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M O S A I C I N G : C U R R E N T STATUS 
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ABSTRACT Over the past several years, there has been substantial 
progress both in algorithms for mosaicing and in our understanding of the 
effects of errors on mosaiced image. I describe the current state of knowl­
edge in both these areas and also indicate where future improvements are 
likely to lie. 

INTRODUCTION 

For many areas of astronomy, the ~ arcminute field of view allowed by moderate 
size antennas at millimeter wavelengths is too small. Objects often span many 
arcminutes or tens of arcminutes and therefore will not fit into one primary 
beam of an interferometric array. Single dishes can be used to image large fields 
at low resolution using standard methods but imaging with the high resolution 
attainable only by interferometry merits careful thought. In this paper, I use 
the name mosaicing to denote not just a single algorithm, but a systematic 
approach to this problem of imaging wide fields at high resolution using both 
single dishes and interferometers. This topic has been covered in a number 
of NRAO Millimeter Array memos (Cornwell 1984, 1987, 1988, Braun 1988, 
Holdaway 1990, 1992), in lecture notes (Cornwell 1989), and in a number of 
papers (Cornwell 1988, Mundy et al, 1988, Cornwell, Holdaway and Uson, 1993). 
Here I will summarize our current knowledge. 

The algorithms described here are available in AIPS, in a development 
package SDE used internally at NRAO, and will be implemented in AIPS + + . 

GOALS AND ASSUMPTIONS 

Our Goals for mosaicing are as follows: 

• it should allow accurate imaging of a wide field of view spanning many 
primary beams at interferometric resolution, 

• it should produce high imaging quality as measured by indicators such as 
on-source and off-source signal-to-noise ratio, 

• it should be generalizable to other data such as, for example, that obtained 
by beam switching (Emerson et al., 1979). 

'Associated Universities Inc. operates the National Radio Astronomy Observatory under Na­
tional Science Foundation Cooperative Agreement No. AST-8814515 
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• it should be computable with moderate resources, 

• and it should be amenable to analysis. 

We initially make the following Assumptions: 

• The measurement equation is as follows. The visibility V measured by an 
interferometer of baseline u pointing at position x p is given by: 

V(u, xp) = jA(x- xp) 7(x) e ^ u - x dx (1) 

A single dish is a simple special case, as is a beam-switched total power 
system. 

• Visibility data can be collected for a range of pointing positions, xp , span­
ning an object, 

• We know the primary beam A reasonably well (e.g. down to 1st primary 
beam sidelobe). This may be relaxed subsequently but it is a realistic 
initial goal. 

• The data are well-calibrated and free from significant errors. Again, this 
may be relaxed in more sophisticated work. 

• Neither the image plane nor the Fourier plane sampling are necessarily 
complete. Special cases may arise when one or the other is good enough 
but we will not assume perfect sampling. 

• The objects of interest have structure on most spatial scales. Thus the 
emission is more complicated than, for example, just a collection of a 
moderate number of point sources. This means that we desire accurate 
reconstruction of the visibility function over large regions of the Fourier 
plane. 

MOSAICING ALGORITHMS 

I will not describe the reasoning behind the development of the various algo­
rithms for mosaicing since this is covered in the publications cited above. In­
stead, I will classify the algorithms according to the situation for which each one 
is designed. 

Perfect coverage, single pointing If we ignore the effects of the dirty beam, 
then for a single pointing, the true sky can be recovered by dividing the 
dirty image I by the primary beam. 

'D,™M = _8sL) (2) 

In AIPS this is performed by PBCOR. 
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Perfect coverage, multiple pointings For multiple pointings, we can gen­
eralize the previous result by a least squares formalism to yield: 

1 ( X ) - £ p A ( x - x p ) ' W p I3) 

In MPS this is performed by LTESS. 

Limited coverage, multiple pointings If the sidelobes of the dirty beam are 
important then we can deconvolve each dirty image before combination. 
The most obvious drawback to this approach is that adjacent fields cannot 
help each other in the deconvolution. 

rTIME-HONORED/,^ _ 2Zp ^ ( x ~ x p) w p-^p ( x ) ,.-. 
{ ' ~ E p A ( x - x p ) H ( 4 j 

Limited but identical coverage If synthesized sidelobes are important and 
are roughly the same for all pointings then we can deconvolve an average 
dirty beam after linear combination. To a good approximation, the average 
PSF is given by: 

5 L M (x) = B(x) 
£pAp(x)Ap(0)wPl 

E P 4 ( X K 

We can therefore define an estimate of the sky obtained by solving the 
approximation convolution equation: 

7LSQ(x) « 5L M(x) ® JLM(x) (6) 

For the MMA compact configuration, BLM has no zeroes in the Fourier 
transform and so linear deconvolution (e.g. Wiener filtering) can be used! 
In general, the Maximum Entropy Method (MEM, see e.g. Narayan and 
Nityananda, 1986) or CLEAN (Hogbom, 1974) could be used. We tend to 
call this approach linear mosaicing even though a non-linear deconvolution 
algorithm can be used in the final step. 

Limited, non-identical coverage The very best scheme is to deconvolve 
all fields jointly, using MEM (or something like it) to find an image of 
the whole region which (a) fits all the measured data, and (b) has some 
desirable property such as maximal entropy. The joint deconvolution al­
lows adjacent pointings to reinforce each other in the estimation of missing 
spacings. This is important because the deconvolution algorithms, such as 
MEM, are non-linear and work better with more complete Fourier plane 
coverage. In AIPS this is the VTESS/UTESS algorithm. It is also known 
as non-linear mosaicing. 

Poor knowledge of primary beam We can relax one of the assumptions 
described above, namely that we know the primary beam well. Braun 
(1988) argued that instead of enforcing consistency between all pointings 
on all spacings, we should then use full non-linear mosaic only on the short, 
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low TB, baselines, and separate deconvolution on long, high TB spacings, 
merging answers in the Fourier plane. This reflects the fact that full-non­
linear mosaicing is often most useful for the short spacings, while for the 
longer spacings, the diameter of the array elements is small compared to 
the typical spacing between Fourier plane samples. 

These algorithms are available in AIPS and are used routinely for reducing 
VLA and other array mosaicing observations. More sophisticated versions exist 
in SDE and are used for simulations and tests. 

The computing costs vary: 

Linear mosaicing : The costs lie principally in gridding, Fourier transfor­
mation and combination of the data from individual fields, followed by 
deconvolution of entire field. This is therefore roughly the same cost as 
deconvolving observations with much smaller element size. 

Non-linear mosaicing : The costs lie also in gridding, Fourier transformation 
and combination of individual fields, but now repeated many times as 
iteration proceeds. This may seem expensive, but compared to separate 
non-linear deconvolution of the individual field, the increase in CPU time 
is only about 2-3, if limited size transforms are used. 

UNDERSTANDING MOSAICING 

Mosaicing can be understood in a number of different and complementary ways. 
Perhaps the simplest is based upon a short paper by Ekers and Rots (1979) 
on a method of synthesizing the Om and 18m spacings missing from WSRT 
observations. It is well-known that for a single dish, we can recover spacings 
±D/\ around zero by scanning across an object and Fourier transforming the 
total power measurements with respect to scan position. The contribution of 
Ekers and Rots was to derive an analogous result for a two-element interfer­
ometer: namely that we can recover spacings ±D/X around the nominal B/X 
by scanning across an object and Fourier transforming the measured visibihty 
with respect to scan position. Cornwell (1988) derived a sampling theorem to 
show that we actually need samples only on a discrete grid of image plane points 
spaced Axp < ^ j . Although Ekers and Rots were interested only in the missing 
spacing problem, it is clear that this result can be used to derive spacings on 
a very fine grid in the Fourier plane. If we sample the visibihty for a grid of 
pointing positions of side Np pointings, then we can recover spacings on grid 
Au ~ jpj in Fourier plane. One nice way to understand this result is to note 
that, effectively, we have decreased the element size from D to ~ -R-. We have 
therefore performed "element synthesis". The linear and non-linear mosaicing 
algorithms described above are more flexible than the Ekers and Rots scheme. 
Linear mosaicing can be seen as a optimum generalization of Ekers and Rots 
for many interferometers, while non-linear mosaicing can be regarded as Ekers 
and Rots for many interferometers plus some "glue" from the entropy term to 
help interpolate missing spacings. 
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ANALYSIS OF MOSAICING 

Cornwell, Holdaway and Uson (1993) have recently performed an extensive anal­
ysis of mosaicing. They used three methods to investigate properties of mosaic-
ing: 

Analysis => basic understanding, first-order constraints on effects of errors such 
as noise, pointing, surface errors, etc. This is possible only for linear 
methods. 

Simulations =>• check basic understanding, provides detailed constraints on de­
sign. They produced an extensive simulation package capable of simulating 
many different types of error. To assess image performance, they devel­
oped measures of imaging quality. Simulations such as these are useful for 
checking analysis of the linear methods and for investigating non-linear 
methods. 

Observational tests =>• provide basic check of results, new types of error, the 
unexpected. 

One of the great virtues of linear mosaicing is that simple error propagation 
can be used to derive the effects of various types of errors on the final image. 
Cornwell, Holdaway and Uson (1993) derive the following results for the noise 
level a and the on-source signal-to-noise ratio A. 

Additive errors 

Primary beam errors 

<X/LM = 

,PBE 

EpAJ(x) 

Ep4(x) 

v/EP<^(x) 

(7) 

(8) 

In the limit in which the errors are totally correlated between pointings 
the on-source SNR is limited to: 

A PBE 1 
(9) 

Pointing errors 

A P £ = yfaW*)' 
2^2 In (2) 

0_A 

Ox 
(10) 

Typically, this is ~ OA/<TX. 

Surface errors 
ASE = 

lol (11) 
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The dynamic range will be larger than the on-source signal-to-noise ratio 
by something like the inverse of typical synthesized beam sidelobe level. 

These results show that good imaging quality relies upon pointing accuracy, 
surface accuracy, and primary beam knowledge. Further discussion of the exact 
requirements is given by Cornwell, Holdaway and Uson (1993). 

WHAT NEEDS MORE WORK? 

Although some of the algorithms described here have been around for almost 
ten years, mosaicing is still under-developed. At the moment, mosaicing obser­
vations are sufficiently painful to perform with today's millimeter wavelength 
arrays that relatively few mosaicing observations are made, and of those, few 
have the signal-to-noise ratio to merit full non-linear mosaicing. This will change 
as more elements are added to existing arrays and as faster telescopes, such as 
the NRAO MMA, are built. I expect that as people come to use mosaicing 
algorithms more and more, there will be pressure for improvements in a number 
of areas: 

• We need better non-linear methods, such as a version of MEM in which 
the noise is treated as a free variable rather than estimated by the user. 
It may also be fruitful to try completely different algorithms such as the 
SDI CLEAN (Steer, Dewdney and Ito, 1984). 

• Self-calibration can be incorporated more deeply into mosaicing. For ex­
ample, for complex gain self-calibration it will pay to alternate selfcal iter­
ations with mosaic iterations. Self-calibration of pointing errors will also 
be possible for sufficiently bright objects. Emerson (1991) has already 
demonstrated cross-calibration of array and single dish data, and Hold-
away (private communication) demonstrated an algorithm for mosaicing 
with a priori known pointing errors. 

• Both the assessment of data quality and editing of bad data are consider­
ably more difficult for mosaicing observations since the approximate tem­
poral continuity of the visibility function measured by an interferometric 
array no longer holds. 

• The design of new interferometric arrays is strongly affected by the need 
for mosaicing (Cornwell, Holdaway and Uson, 1993). Also impacted are 
on-line systems, and telescope scheduling programs. 

• Finally, mosaicing should be incorporated deep into new software systems 
such as AIPS++ rather than tacked on as in AIPS. 
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DISCUSSION 

R. Ekers A focal plane array would provide a number of simultaneous pointings for 
input to your mosaicing algorithms which would automatically give identical uv plane 
coverage. Would this be a significant advantage compared with sequential pointings? 

T. Cornwell Yes. The advantages of focal plane array for mosaicing are numerous 
(a) speed, (b) coherence of eg. pointing errors for selfcalibration, (c) increased speed 
of pointing calibration, (d) improved total power measurement and (e) identity of u, v 
coverage which in some cases can be exploited via the linear mosaicing algorithm 
described here. 

R. Hills What range of timescales of pointing errors could be corrected by a method 
of the type you described? 

T. Cornwell As in other forms of selfcalibration, it will be more useful for timescales 
a few times smaller than the calibration cycle. For the MMA, interferometric pointing 
is feasible in a few minutes, so we expect that pointing selfcalibration will be useful 
for minutes up to a hour or so. Timescales much shorter than the calibration cycle 
average out, leading to a broadened primary beam. 
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