, e ’Yr'1+1 is then given by

s(x) = q(x) + Q(x) ,

where q(x) and Q(x) are as defined above. The verification
that these polynomials are the ones sought for is left out.

Taking f(x) =1, we get the identity

(1-x)2 wZ(x) (1+x)(1+cn+1(x—1))

2
> > w (x)
4w (-1) 2w (1)
(9)
n wi(x) : 1+x
vz (x-x )w'(x ) =~ 1+x ° (1+Cv(x-xv)):1’
v=1 v 1" v

from which we can get a partial fraction decomposition of

! Formula (9) is useful in the sequel.

2.2
(1-x ) w (x)
3. We shall now prove the following theorem:

THEOREM 1. If f(x) is continuous for -1 <x<+1,
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and if xv(v =1,2,...,n+1) denote the zeros of P“'O)(x),
—_— n

then the generalized quasi-step parabola Sn(x) of degree 2n+2

coinciding with f(x) at -1, xv(v =1,2,...,n+1) and with

! =y! =140, ’ if L
Sn(xv) v, (v =1,2 n+1), then Sn(x) converges uniformly

to f(x) as n > o in the interval [-1,1] provided

Iyt l<e (v=1,2,...,n¢1) .

0,1
Remark. A similar theorem holds for zeros of P( )(x)
- n

as abscissas. But the result and proof are analogous.

(1,0)

In the case of the x, being zeros of P (x), the
n

formula we get from (3), is

2
(1-x)° (P “’0’(x>)
alx) = R (x) = £(-1)

+ (1)
2(n+1)2
n 2
1-x 1-x
+ = - IV(x)f(xv) .
v=1 1-xv v
P“’O)(x)
where L (x) = = 1.0

- 1
(x X )Pn

(=)
We shall base the proof of this theorem on two lemmas.

LEMMA 1. f(x) - R _(x) tendsto 0 uniformly in

-1 <x<1, as n —» o0,

From the corresponding form of the identity (9), we have
on simplifying the first two terms,
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2(n+1) n
(10)
T4k 1-x 2
+ z 7 1o i Y (x) =1
v=1 1-x v
v
2
Now (1-x2 Ps,m(x)\’
fx) - R (%) = —= {£(x) - £(-1))
2 2
(14x) {1 - i“;—” (x-i)} (P:li'o)(x))
+ > { f(x)-£(1)}
2(nt1)
n 2
1- 1- 2
+ = XZ . 1_’; 0 (x) {£(x)-£(x )}
v=1 1-x v
v
= I1 + I2 + 13 .

Now I1 - 0 uniformly in -1 <x<1 since it vanishes at

=-1, +1 and is continuous while Pf:’ 0)

uniformly in -1+ 6 <x<1 -6 forany 6> 0, since _Pn(x), the

(x)(1-x) = Pn(X) - Pn+1(x) -0

Legendre polynomial of degree n, is bounded in [-1,1] and
tends to 0 uniformly in [-1+8,1-6]. By the same reasoning
I, - 0 uniformly in [-1,1].

We now examine 1_. We have then

Ll< 1=+ |Z] =Z +Z
va-x[_<_6 [xv-xl>6

Since f(x) is continuous, for any € > 0, there existsa §
such that [f(x) - f(y)] <e for lx-y, <6.

Then
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z < = .
1= ‘x -x]<6 1-x2 v
v = v

This follows from the identity (410).

If(x)|_<_M for -1 <x<1. Then

2 n
2M 2. (_(1,0) 1 1 1
Z_ <—(1-x) (P (x)] (1-x). = . ST )
2 62 o v=1 1-x2 1-Xv (P (1'0)(x ))
n v
2M (1,0) |
<— (1-x ) (P ’ (x)} (1-%)
- 62 n

This follows from the identity

1 _ n(n+2)
1(1,0)(x )
n

v

n
(11) =

=1 (1-xi N(1-x ) kP 2(n+1)°

which follows from comparing the coefficients of the highest
P (x)-P (x)
n n+1

(x) = - and

(1,0)

power of x in (10). Now P

using Stieltjes' s inequality

[Pn(x)} < Tz '2—1—’ -1<x< 1

N ’.I.-'X2

where c is a numerical constant, we have

2
2M 1 1+x
= _— — \/
Zi 2 n
c
<m 2 —1- for -1+ <x<1-c¢
—62 Q€1 "n 1- - 1°
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For n sufficiently large this can be made less than ¢ .
2

is continuous and

From the fact that (1-x2)(1-x) tPl(:' 0)(x)

bounded in [-1,1] and vanishes at x=+1, we can choose ¢

2
2 2 1,
such that for 1-¢, < x< 1, ——I\Au—x )(1-x)(P( 0)(x) <e.
1—- - 62 n
Thus we have ZZ < 2¢ . This establishes uniform convergence

to zeroin -1 <x<1 of f(x)- P (x).
- - n

LEMMA 2.
n 2
- - 2
Q) = =y B ATE ey ) 1% (x)
v 2 1-x v v
v=1 1-x v
v
2
(1-x2) (Pf’li'o)(x))
+vy!
n+1 —2(n+1)2

tends to zero uniformly in -1 <x<1 if [y‘v [<a.

We have
2
2 1,0
(1) |2 O
Qx) - y! <J, +7J
2 - 2
n+1 2(nt1) 1
where IJilfA . Z
|x -x| <¢
v =
n 2
<Ae . Z 1-x . 1-x lz(x)
— 2 1-x v
v=1 1-x v

< Ae from the identity (10)

and
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IJ < Z
]x 'Xl>£

2
- (=X (1-x )( 1.0 ))

IA

< & by repeating the argument at the end of

Lemma 1, for -1 <x< 1. Hence the Lemma.

2
(1-x7) (P‘ °’(x>)
n

is taken care of

The last term y'
2
nt1 2(n+1)

separately as it vanishes at x =%1 and is continuous and bounded
in -1 <x <1 and tends to zero uniformly in -1+ 6 < x< 1 - 6.

By combining the results of Lemma 1 and 2 we have the
proof of Theorem 1.

4. A-Quasi-Normal Point Systems. We shall say that
a point system

-1 < < <.,.. < < 1
1% *n

is an a-quasi-normal system if the inequalities
1+4c (xx )>0
v v

hold for -1 <x<1(v =1,2,...,nt1) where Cv are given by

(5) and (6). In other words the points

x - (v =1,2,...,n¢1)
v C
v

do not lie in the open interval (-1,+1).

For Jacobi polynomials which satisfy the differential
equation
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(‘1-X2)w"(X) +[B - a- (a+p+2)x] ' (%) + n(nta+f+l) w(x) =0

we get
(ﬁ-a+1)-(a+f3-1)xv
c =
Y 1-x2
v
a>-1, g>-1.
(ﬁ—a+1)—(a+{3-1)xv
Now [1 + cv(x--xv)]Xzi =1+ ix

v

> 2-a if B>0.

2-a-8- 2-2a
x=-1 1-x

b

v

Also [1+cv (x—xv )]

v

2-p-1 if a>1,

1-p.

We thus require 0<B<1 and 1<a<2.

Als , 1+ -1 = s
o, [ cn+1(x )]x=i 1, and
[1+c (x-1)] S1-2c =g 4 Rintatfrl)
nt+i x=-1 n+1 at+1
2
. (nt+1)
In t 1 f =0, =1, =0 d =
particular for B a cv an cn+1 >

As a simple consequence of identity (9) and the notion of
a-quasi-normality, we can state the following theorem:

THEOREM 2. If the roots xi,xz,...,xnif w(x) and 1

form an a-quasi-normal point system over -1 <x<1, then

(1-x)|w(x)| < 2|w(-1)]| for -1<x<1.
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The proof follows immediately on writing (9) as follows:

(1-x)2 QZ(X) (1+x)[1 + cn+1(x-1)] 2
Lz . z © =)
4w (-1) 2w (1)
2
n w, (x)
1 1+x
- = 5 Trx {1+cv(x-xv )}

v=1 (x—xv) W (xv) v

1
By the condition of a-quasi-normality we have

- > - >
1+cn+1(x 1) > 0 and 1+cv(x xv) 0

and so the left side is < 1 whence the result. Thus in particular

we have for P(a’ B)

N (x), 0<p<1 and 41 <a<2, the inequality

(1-X)IP(Q’5)(X)I _<_2 IP(Q’,ﬁ)(_i)I .

n n

Remark. We may say that a point-system x,,x_ ,...,x ,1

1" 2 n
is strongly a-quasi-normal if

- > -
(A) 1+cv(xxv)_p>0 and ‘l+cn+1(x1)_>_p>0,

(v =1,2,...,n),

where c,:¢ 1 are given by (5), (6). We see that the zeros of
n

the Jacobi polynomial plP)
n

form a strongly a-quasi-normal point system.

(x) (with 0<B<1 and 1<a<?2)

It is possible to formulate a theorem analogous to
Theorem 5 of Szasz [1], but we shall not do so here.

The identity (10), after the substitution x =cos Z and on
n

using the Mehler-Heine type relation [Szegd [5] p. 165]
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-

. (a,B) z,_ [z .
lim Pn (cos n) = (2 } Ja(z) uniformly for (z] <R,
n-» 00
R fixed, leads to the following interesting identity where Yo
is a zeroof J (z) (which can be otherw1se proved by use of
4
Mlttag-Lefﬂer s theorem applied to J (z) -— )
Z
2.2
00 z J (z)
J (Z)+_J1(Z)+4k21 ( > 2) J ( )= 1
z -
z TV Yk

[See [8] p. 105, formula (65) which gives the above identity on
observing that J&(yp) = Jo(yp.) since

zJ'i(z) + J’i(z) = zJo(z) ([8] p, 11). ]

Formula (9) can yield other such identities too.

5. Egervary and Turan [6] have defined an interpolation
process to be stable for the interval [0,®] and weight function

e x, if for 0_<_ x1 < x2 <... < xr1 and polynomials rv(x),

(v =1,2,...,n) we have

n n
0<e Ty r(x)- T y¥*r (x)| <max |y - *(e-xv
Yy 5y LAYRRY - Yy7Yy

v=1 v=1 v
for all x> 0, where
(12) r (x) =

v .
0, j#v
If we are not concerned about an interpolation process being
"most economical'’ then we can still get a stable interpolation
process in the following manner. As Egervary and Turdn have

shown, for the above condition to be satisfied we must have for
the rv(x) the following further conditions:
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(13) r'(x)=0 j#v, r(x )=r (x )=1.
vj vy vy

We then find a polynomial satisfying (42) and (413) and we
take the x' s to be the zeros of Laguerre polynomials
L(a)(x), a>-1. We also suppose that the value of the
n
interpolatory polynomial R (x) is prescribed at x=0.
n

Then it is easy to see that

2
Lia)(x) \ n X[Xv + a(x—xv)] >
(14) Rn(x, f} = Rn(x) =Y, @) } + = v, > yi v(x)
L0 v=1 x
n v
We have
) 2
/L(a (x) n . x[x +a(x-x_)]
Ulx) =e " - ?) -z e vt > C 1%(x) >0
L) v=t x v
n v
for x> 0.
For U(0) =0, U(xv) =0, U'(xv) =0(v =1,2,...,n), where
L
,Zv(x) = @) )
(x—xv)L (xv)

and so U(x) has 2nt+1 zeros. If U(x) vanishes for one more
value of x> 0, then by Rolle's theorem for some £ > 0,

U(2n+1) (2n+1)

() =0. But U (x) =e*. Hence U(x) >0 for

x> 0.

We need in fact the weaker assertion that for 0 <x<®
we have
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(@)

L' (x) n x[x + a(x-x_ )]
ex n > > v - % 1 2 (x)
Lfla)(O) v=1 x v

We shall now prove the following

THEOREM 3. 1If £(x) is continuous and bounded for
0 <x< o, and w 1is an arbitrarily large positive number,
then the sequence Rn(x, f) in (14) converges to f(x) in (0, «)

and uniformly in [0,w] where 0<a<1.

For o =0 we get the case treated by Balazs and Turan [7].

We shall need the known inequality for modulus of continuity,
viz.

AN, (N§ <(M1) A, (6)
W - 2w

2

where A6 < 2w and A > is the modulus of continuity of £(x)
- w

with respect to the interval [0, 2w].

We shall base the proof on the following lemmas:

LEMMA 4. For Ofxfw and for n=2,3,4,... we
have :
n
Z r (x)-1(<c nni/4
v 1
v=0
where
x(x + ao(x-x ))
rv(x)z > lv(x), v=1,2,...,n
x
v
2
L(a)(x)
r(x) = |————
0 L(a)(O)
n
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and <y is a numerical constant depending only on w .

Proof. We have, from the Hermite-Fejér formula of
interpolation, the identity

n x (x -a)+ x(atl-x )
(15) 1= » 22 Y 1% () .

x v
v=1 v

Also putting x =0 in the above and multiplying both sides suitably

we have
2 2
Ll(_la)(x) ) n Xv -a LI(f) (x)
(16) —\ | = Z o
L(a) (0) v=1 x2 L' (a)(x )
n v n v

Then we have, using first (15) and then (16), the following:

n
Z r (x)-1
v=0 v
2
n ax(x-x ) ‘ L(a)(x)
=z (X 5 L (x)+ n) )
v=1 *y X L(a (0)
v n
n a(x-x )
D S - (x-x ) £ (%)
v=1 Xv xv v
2
(a)
_ ; L, L " (x) )
v=1 | Ty % L' (a)(x )
n v
2
n L(a)(x) |
v=t = (x-xv) L' (a)(xv)
Then
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x| ® n x L' (x)
¢ Erv(x)-1_<_ Zx]xx] n() 5-S‘I‘*.SZ
v=0 v=t v !y L'a(x)
- n v
where
2
L(a)(x) )
s =¥ 3 x n
1 ]x—xv ]<nn1/4 *y [x-x | L;l(a)(xv)
n
e-x . n‘-i/4 z X le(x)
- x v
v=4 v
X -1/4 n x-.x (1-a)
< ° = 2°(x) since 0<a<1
- 1-a 2 =
v=1 x
v
-x -1/4 n x{x +e(x-x )}
n v v
=< 1-a z 2 f v(x)
v=1 X
v
2
-1/4 L)
n -x| n
=< 1-a 1-e 1 (a)
L "~ (0)
n
-1/4
< ,
- 1-a
and
- (a) 2 1 1
S. = e x |L' (x) z .
2 n ,x_xV l>n_1/4 xle—xvl (L'(a)( v))
2 n
_n1 /4 e xL(a)(x) = ()1 >
n veil (L' oz( ))
viTn v
115

https://doi.org/10.4153/CMB-1964-013-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-013-7

Since from Szego [5] (p. 176 formula (7. 6. 12)) we know that

1
<cf > - =
_C OI'C!_ 2

x)

(17) n-cy/2+1/4 max e-xlzxa/2+1/4'Ll(’la)(

0<x< w

and since again we know ([5] p. 342 formula (14.7))

n
(18) = = . (a)i _ F‘;(*i”;‘f;“ ~ a7
(03
v=1 %y (L' (x ) n
n v
we have
S2 < <:n-1/4 ’

The Lemma is then proved.

LEMMA 5. For 0§x§m, we have

n
= [x-xv | r (%)< czn-i/4 .

er 1 )|
L(a (%) ) P x[xv+a(x-xv )] (Lila (x))
+ e

n
=
1 (@)

vi .
v=1 x L (xv)) ~lx-xvl

L0

n

n

Observe that with 0 <a< 1, xv + a(x—xv) >0 for x> 0.
The first term in the sum on the right is taken care of by the
inequality (17) if o> - é— while the other term involving sum-
mation on the right can be broken into two parts - one with

-1/4
1/4 /. The

[x—xv | < n’ , and the other with ]x-xv | >n
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first part of this decomposition has already been treated in
Lemma 1. The second part can be written as

2 -2
-x (o) ‘ -1 -1( 1(a)
e . x(Ln (x) z _1/a %, ,X-le Ln (Xv)
lx-x ,>n
v
-2 )'
+a Z _1/4 x, Xv)
[x-x |>n
2 n -2
e gl M4 = x-i( @)y
- n vin v
v=1
n -2
ta Z xn2 L' (a)(x )
v n v
v=1
From (16), we have
-2 n -2
(“)(0)) - 02 |xtlax ( @)
v v n v
v=1
Combining this identity with (18) we get for 0< a
2

Lt

n -2
(19) o« T x° L'(")(xv))

n

@ [Lhe) v

This estimate helps us to get the lemma.

LEMMA 6. We have

-1/2

Z r (x)<cn , 0<x<w.
v =
x >2w
v

The proof follows as above, on observing that for 0 <x<w
and x> 2w, we have ]x—xv [ >w, sothat
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2
e " x L(a)(x)) .
n

Ln (Xv )

Using the estimates (17), (18) and (10) we get the required result.

Proof of the Theorem. Since f(x) is continuous and
bounded, we have

n
an(x) - f(x)] < zo [f(x ) - £x)| r_(x)
yv=

n
t =] 1= 2 r (%)
v=0
’ n
< Zz If(xv )—f(x)] rv(x) +2M = rv(x) +M[(1- Z rv(x) .
|x |<2w x >2w v=0
v = v
Since
-1/4 1/4
860 - fx ) < N, (xex DAL 07 ) a0 T xex |+ 1),
the rest of the proof follows on using the lemmas.
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