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The structure of the internal boundary layer above long wind farms is investigated
experimentally. The transfer of kinetic energy from the region above the farm is dominated
by the turbulent flux of momentum together with the displacement of kinetic energy
operated by the mean vertical velocity: these two have comparable magnitude along
the farm opposite to the infinite-farm case. The integration of the energy equation in
the vertical highlighted the key role of the energy flux, and how that is balanced by the
growth of the internal boundary layer in terms of energy thickness with a small role of
the dissipation. The mean velocity profiles seem to follow a universal structure in terms
of velocity deficit, while the Reynolds stress does not follow the same scaling structure.
Finally, a spectral analysis along the farm identified the leading dynamics determining the
turbulent activity: while behind the first row the signature of the tip vortices is dominant,
already after the second row their coherency is lost and a single broadband peak, associated
with wake meandering, is present until the end of the farm. The streamwise velocity peak
is associated with a nearly constant Strouhal number weakly dependent on the farm layout
and free stream turbulence condition. A reasonable agreement of the velocity spectra is
observed when the latter are normalised by the velocity variance and integral time scale:
nevertheless the spectra show clear anisotropy at the large scales and even the small scales
remain anisotropic in the inertial subrange.

Key words: boundary layer structure, turbulent boundary layers

1. Introduction

Worldwide efforts are carried out to reduce our dependence on fossil fuels due to their
harmful effects on the environment and their non-renewable character. Wind power is
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one of the most attractive alternatives of renewable and clean source of energy due to
its potential and availability. The growth of wind energy worldwide has been continuous
in the last decades leading to the increase of the number of wind turbines onshore
and offshore. The clustering of wind turbines facilitates the project considerably since
the cost per turbine decreases. Optimisation algorithms are often used to decrease
electrical losses or visual and social impact. While onshore wind farms follow a layout
driven by the terrain to exploit the eventual speedups, offshore farms are limited by
the feasible locations where the sea depth is neither too shallow nor too deep, enabling
the construction of the foundation and the installation of the turbines. Similar to
other renewable energy sources, wind energy is characterised by a low power density,
namely the ratio between the produced power and the area occupied by the turbines.
On average a wind farm with regular layout produces a power of 5-10 W m~2 of
land area and this number does not depend on the diameter of the turbines (MacKay
2008).

Power production measurements over real farms indicate that the first row of turbines
facing the wind is the most producing (only wind farms over flat terrain or offshore will
be considered in the present discussion), while the other turbines produce less due to wake
losses. If the layout is regular (as for instance is the case of equispaced turbines), the
power production has an approximate plateau, suggesting that a nearly parallel state is
achieved in the velocity statistics somewhere downwind of the farm leading edge. This is
true for the infinite-farm case (Calaf, Meneveau & Meyers 2010), but it is approximately
true also for finite-length configurations (Chamorro, Arndt & Sotiropoulos 2011; Bossuyt,
Meneveau & Meyers 2018). However, a paradox emerges from the parallel argument: if the
flow is nearly parallel, the horizontal flux of energy upwind and downwind of every wind
turbine (sufficiently downwind of the first rows) must be equal but the turbine in-between
is anyhow extracting power from the flow. The only flux of energy able to sustain the
power extraction in a parallel case (without introducing an artificial pressure gradient) is
the energy flux from above the turbines. Moreover, since the turbines are applying a drag
force to the flow, the absorbed momentum must be balanced by a decrease of the pressure
through the farm (as for instance in the infinite farm case) or by the growth of an internal
boundary layer on top of the farm.

With the growth of wind energy there has been interest in developing modelling tools
to predict wind-turbine performance in a large wind farm, where the wakes created by
upwind wind-turbines can significantly reduce the power production of downwind ones
and therefore the performance of the whole farm. There are already a significant number
of studies that have focused on the structure of wakes from individual wind turbines
(Medici & Alfredsson 2006; Segalini & Alfredsson 2013; Bastankhah & Porté-Agel
2014). Several empirical wake models have been proposed in the wind-energy community
based on experimental, numerical and theoretical arguments (Katic, Hgjstrup & Jensen
1987; Ainslie 1988; Braunbehrens & Segalini 2019). However, the wake models provide
uncertainty especially for what concerns the wake interaction, often assumed to be best
replicated by the sum of the squares of the velocity deficits, according to the current
best practice. These models can be considered ‘bottom-up’ approaches to the problem
of understanding the structure of large wind farms.

Previous studies comprise a large amount of experimental (Cal e al. 2010; Chamorro
& Porté-Agel 2010, 2011; Tungo 2016) and numerical (Wu & Porté-Agel 2011; Meyers &
Meneveau 2012; Yang, Kang & Sotiropoulos 2012; Wu & Porté-Agel 2013) approaches
to better understand the interaction of turbulent flow with a distributed array of wind
turbines. Large-eddy simulation results (Stevens, Gayme & Meneveau 2014, 2016) and
wind-tunnel measurements (Chamorro & Porté-Agel 2011; Bossuyt et al. 2017, 2018)
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show that after approximately 10 rows, the average row power becomes independent of
the row number, thus indicating the approach of a fully developed regime. Abkar &
Porté-Agel (2014) examined the mean and turbulent kinetic energy budgets of very large
wind farms in a conventionally neutral boundary layer. The works of Cortina, Calaf &
Cal (2016) and Allaerts & Meyers (2017) have demonstrated that there exists two mean
kinetic energy (MKE)-based mechanisms that primarily contribute to the wake’s recovery.
These are the advection and the vertical flux of MKE. Results from Cortina, Sharma &
Calaf (2017) in a very large wind farm indicated that these mechanisms are modulated by
the background thermal stratification, as well as the wind farm density. For low density
wind farms advection dominated the wake recovery, while for high density wind farms
the MKE recovered through turbulent fluxes. For the cases in-between, a smooth balance
of both mechanisms existed. Significant numerical work has been devoted to the effect of
atmospheric stratification and Coriolis force (Allaerts & Meyers 2017; Wu & Porté-Agel
2017) on the farm aerodynamics, although these aspects will not be investigated in the
present work.

To help understanding basic trends and overall asymptotic limits, it is important to have
simple physics-based models with relatively few terms. Following this aim, the problem
was approached from another (‘top-down’) direction where the wind turbines in a large
array are modelled as surface roughness elements, leading to an increased roughness
length that needs to be parameterised. This idea was introduced by Newman (1977) and
Lissaman (1979) and further developed by Frandsen (1992) and Frandsen et al. (2006)
who proposed a one-dimensional, single-column-type model that replaced the complex
three-dimensional structure of a wind farm with a horizontal average often used to describe
turbulent flows in canopies (Raupach & Shaw 1982; Raupach, Coppin & Legg 1986;
Raupach, Finnigan & Brunet 1996; Yang et al. 2006; Segalini, Fransson & Alfredsson
2013). This was formulated as an equation for the mean horizontal velocity based on a
vertical integration of the momentum equation. In the Frandsen top-down model, it was
assumed that there is a constant momentum flux above the wind farm with a characteristic
friction velocity, u,p;, while another constant stress region occurs below the hub height,
Zn, With characteristic friction velocity, u,j,. The difference between the two momentum
fluxes (above and below the turbines) is given by the momentum loss caused by the
turbines, assumed to be concentrated at hub height. This approach was used to deduce
an effective roughness length zp j; that describes the entire wind farm by means of a
roughness analogy.

By means of an integral analysis of the kinetic energy balance, the kinetic energy
fluxes associated with the Reynolds shear stresses was found to be of the same order of
magnitude as the power extracted by the wind turbines, highlighting the importance of the
vertical fluxes of kinetic energy and the interaction of the wind farm with the atmospheric
boundary layer (ABL) (Cal et al. 2010; Calaf et al. 2010; Hamilton et al. 2012; VerHulst
& Meneveau 2014). The model was used to provide insights into the optimal spacing
between wind turbines in large wind farms (Meyers & Meneveau 2012; Stevens et al.
2016). In particular, Meneveau (2012) proposed a new top-down model that combined
the Frandsen approach with a model of the growth of internal boundary layers to include
entrance effects. Later, a coupled wake-boundary layer model was presented by Stevens,
Gayme & Meneveau (2015) describing the distribution of the power output in a wind-farm.
The model coupled the wake expansion/superposition approach with a top-down model for
the overall wind-farm boundary-layer structure. The wake expansion/superposition model
captured the effect of turbine positioning, while the top-down portion added the interaction
between the wind-turbine wakes and the ABL.

925 A2-3


https://doi.org/10.1017/jfm.2021.629

https://doi.org/10.1017/jfm.2021.629 Published online by Cambridge University Press

A. Segalini and M. Chericoni

The oscillatory motion of the turbines wake is another crucial factor in wind farms
because it increases the fatigue loads on the turbines. As already found in previous works
(Medici & Alfredsson 2006; Espafia et al. 2012; Coudou, Buckingham & van Beeck
2017; Stevens & Meneveau 2017; Braunbehrens & Segalini 2019), the dominant dynamical
phenomenon present in long wind farms is the meandering of the turbine wakes. Two
main possible reasons for the formation of wake meandering have been suggested over
the past few years: intrinsic instabilities of the wake associated with a periodic vortex
shedding within the wake (Medici & Alfredsson 2006; Espafa et al. 2012), or the effect
of the large-scale turbulent eddies contained in the ABL as observed for plume-dispersion
analysis (Espafia e al. 2012). Espaia et al. (2012) assumed that small-scale eddies (i.e.
smaller than the rotor diameter), constituting the high-frequency part of the turbulence
spectrum, are responsible for diffusive effects in the wake only, whereas the low-frequency
part, composed of eddies larger than the rotor diameter, acts to transport the wake as a
whole. Later, Coudou et al. (2017) found that the formation of wake meandering seems
to be neither entirely due to the intrinsic instabilities of the wake associated with a
periodic vortex shedding, nor just due to large-scale turbulent eddies contained in the
ABL. Rather, the wake-meandering formation appeared to be due to a combination of
both of these mechanisms. So, the formation of wake meandering appears to be caused by
the amplification of the intrinsic instabilities of the wake by large-scale turbulent eddies
within the ABL.

The present work focuses on describing the horizontally averaged structure of the flow
above a farm and on the interaction of the ABL with the wind-turbine array. The latter
is expected to be characterised by the internal boundary layer in order to understand how
the energy is transferred from the free stream (which contains a significant amount of
energy) to the wind farm. The present paper is structured as follows. In § 2 an integral
analysis of the governing equation (averaged in time and space) above the wind farm is
proposed in order to identify new relations between the vertical energy flux of kinetic
energy and the growth of the internal boundary layer. Section 3 describes the set-up used
during the experimental campaign. In § 4 some relations for the turbulent shear stress and
for the vertical flux of the MKE are proposed, highlighting the dominant terms of the
integrated governing equation from the experimental results. Also shown is a comparison
between the different layouts in terms of vertical flux. Furthermore, a self-similar analysis
is proposed to identify the self-similarity of the velocity statistics above the farm including
an attempt to describe the statistics by means of the diagnostic plot (Alfredsson, Segalini
& Orlii 2011). The section reports finally a spectral analysis to describe how the energy is
distributed amongst the various frequencies demonstrating the emergence and dominance
of a large-scale peak, most likely related to the wake-meandering phenomenon. The
section includes also some considerations about the spectra of the various velocity
components and how do they agree when normalised with the integral time scale.
Section 5 summarises the findings made in the present work with some concluding
remarks.

2. Integral analysis of the governing equations

As anticipated in the introduction, the characterisation of the flow of kinetic energy above
the wind farm is the main focus of the present work. This task is facilitated by the vertical
integration of the flow equations in terms of momentum and kinetic energy, providing a
framework to analyse the experimental results. The continuity, Navier—Stokes and energy
equations are averaged in time and space by means of the standard time-average operator
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and of a spatial horizontal filter, respectively. The latter is introduced as

@ =g [ edrd 1)

SxSy Sy xSy
where the horizontal filter size has dimension S, and S, in the streamwise (x) and
lateral (y) directions, respectively, while z will indicate the wall-normal (or vertical)
direction in the following. The use of the filter allows us to approximately obtain a
two-dimensional mean velocity field, thus helping to understand the macroscopic structure
of the momentum transport in the vertical direction. The two filters applied sequentially
(in time and space) imply the presence of fluctuations in time and space, so that any
quantity is here decomposed as ¢ = @ + ¢’ with @ = ¢ indicating the time average
(upper case variables will indicate time-averaged quantities to facilitate the notation)
and ¢’ indicating the time-wise fluctuation. Analogously, the spatially filtered quantities
will be decomposed as ¢ = (¢) + ¢”, where the first term is the spatial average and the
second term is the spatial fluctuation (so that the relationships ((¢)) = (¢) and (¢") = 0
approximately hold depending on the filter size). The time average of the product ab will
be ab = AB + d'b’ while the subsequent use of the spatial-average operator will lead
to (ab) = (A)(B) + (A"B") + (a'b'). The term (a'b’) is the Reynolds stresses spatially
averaged while (A”B”) is the dispersive stress: the latter represents the spatial fluctuations
of the mean velocity field and emerges from the nonlinear term averaged in space and
time.

The instantaneous velocity field in the streamwise, spanwise and vertical direction will
be indicated by u = uj, v = up and w = u3, respectively. The pressure will be indicated
by p, while the density and kinematic viscosity are denoted as p and v, respectively. The
application of the time- and space-average operators to the continuity equation leads to

a(U;)
0x;

=0. (2.2)

The time- and space-averaged steady Navier—Stokes equation becomes

| o cduationt
20D _ 10 Uy b

— , 2.3
axj' 0 0x; 8)612 axj' (2:3)

where rj = (u;.u]’.) + (Ulf’ U’) indicates the summation of the Reynolds and dispersive
stresses. In the following equations the viscous transport term will be neglected when
involving averaged quantities because it is expected to be small away from solid surfaces,
as in the present case. The averaged pressure term (P) was not measured during the
experiment; however, since the vertical velocity is expected to be small, the vertical
momentum conservation equation leads to

3 /1 1 U (x)?
(—<P> + r33) ~0 — ;<P>(x, DA — —ke(¥) —r33(x, 2),  (2.4)

9z \ p 2
where U, (x) indicates the velocity outside of the internal boundary layer. In (2.4) the term
ke(x) = (r11e + 220 — 1330)/2 denotes the difference between the free stream turbulent

kinetic energy, if present, and r33, = W(z — 00). By means of (2.4) it is possible to
rewrite the streamwise momentum equation as

o)  HUYW) _ dUe  dke D (ru—rs3) dri3

(2.5)

dx 9z “dx ' dx dx 3z
The term r1; is not present in the (2.5) for symmetry reasons.
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The mechanical energy conservation equation for the averaged flow can be obtained by
multiplying (2.3) by (U;), obtaining at leading order,

N S RN DR L {2/
a—xj[E(U])(Uz) +rU(Uz)+p(P)(U]):| —rU—axj . (2.6)

The last term of (2.6) represents the term transferring energy from the mean flow to the
fluctuating flow in time and space.

2.1. Derivation of the von Kdrmdn equation and of the integrated energy equation

The von Karméan equation, valid above the wind farm, can be obtained by integrating
equation (2.5) between z¢ and zy in the vertical direction, where z¢ is the closest position
measured above the wind farm, while z¢ is the farthest. This leads to

—r13(z0) = d <U29> + 8

——/ (rip — r33) dz + —/ ke dz, 2.7)

where §* and 6 are the displacement and momentum thickness defined, respectively, as

. [T, W W W
0= /zo (1 Ue) o 0= /;0 U. (1 Ue> dz, (2.8a.b)

while Uy = (U)(z9) and Wy = (W) (zp). It is worth pointing out that the integration starts
from the top farm here, zg, so that the bottom velocities are not zero. The shear stresses
r13(zr) ~ 0 because the free stream turbulence is assumed to be isotropic.

The integrated energy equation for the averaged flow was obtained by integrating
equation (2.6) as

" Mgz [ = [ pa 29
a/zo xz+[z]zo—/zo z, (2.9)
where

1 ) UZ

T, = E(UHUi) + (U) (ri1 — r33) + (W)r;3 — <U)7 — (U)ke, (2.10)
1 5 U?

T. = S (WU + (U)riz — (W) =5 — (Wike, (2.11)

U (W (U IR 4
p=r éx>+rl3( <8x> %)”33 (8z>' (212)

The dominant terms of (2.9) can be obtained through an analysis of their orders of
magnitude. It is expected that W < U, r] & 133 K U? and that W(zr), r13(zr) =~ 0. The
leading contribution to the kinetic energy will indeed come from (U)?/2. By means of this
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leading-term analysis, one obtains a simplified energy equation as

Lo [ U)*d Lo UZ/Zf(U)d Uor13(20)
-2 _ .2 — Uor
20x J,, . 20|/, ‘ 0713120
1 ¥ ()
—Wo (U - U3 =/ dz, 2.13
+2 ()(e o) ’ 3 oz z (2.13)

where (U)ry3 is the turbulence-induced vertical flux of MKE. By introducing the energy
thickness &, (Buresti 2012), (2.13) can be rewritten as

1 d ¥ ()
— U ~w, (U2 — U2) =< (3 U3) / dz, 2.14
or13(zo) + SWo(Ue 0 o \Gele + ’ r3——d (2.14)
with 8, defined as
1 (¥ (U U)?
5 = _/ L2 (1 = %) dz. 2.15)
2 o Ue U;

Equation (2.14) includes the vertical velocity Wy that is hard to measure above the farm.
To circumvent this problem, Wy is obtained from the von Karmén equation, so that (2.14)
is approximated by

(Ue —Up)  d(U70) (Ue+Up)  d 3 ¥ 9(U)
2 T 2 —a(we)+/ 13

r13(z0) dz.  (2.16)

20

3. Experimental set-up

The experiments were performed in the minimum turbulence level (known as MTL) wind
tunnel at KTH. The facility is a closed loop wind tunnel with a test section 7 m long,
1.2 m wide and 0.8 m high. The test section height was maintained constant throughout
the experiments to have a simple and well-determined boundary condition during the
measurement campaign. Before the test section a series of honeycombs and meshes were
present followed by a contraction with an area ratio of 9 : 1. The tunnel has a heat
exchanger to maintain the operating temperature constant within £0.01 °C.

The test section floor was covered with 4 m long steel plates to place the wind turbines.
These were positioned by means of magnets placed at the bottom of the tower, giving high
freedom in the layout choice. At the inlet of the test section a Prandtl tube was installed
to monitor the wind-tunnel speed and to calibrate the hot-wire anemometer. The velocity
inlet was kept fixed at Uy, ~ 8 m s~! throughout the experimental campaign and it was
used to normalise all of the velocity data. The dynamic pressure of the Prandtl tube was
measured with a Furness FCO510 micromanometer with an uncertainty of 0.25 %. Two
Pt100 probes were installed to monitor and control the tunnel temperature.

Two X-type hot-wire anemometers were used to characterise the velocity field. These
were traversed in the domain by means of a three-axis traversing controlled by the
measurement computer. The two probes had a fixed spanwise relative distance of D =
45 mm, corresponding to the diameter of the used wind-turbine model, and were
placed at the same vertical height and streamwise position. An S-shaped probe support
was manufactured to reduce the blockage effect of the traversing on the measuring
probes. One X-wire measured the streamwise and vertical velocity components, while
the other measured the streamwise and spanwise components, providing a nearly complete
characterisation of the Reynolds stress tensor. Both probes were placed in the middle of
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the test section and were traversed in a volume starting from the turbine top (z = zo)
up to approximately 7D, length longer than the farm streamwise extension and depth
equal to 3D, i.e. the lateral spacing between two turbines in the considered farms: by
assuming a spanwise periodic flow with negligible side effects, this should ensure the
full characterisation of the flow evolution and enable the spatial averaging. After the farm
trailing edge, the region below the turbine top was also characterised for an additional
15D since no turbines were present there. A Dantec streamline system was used in
constant-temperature mode for all the four wires. The velocity at each measurement point
was acquired for 20 s with a sampling frequency of 20 kHz. The characterisation of each
farm configuration took two to three days including the measurement time, traversing
time and calibration time performed automatically every 12 h to avoid drift in the
hot-wire measurements. The ambient temperature inside the test section was also measured
independently from the heat exchanger thermometer to apply (eventual) temperature-drift
corrections to the hot-wire reading.

The calibration of the probes was done in two steps. First, a directional calibration
was performed for both probes to characterise the angular coefficient of the probe,
y, according to the sum and difference method (Bruun 1995; Segalini et al. 2013).
Once the coefficient was determined, the probes were mounted in their measurement
support and calibrated only in velocity, providing the calibration relationship between
voltage and effective velocity for the ith probe, U, ; = F(E;). From the two obtained
effective velocities (measured with a single X-wire), the instantaneous flow velocities were
calculated as

1
U=3 U +Uo) and V= g (Uet — Ue) . (3.1ab)

No spires were used at the inlet of the test section so that the natural boundary layer
present at the test-section floor was present. In order to investigate the effect of free stream
turbulence, two different grids with square mesh size M/D = 0.56 and M /D = 1.12 were
used. Figure 1 shows the inlet profile of the streamwise velocity and of the velocity
variances with and without the upstream grid. The edge of the incoming boundary layer
was in any case below the bottom tip of the turbine models located at z/D ~ 1 (with
z =0 indicating the ground). The boundary layer without grids was turbulent near the
wall, but the turbulent fluctuations became negligible above where the flow velocity was
nearly constant in the vertical direction. With the grid, the boundary layer became thicker
as similarly did the region characterised by significant velocity fluctuations. Outside
the edge of the near-wall region, the velocity fluctuations had the same magnitude in
all components, as typical in isotropic grid turbulence. The integral time scale is also
reported for the case with and without grids: despite the different mesh size, the time scale
of the turbulent structures is comparable, so that the grids provide additional turbulent
structures with similar dynamics, although the thickness of the boundary layer is higher
for M/D = 0.56.

3.1. Turbine details

Up to 152 turbines were involved in the present measurement campaign. These were freely
rotating two-blade plastic rotors with diameter D = 45 mm, similar to what was already
used by Ebenhoch et al. (2017) and Segalini & Dahlberg (2020). The hub (located at z,,, =
60 mm = 1.33D from the ground) consisted of a tube of 3 mm diameter with friction
bearings holding the rotor, while a tower with the same diameter was used to support
nacelle and rotor. A magnetic foot of diameter 10 mm and height 3 mm was glued to the
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Figure 1. Inlet profiles (measured at x/D = —10) of (a) streamwise velocity U, (b) standard deviation oy, (¢)
oy, (d) oy, (e) integral time scale, A, for the clean inflow (black lines), for the grid with M /D = 1.1 (red lines)
and for the grid with M /D = 0.56 (blue lines).

tower: the magnet was sufficiently strong to avoid the displacement of the turbine subjected
to the approaching wind.

A strain gauge balance was used to characterise the small thrust force of the rotor.
The thrust coefficient was found to be Cy = 2T/(p U? Ad) ~ 0.59 + 0.002Ujner (Ag =

inle
7R? = nD?/4 indicates the rotor area) with a weak dependence from the velocity
magnitude. Furthermore, the turbines rotate with a tip-speed ratio A = 2R/ U,pjer ~ 4.8,
thereby quite fast due to their small size.

The wake downwind of a rotor was characterised at five different planes behind four
aligned wind turbines in a separate experiment and the results were averaged to obtain
an ensemble of the wake velocity deficit (the distance between the turbines was 20D,
sufficient enough to limit upstream wake effects but providing some weak turbulence
before each turbine). Figure 2 shows the mean velocity field in the axial and in-plane
directions and the standard deviation of the axial component. It is quite remarkable that
the tower leaves a significant footprint downwind of the turbine, despite its small size
compared with the rotor (the frontal area ratio between the tower and the rotor is just
11 %), but it has a profound effect in both the mean velocity and the standard deviation,
with a intensity comparable with the tip vortices at the closest plane. However, already at
3D downwind of the rotor the wake of the tower becomes less intense and it vanishes. The
wake deficit tends to move downward merging with the deficit of the tower, as indicated by
the circles in figure 2 which mark the wake centre. The angular velocity behind the rotor
is relevant only within the rotor area (Segalini & Alfredsson 2013) and vanishes within the
first 6D from the rotor.

3.2. Farm details

Inline and staggered wind-farm layouts were tested with different spacing and free
stream turbulence in the present experimental campaign. Figure 3 shows a schematic
representation of a farm together with the used reference frame while table 1 reports some
details of the seven investigated test cases.

All cases have the same lateral turbine spacing, while in the staggered cases the even
rows are shifted by 1.5D sideways: the number of turbines is approximately the same as
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0.05

Figure 2. Mean streamwise velocity (a—e), in-plane velocity (f—j) and streamwise velocity standard deviation
(k—o0). All velocities are scaled by the tunnel inlet velocity for (a,f,k) x/D = 1.2, (b,g,l) x/D = 3.4, (c,h,m)
x/D =5.6, (d,i,n) x/D ="17.8 and (e,f,0) x/D = 10.0. The circles in panels (a—e) indicate the minimum
velocity deficit location at the given plane, while the dashed lines indicate the rotor edge.

Uinlet

Figure 3. Schematic representation of an investigated wind farm and of the used reference frame. The farm
canopy top plane z = 7o is indicated together with the internal boundary layer developing over the farm.

farm I, but the arrangement is more homogeneous. The resulting mean flow is shown at
some streamwise cross-sections in figure 4 for farms I and III, where it can be noted that
for the staggered configuration the flow is more homogenous in the spanwise direction.
Figure 4 underlines that, while the staggered case is sufficiently homogenous to be
studied as two-dimensional, the inline case is not since a large momentum deficit is
concentrated in the wake of the line of turbines and 19 rows are not sufficient to merge
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Code Arrangement Inflow condition Ny Ny Sy/D Sy/D
I Inline Clean 19 8 4 3
II Inline Clean 10 8 8 3
I Staggered Clean 19 8 4 3
v Inline Grid (M/D = 0.56) 19 8 4 3
\% Inline Grid (M/D = 1.11) 19 8 4 3
VI Staggered Grid (M/D = 0.56) 19 8 4 3
VII Staggered Grid (M/D = 1.11) 19 8 4 3

Table 1. Characteristic parameters of the studied wind farms.
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Figure 4. Selected planes of the streamwise mean velocity field, U/Ujyer, for farm I (a) and 111 (b).

it with the wake of neighbouring lines. It is expected that real wind farms, characterised
by larger atmospheric turbulence, should have wakes that expand faster (as for instance
in the well known picture of the Horns Rev farm), but nevertheless this lack of spanwise
homogeneity will be solved by means of the horizontal average described in § 2.

The presence of the internal boundary layer above the farm was associated with the
acceleration of the free stream above the farm (as the test-section ceiling was not changed):
all cases are indeed subjected to a maximum 6 % increase of the free stream velocity
between the leading edge and the trailing edge of the farm. This increase did not play a
relevant role in the integral analysis of the velocity field, as discussed in § 4.2.

4. Results

The analysis of the database has been driven by the integral equations and by the
attempt to build a simplified model based on the self-similarity of the velocity profiles.
Dynamical features such as structures characterised by means of spectral analysis will also

be discussed. All the data have been scaled with a reference inlet velocity Ui, = 8 m g1
and the figures will not report further this normalisation, unless stated otherwise. The
Reynolds number calculated as Re = DUjy.:/v = 24000 is the same for all the present
experiments.

4.1. Internal boundary-layer evolution

Figure 5 shows the spatially averaged mean velocity distribution in the streamwise and
vertical directions for farm 1. The streamwise mean velocity indicates a clear growth of an
internal boundary layer over the farm until the farm trailing edge, after which the boundary
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Figure 5. Filtered mean velocity fields for farm I: (a) (U) and (b) (W)

layer is replaced by a developing wake. The leading edge of the farm induces an upward
flow motion that ceases approximately near the farm trailing edge, where a fast downward
motion is present.

Despite the length of the farm, the vertical velocity did not become zero on top of
the farm and the streamwise velocity decreases monotonically and does not show any
indication of a plateau as observed in the experiments of Chamorro et al. (2011), Bossuyt
et al. (2017, 2018) and in the large eddy simulation results of Stevens er al. (2014, 2016).
This result is illustrated in figure 6 where the velocity in the axial and vertical directions at
z = zg are reported for farms I, II and III: with the exception of the farm trailing edge, the
velocity is monotonically decreasing, while it increases again near the end of the farm due
to the wake recovery in the farm wake and slightly upstream. This fact was also noted by
Wu & Porté-Agel (2017) who found that under a weak stratification the flow in large wind
farms, for both staggered and aligned cases, gradually decelerates as it enters the wind
farm and does not reach a fully developed regime.

Overall, the mean velocity shows a larger decrease in the staggered farm case than the
inline one (similar to the results shown by Porté-Agel, Lu & Wu (2014), Wu & Porté-Agel
(2017) and Sharma et al. (2018)) On the other hand, the inline case with largest spacing,
Sy, shows the lowest decrease of the streamwise mean velocity and so the lowest internal
boundary-layer height, as already reported by Porté-Agel et al. (2014).

The measured velocity variances and covariance <u’w’> are shown in figure 7. As

expected, the (1/?) Reynolds stress is larger than <ﬁ> and <W>, although the last two

have similar magnitude within the internal boundary layer. The turbulent activity tends
to become larger when proceeding downwind and achieves its maximum near the trailing
edge of the farm after which a decaying turbulent wake is present. The latter concentrates
mostly near the top of the turbine canopy as the region characterised by the largest mean
shear (as indicated in figure 5), while the bottom edge of the turbine leaves a weak footprint
visible in the shear stress as a local maximum.

As a result of the spatial averaging procedure, new unknown terms appear in the
filtered equations related to the spatial variation of the time-averaged quantities. These
are the dispersive stresses reported in figure 8. These are expected to be relevant only
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Figure 6. Averaged mean velocity in the streamwise (a) and vertical (b) direction at z = zg for farms I (solid
line), II (dashed—dotted line) and III (dashed line).
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Figure 7. Filtered velocity variances <ﬁ> (a), <W (b), F (c¢) and covariance <u’ w > (d) for farm I. All

covariances are multiplied by a factor 1000 for the sake of clarity.

in the presence of large variations of the mean field, namely near the turbines: since
the region below the turbine canopy top was not measured, it is hard to estimate their
value or relevance there, but some indication about their importance comes from the wake
measurements after the farm trailing edge, where the highest magnitude of the dispersive

925 A2-13


https://doi.org/10.1017/jfm.2021.629

https://doi.org/10.1017/jfm.2021.629 Published online by Cambridge University Press

A. Segalini and M. Chericoni

10 20 30 40 50 60 70 80

W A W =

0.10
0.05
0
—-0.05
0.8
0

0 T T T T T T T L T -0.8

10 20 30 40 50 60 70 80

x/D

Figure 8. Filtered dispersive stresses <U”2) (a), (W”2) (b), <V”2) (o), <U”W”) (d) for farm I. The dispersive
stresses are multiplied by a factor 1000 for the sake of clarity.

normal stresses is located. Another region where large dispersive stresses are concentrated
is along the farm edge, as visible in (U”z) and (U”W”).

It is important at this point to compare the dispersive stresses with the Reynolds stresses
in order to assess their role in the generation of the vertical flux of kinetic energy. Figure 9
shows the comparison between Reynolds stresses and dispersive stresses near the farm
top, i.e. at z = zp: the dispersive stresses are in general smaller than the Reynolds stresses

except for (U"?)(zo) that is comparable with (u/2)(zo) in the entry region of the farm,
although sufficiently far from the edge it becomes negligible. The dispersive shear stress
is negligible compared with the turbulent one, so that ri3 is dominated by the Reynolds

shear stress and will be replaced by (u/w’) in the next sections.

4.2. Shear stress and vertical flux of kinetic energy

The velocity field can be better analysed by integrating the momentum conservation
equation obtaining the von Karman equation (2.7). The various terms in the equation have
been calculated and plotted in figure 10 along the streamwise coordinate. By analysing the
dominant terms, the turbulent shear stress above the wind farm can be estimated as

— do
— (u'w')(z0) ~ Ueza — Wo (Ue — Vo) . 4.1

Equation (4.1) is an important simplified relation between the turbulent shear stress, the
momentum flux linked to the vertical velocity and the growth of the internal boundary
layer expressed in terms of momentum thickness, 6. The external velocity, U,, can be
taken out of the derivative because its variation along the streamwise direction is negligible
compared with the variation of 6.
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Figure 9. Filtered Reynolds and dispersive stresses at z = zo for farm I. The black lines indicate the Reynolds
stresses while the red lines mark the dispersive stresses. (¢) Comparison between <u/ 2> and <U/ ’2) (solid line),
(W) and (W” 2) (dashed line), <ﬁ> and (V” 2) (dotted line). (b) Comparison between <u’ w > and (U” w” ) The
stresses are multiplied by a factor 1000 for the sake of clarity.
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Figure 10. Budget of the von Karmdn equation (2.7) estimated from the measurements performed for
farm I. residual (blue), UeZdQ/dx (red), —Wo(U, — Up) (green), —ri3(zo) (orange), §*U,dU,/dx (purple),
—d/0x L ”:)’ (r11 — r33) dz (black) and d/dx L ”:)’ k. dz (brown). The Wy used is the experimentally measured one.

As indicated in figure 10, the residual of the von Kdrman equation is comparable with
the dominant terms. This is most likely due to a measurement error of the mean vertical
velocity, W, that is hard to measure compared with the streamwise velocity. The von
Kéarman equation can be instead used to compute the mean vertical velocity, Wy, that
will be used in the following analyses: the vertical velocity calculated from (4.1) differs
from the measured one by at most 1 cm s~!, a discrepancy well within the experimental
uncertainty of the averaged vertical velocity. The use of the vertical velocity calculated
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Figure 11. Budget of the integrated energy equation (2.9) estimated from the measurements performed for
farms I (solid line), II (dashed—dotted line) and III (dashed line). Residual (blue line), transport along x (green
line), transport along z (red line) and dissipation term (orange line). The Wy is the one obtained from the von
Karmaén equation (2.7).

from the von Kdrman equation in the integrated energy equation (2.9) allowed us to make
the residual of the energy equation smaller for all the investigated layouts.

The various terms of the integrated energy equation for farms I, II and III (2.9)
are reported in figure 11 where the near balance between the transport term in the
streamwise and vertical directions is evident. The third term playing a meaningful role
is the dissipation that transfers energy from the mean flow to the turbulent one.

The assumptions made in § 2.1 about the dominant terms of the energy equation are
supported by the detailed budget shown in figure 12, where the various terms of the
simplified energy equation (2.14) for farms I and III are plotted: the residual of (2.14) is
within experimental uncertainty. By using the assumptions made about the small order of
magnitude of the dispersive stresses above the farm and the near constancy of the external
velocity, U,, (2.14) can be rewritten as

_ U? — U? ds ¥ U
—Uo(u'w')(z0) + Wo(ez—") = USd—xe + / <u/w/>é—z> dz. 4.2)
20

Equation (4.2) shows an interesting relation between the entire vertical flux of MKE

Ppux = —Uyp u'w)(z0) + W()(Ue2 — U%) /2 and the boundary-layer evolution over the wind
farm expressed in terms of energy thickness, which is connected with the global deficit
of kinetic energy flux along the streamwise direction in the internal boundary layer. The
energy flux is not dominated just by the first term (as usually assumed in other studies,
such as in Cal et al. (2010) and Calaf et al. (2010)), but instead the transport of energy
imparted by the vertical velocity is equally important as the turbulent flux especially for
the inline case.

According to (4.2), the evolution of the energy thickness, §,, is associated with the
energy flux. It is indeed interesting to study the evolution of the characteristic thicknesses
of the internal boundary layer above the farm. Figure 13 shows the three thicknesses §*, 6
and J, together with 895 (representing the boundary-layer thickness as the distance between
70 and the height where the velocity U is equal to 0.95U,) for farms I and III. It is clear that
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Figure 12. Budget of the simplified integrated energy equation (2.14) estimated from the measurements
performed for farms I (@) and III (b). Residual (blue line), internal boundary layer growth Ugdse /dx (green line),
vertical flux of kinetic energy (red line) and dissipation term (orange line). The vertical flux is decomposed in
the turbulent component Up (u'w’)(zp) (dashed line) and in the component linked to the vertical mean velocity
—Wo(U? — U}) /2 (dash—dotted line).

10 20 30 40 50 60 70

Figure 13. Streamwise distribution of several boundary-layer thicknesses (normalised by the turbine
diameter) for farms I (solid lines) and III (dashed lines).

the boundary layer grows nearly linearly from x &~ 15D (approximately after three to four
rows where there is a change in the concavity), and it grows faster for the staggered layout
although with a larger virtual origin: the concavity change implies a change of dominant
dynamics between the initial stage (driven by the pressure gradient) and the following
stage and a shift of the virtual origin in the internal boundary-layer evolution. The shape
factor H = §*/6 is not constant but it grows nearly linearly from 1.05 at x/D = 10 to 1.25
at x/D = 70. In light of this change, no parallel state is achieved and the velocity profile
is not self-similar.
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Figure 14. Turbulence-induced vertical flux of MKE, —Uq(t/w’)(zo): farms I (solid black line), II (solid grey

line), III (dashed line), IV (triangles with solid line), V (circles with solid line), VI (triangles with dashed line)
and VII (circles with dashed line).

It is interesting at this point to analyse the turbulence-induced vertical flux of MKE,

—Uo(u'w)(z0), in all the layouts available. These are shown in figure 14: a growing trend
is generally visible, similar to the results of Cortina et al. (2020). The case with the lowest
flux is farm II, corresponding to a reduced turbulent activity within the internal boundary
layer: this implies that the magnitude of the kinetic energy entrainment from the free
atmosphere into the boundary layer increases by increasing the density of the farms, as
already shown by Porté-Agel ef al. (2014) and Wu & Porté-Agel (2017). The energy flux is
also enhanced by the free stream turbulence that is beneficial from the energy production
point of view since the flux replenishes more energy within the farm. It is interesting to
note that a transition in the turbulent flux is present when free stream turbulence is present
for the inline case: farms I, IV and V start similarly at the beginning of the farm but the
free stream turbulence enhances the turbulent flux later on, an enhancement that takes
place earlier for larger free stream turbulence structures. This is particularly unexpected
as both grids were associated with similar statistics and integral time scales (as shown in
figure 1).

By analysing the entire vertical flux of MKE (i.e. the sum of the turbulent flux and the
vertical velocity displacement of MKE) for the available layouts, one obtains an interesting
result: as visible in figure 15, the value of the flux along the farm is roughly the same for
the different staggered layouts (with or without free stream turbulence) for a significant

length of the farm and it is approximately P00, =~ 0.0051 Uf’nl o+ 1t 1s generally lower for
inline layouts (lowest for farm II), as expected, and oscillates around a value of Pj;eqn =
0.0040U ?n Jer» Which might suggest that in large wind farms the staggered configuration is
more efficient, due to a longer distance to recover the velocity deficit between consecutive
turbine rows compared with inline farms (Chamorro & Porté-Agel 2011; Chamorro et al.
2011; Archer, Mirzaeisefat & Lee 2013; Porté-Agel et al. 2014; Bossuyt et al. 2017; Wu
& Porté-Agel 2017). The average flux accounts also for the region near the leading and
trailing edge of the farm where the flux is generally lower. This is in direct contrast with
figure 14 where the turbulent flux grows almost monotonically, highlighting the important

role of the vertical transport of kinetic energy in these special regions and underlining the
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Figure 15. Vertical flux of MKE, Ppy,, for the available layouts. See figure 14 for the used list of symbols:
mean value of the flux for the staggered layouts (dashed red line), mean value of the energy flux for the inline
layouts with S, = 4D (solid red line).

decreasing trend of the flux of energy correlated with the mean vertical velocity, Wy. In
the last two rows, the vertical energy flux is provided only to the turbulent energy flux,
similar to what happens in an infinite farm.

4.3. Self-similar analysis

From the analysis of the shape factor it was evident that the mean velocity profile is not
self-similar. However, the mean velocity profile can be analysed in terms of deficit U, —
(U)(z) and scaled with the characteristic velocity scale U, — Uyp. In case of self-similarity,
it is expected that the profile could be described by a function of (z — z9) /820 where 8> is
the position where U, — (U)(d209) = 0.2(U, — Uyp). Figure 16(a) shows the mean velocity
profile for farm I at different streamwise positions, while figure 16(b) shows the mean
velocity profiles at x/D = 30 for the available layouts. An evident collapse of the data is
observed in both figures supporting the self-similarity of the mean velocity deficit profile
above the wind farm. The curve of the profile can be represented by the error function
defined as 1 — erf[a(z — z0)/20] for a = 0.9062 (calculated by imposing that the function
is 0.2 for (z — z0) /620 = 1).

A worse agreement of the data is instead observed for the Reynolds shear stress profile,
(u'w'), scaled with the local friction velocity defined as the maximum shear stress along z.
The normalised shear stress profile is reasonably described by a function of (z — zg) /20
sufficiently downwind of the farm leading edge, as visible in figure 17. A change in
concavity is clearly present near the farm canopy top, highlighting, however, that a
two-scale structure would better describe the shear stress profile, although there is no
footprint of that in the mean velocity profile. By observing the velocity and the shear
stress profile, both present a better agreement in the middle of the farm (green markers)
because there are no sensible effects due to the leading and the trailing edge of the farm.
The account of the dispersive shear stress did not improve the agreement between the
profiles at different streamwise stations or layouts.

According to the previous analyses, there is a relation between the mean velocity deficit
profile above the farm, the evolution of the internal boundary layer in terms of 87 and the
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Figure 16. Mean velocity profile for different streamwise positions for farm I (a) and for different layouts
at x/D = 40 (b). In panel (a) the red markers indicate the profile for 5 < x/D < 15, the green markers for
20 < x/D < 55 and the blue markers for 60 < x/D < 70; 1 — erf(a(z — z0)/820) (Solid line).
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Figure 17. Reynolds shear stress profile for different streamwise positions for farm I (a) and for different
layouts at x/D = 40 (b). In panel (a) the red markers indicate the profile for 5 < x/D < 15, the green markers
for 20 < x/D < 55 and the blue markers for 60 < x/D < 70.

mean velocity at zg, Uy, of the form

U, — (U) _f(z—zo)

Ue — Uo S0 /)
By using the velocity profile (U)(z) with the relation (4.3), the characteristic thicknesses
(and therefore the vertical flux of kinetic energy being related to the growth of §,) can be
expressed as a function of these two parameters, i.e. Ppyx = Ppux(Uo, 820). The evolution

of 659 can be estimated from internal boundary-layer growth considerations as §>9 &~ c¢(x —
x0)*/° (Meneveau 2012), where ¢ and x( are two parameters that depend on the layout of
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Figure 18. Scatter plots of the Reynolds stresses (1/2)!/2 and (v'%)!/2 against the local mean velocity at x/D =
20, 30, 40, 50, 60 for the inline farms (a,b) and staggered farms (c,d): clean cases (blue), grid cases with
M/D = 0.56 (red), grid cases with M/D = 1.11 (black solid lines), farm II (green). The black dashed line
indicates the streamwise Reynolds stress relationship of Alfredsson et al. (2011).

the farm. In the particular example of farm I, the best parameters that interpolate the data
are ¢ = 0.05 and xo/D = 2.5.

Although not related to a self-similar analysis, it is interesting to have a look at
the diagnostic plots (Alfredsson et al. 2011) for the streamwise and spanwise velocity
variance, shown in figure 18. These plots use the streamwise mean velocity profile
as independent coordinate instead of z. There is reasonable agreement for the same
layout at different streamwise locations for the streamwise and spanwise normal stress,
especially for the inline cases (the scatter is reduced there if the profiles at x/D = 20
and 60 were removed). From case to case there is, however, variability that could
be explained with a different roughness function (as discussed by Castro, Segalini &
Alfredsson (2013)), although the estimation of the roughness function was not attempted
here since the logarithmic region (if present) should not be relevant compared with
the outer function in the internal boundary layer. Inline layouts have a general higher
variance than staggered layouts and the free stream turbulence enhances the variance
even more. Farm II has a turbulence intensity distribution comparable to the inline cases
with Sy = 4D, although the mean velocity deficit is reduced (as well as the variance
profile). It is also worth mentioning that the inclusion of the dispersive stresses worsened
significantly the agreement of the streamwise normal stresses, underlining that the
diagnostic-plot analysis should be just related to the velocity variances rather than the total
stresses.
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Figure 19. Premultiplied streamwise velocity spectrum map, f(S,,), as function of x/D and St for z = z( for
farm L.

4.4. Spectral analysis

The mean velocity field and the energy flux have been analysed in the discussions above.
In order to understand the dynamical behaviour of the velocity field above a wind farm,
a spectral analysis has been performed providing the energy distribution at the different
scales of the turbulent motion. The power spectral density of the velocity time series at
each measurement point was computed and it was spatially averaged for each frequency
obtaining the averaged frequency spectrum, (S,,)(x, z, f). All the spectra not normalised
by the variance are multiplied by a factor 1000 for the sake of clarity.

Figure 19 shows the frequency spectrum map as a function of x/D and of the
non-dimensional frequency St = fD/Uy for z = z9. A characteristic frequency above the
farm is visible throughout the farm length with a value of St & 0.15, although with a
decreasing trend with x. This frequency is different from the tip-vortex frequency (located
at St = 1.7) clearly visible and relevant only near the leading edge of the farm, after which
the wake becomes too turbulent and the tip vortices lose their coherency and strength.
The large difference between the characteristic frequency observed downwind and the
tip-vortex frequency suggests that the former is associated with a different phenomenon:
the broadband distribution indicates a turbulent nature such as the wake meandering
observed behind wind turbines (Medici & Alfredsson 2006; Espafia et al. 2012; Coudou
et al. 2017). The Strouhal number appears to be of the same order of the one observed in
the literature about wake meandering (Medici & Alfredsson 2006) although a bit lower
since Uy is expected to be higher than the velocity at hub height.

Wake meandering is a transversal fluctuation of the wake downwind of wind turbines
and therefore the wake meandering should be visible even in the non-premultiplied
spectrum (S, ). Figure 20 shows (S,,) at z = z¢ and different streamwise positions where
the presence of a peak is evident: the Strouhal number (intensity) of the peak is decreasing
(increasing) with the streamwise distance. Figure 21 shows the corresponding evolution of
the premultiplied spectra of the streamwise velocity (the spanwise velocity exhibited more
of a plateau there) at z = zo: the premultiplied spectra change in frequency and magnitude
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Figure 20. Transverse velocity spectrum for z = zo and for x/D = 15, 30, 45, 60 for farm I.
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Figure 21. Streamwise velocity spectra for z = zg and for x/D = 15, 30, 45, 60 for farm I; St~/ (dashed
line).

along the streamwise direction with turbulent structures that become bigger and more
energetic by travelling downwind.

Figure 22 shows the comparison of the dominant Strouhal number detected from the
premultiplied spectra f(S,,) for all the available farms: despite the different layouts,
turbine distance and free stream turbulence state, the Strouhal number appears to approach
a general trend quite rapidly after the first rows, highlighting once again how the wake
meandering dominates the turbulent large-scale dynamics in deep arrays and it should be
therefore considered as the leading dynamical phenomenon in a large farm that builds up
already after the first two to three rows of turbine. The coupling between atmospheric
turbulence and this kind of motion is also quite intriguing: in the present experiment
the upstream flow is not characterised by large-scale turbulent motions without a grid,
and therefore the results should miss the dynamical wake meandering mechanism driven
by large-scale motions (Larsen et al. 2008; Braunbehrens & Segalini 2019). However,
if the farm is sufficiently long, large-scale structures are generated internally anyhow
and the Strouhal number agreement of figure 22 shows that the route is the same
regardless of the free stream turbulence activity. Therefore, models that do not account
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Figure 22. Comparison of the Strouhal number associated with the peak of the premultiplied streamwise
velocity spectrum. See figure 14 for the list of symbols used.
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Figure 23. Comparison of the Strouhal number scaled with the wake size, zg + 895. See figure 14 for the list
of symbols used.

for self-generated large-scale structures might actually wrongly estimate the meandering
dynamics and its effect on turbine loads.

The decreasing trend of the Strouhal number suggests a modulation of the dominant
dynamical phenomenon: as the internal boundary layer grows along the farm, it is expected
that the turbulent structure’s size should increase with x as more space is available. In order
to support this, figure 23 shows that, when the Strouhal number is obtained by using the
distance zg + do5 (i.e. the distance between the ground and the internal boundary-layer
edge), a nearly constant value is obtained that weakly depends on the farm layout (the
most significant deviation is for farm II with large spacing between the turbines).

The velocity spectra agree reasonably well if they are scaled by the velocity variance
and the integral time scale, (A,), as shown in figure 24. It is evident that the spectra are
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Figure 24. Normalised frequency spectrum for z = zg and for x/D = 15, 30, 45, 60 for farm I: f~2/3
(dashed line).
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Figure 25. Premultiplied velocity spectra at x/D = 40 and z = z¢ for farms I (a), II (b) and III (c): S, (blue
solid line), Sy, (red line), S,,,, (black line), 4S,,,/3 (blue dashed line).

indeed described by a universal function in the normalised frequency and no structural
change takes place over the farm. The same agreement is visible for the spectra of the
other velocity components and the cross-spectra as well. The agreement of the spectra
implies again a tight connection between the integral time scale and the size of the wake
20 + 8os.

A final consideration can be done about the structure of the spectra long downwind the
farm leading edge. Figure 25 shows the low frequency part of the spectra of the three
velocity components for two inline farms (I and II) and one staggered farm (III). They are
all dominated by the streamwise component that is more energetic than the other two,
especially at the largest scale. The spanwise and vertical velocity components start to
have increasing relevance near the large scale peak of f(S,,) and they even exceed f(S,;)
for large frequencies: interestingly, they approach the value of 4/3S,,, i.e. the isotropic
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turbulence state (Segalini & Arnqvist 2015) for a short range, and remain above this
theoretical expectation for the rest of the inertial range.

5. Conclusions

An analysis of the internal boundary-layer evolution over several long farms has been
proposed in the present work. Inline and staggered layouts with and without free stream
turbulence have been characterised in detail above the turbine canopy in order to quantify
the flux of energy replenishing the energy available to the turbines and to characterise
the evolution of the internal boundary layer. Hot-wire measurements have been performed
providing time-resolved data for the computation of velocity statistics and spectra. The
data have been space-averaged to remove the turbine-to-turbine variations enabling a
boundary-layer analysis from the spatially filtered Navier—Stokes equations and removing
the need of a complex three-dimensional analysis.

The analysis indicated that an internal boundary layer is generated above the turbine
canopy that grows monotonically until the end of the farm. Within this layer, the velocity
deficit and the turbulence intensity keep growing, implying a lower velocity and higher
turbulence experienced by the downwind turbines, as expected. The boundary layer is
characterised by an enhanced turbulent activity that transfers momentum below the turbine
canopy together with the appearance of dispersive stresses due to the spatial averaging: the

latter are mostly smaller than the associated Reynolds stress with the exception of (U” 2)
and (U”"W") very close to the turbine canopy top and entry region of the farm.

The integrated momentum and energy equations provided a framework to analyse the
velocity data in terms of momentum balance and energy flux: it was found that the latter
is composed of a turbulent energy flux (proportional to the Reynolds stress and the local
momentum) and an advection term related to the kinetic energy transported by the vertical
velocity. The former term has been discussed in previous analyses of wind-farm flows
and it is the only one present in the infinite-farm case. However, the latter has here been
found to be equally important as the turbulent flux throughout the entire length of the farm
especially for the inline layouts and therefore it cannot be neglected if an estimation of
the total energy flux is desired such as, for instance, in ‘top-down’ models. The energy
analysis pointed out the dominant balance between the vertical energy flux and the growth
of the energy boundary layer, with a weak dissipative term transferring energy from the
mean to the turbulent field. This implies that an assessment of the evolution of the mean
flow would be sufficient to estimate the energy flux throughout the farm canopy top.

A self-similar analysis of the velocity profile indicated that the mean velocity deficit
profile is self-similar and scales with the velocity deficit on top of the farm and with a
characteristic thickness based on the velocity deficit profile. The shear stress profile seems
to follow a similar scaling although with a slightly worse agreement, suggesting a more
complex structure. The use of the diagnostic plot (Alfredsson et al. 2011) highlighted a
connection between the mean velocity and the velocity variances that is weakly affected
by the farm layout, similar to rough-wall turbulent boundary layers (Castro et al. 2013).
The free stream turbulence appears to enhance the turbulent fluctuations compared with
the case with non-turbulent flow, so that the internal boundary layer is indeed modulated
by the presence of an enhanced vortical activity outside that.

A spectral analysis indicated that the dominant dynamical phenomenon along the farm
is the meandering of the turbine wakes, a dynamics that builds up already after the first
two to three rows of turbine and that overwhelms the tip-vortex signature observed only
behind the first row of turbines and that looses abruptly coherence and strength due to
the turbulent environment. A Strouhal number of the wake meandering of approximately
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St =fD/Up ~ 0.15 was observed although it is expected that a number closer to 0.2
(the observed wake meandering Strouhal number (Medici & Alfredsson 2006)) should
be observed if the chosen reference velocity was the one inside the farm at hub height.
The same Strouhal number has been observed for both inline and staggered layouts
regardless of the free stream turbulence level with a similar trend along the streamwise
direction, suggesting a universal dynamical feature. This trend was removed when scaling
the Strouhal number with zg + o5 (i.e. the distance between the ground and the edge
of the internal boundary layer), suggesting that the Strouhal number should change for
sufficiently long wind farms that do not achieve a fully developed state.

Finally, the comparison of the spectra of the various velocity components for different
farm layouts indicated that energy is provided at large scales to the streamwise velocity
component, while the spanwise and vertical components become dynamically relevant
near the peak of maximum energy of the streamwise component. After this, the energy
in them exceed the one of the axial component as it should do in the inertial subrange
in isotropic turbulence, although they tend to exceed the theoretical limit of Sy, = Sy =
4S,./3, suggesting that anisotropy is still present even at the small scales of motion.
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