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Square-integrable representations

of non-unimodular groups

A.L. Carey

In the last three years a number of people have investigated the

orthogonality relations for square integrable representations of

non-unimodular groups, extending the known results for the

unimodular case. The results are stated in the language of left

(or generalized) Hilbert algebras. This paper is devoted to

proving the orthogonality relations without recourse to left

Hilbert algebra techniques. Our main technical tool is to

realise the square integrable representation in question in a

reproducing kernel Hilbert space.

1. Introduction

If G is a locally compact unimodular group and L the left regular

representation, then the square integrable representations of G are the

irreducible subrepresentations of L . It was shown by Godement [5, 6] and

later more generally by Dixmier [2] that the Schur orthogonality relations

hold for these representations. In the last few years non-unimodular

groups have been investigated [3], [S], [ H ] and analogous results proved.

The theorems are stated, as befits their generality, in the language of

left (or generalized) Hilbert algebras. This tends to make the results

rather inaccessible to the non-specialist.

The object of this paper is to derive the orthogonality relations for

square integrable representations of non-unimodular groups by a method

which avoids the use of left Hilbert algebras and which also says something

different even for the unimodular case.
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2 A.L. Carey

We pause for a definition.

DEFINITION 1.1. Let X be a topological space and H a Hilbert

space whose elements are continuous functions from X to C . We say H

is a reproducing kernel Hilbert space if there is a function <j> : X x X •* C

such that

(i) the functions <j> defined by

<t>xiy) = <(>(*, y)

lie in H for all x in X ,

(ii) for all / in H , fix) = < <b , f) .

The nomenclature derives from property (ii) which expresses the

'reproducing' property of the kernel <J> . Now let G be a locally compact

group with left Haar measure dx and consider the left regular

representation L of G in L (G) . Clearly, the objects of interest

here are the minimal projections in the commuting algebra of L (these are

the minimal idempotents of the left Hilbert algebra). We show that every

irreducible square integrable representation may be realised in a

2
reproducing kernel Hilbert subspace of L (G) and that the projection onto

this subspace is given by a right convolution operator R , some

<(> € L (G) . The function x, y •* $ (y) = <$>[x~ y] is found to be the

reproducing kernel and this fact is used to derive the orthogonality

relations.

Besides the notation introduced above, we will denote the modular

2
function of G by A and L (<?) will represent the Hilbert space defined

by the functions on G square integrable with respect to left Haar measure

dx . The map S defined by

(Sf)(x) = fix
2

is easily shown to be a closed densely defined operator on L (G) with

adjoint

(S*f)(x) = f[x-X) .
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Square- integrable representat ions

The domain, D{S*) , of 5* consists of those functions in L (G) which

are square integrable with respect to right Haar measure: A(x )dx . We

will write A~* for the operator of multiplication by A(x)~ . I t is
o

also easy to verify that the operators 7? (x d G) defined on L (G) "by

are bounded. Finally, convolution of functions will be written f * g and

the inner product for all Hilbert spaces will be conjugate linear in the

first variable.

For more information on reproducing kernels on groups the reader is

referred to KreTn [9, 70] and Carey [/]. We remark here that reproducing

kernels are just positive definite functions in another guise. For an

elementary account of the unimodular theory of square integrable

representations the reader is referred to Chapter VII of Gaal [4].

2 . P r e l i m i n a r y r e s u l t s

Let IT be a cyclic continuous unitary representation of G in a

Hilbert space H , with cyclic vector v , \\v\\ = 1 . Define § : G -*• C

by <)>(x) = <u, -n(x)v) . Let us suppose that (j> is square integrable with

respect to left Haar measure on G . Then by a result of Godement [7] (see

o
also Theorem 13.8.6 of Dixmier [2]) there is a i|> € L (G) with \ji

positive definite such that <£ = \p * \p . Now

2
where ( , ) denotes the inner product in L {G) and y -»- L the left

•j

regular representation of G . Hence the map W : ir(i/)v •*• L \p extends to

a unitary equivalence of ir with a subrepresentation of L {of. Lemma

111.1.1 of [2]).

2
Conversely if H 5 L (G). is invariant under L then let P be the

projection onto H . Since the continuous functions of compact support,

CQ(G) , are dense in L
2(G) , PCQ[G) is dense in 5 . We show below that
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for a l l g € CAG) the function

, L^Pg)

is square integrable. Hence we may define an irreducible continuous

unitary representation IT of G to be square integrable if there exists a

vector v € H such that the coefficient function

x -*• < v, 7r(x)i>>

is square integrable. Then by the above (as in the unimodular case) it

follows that-the square integrable representations of G are just the

irreducible subrepresentations of the left regular representation. So we

need to prove

LEMMA 2 . 1 . If g € CQ(.G) then the function x •* (pg, L^Pg} is

square integrabte.

Proof. Since {Pg, L~ Pg) = (Pg * S*g)(x) we need to show that

Pg * S*g is in L (G) . This will follow by the Riesz representation
o

theorem if we can show that the linear functional on L (G) given by

Uh) = J {Pg * S*g){y)h{y)dy , h € L2{G) ,

i s bounded. We have

5 J g(xJ\\RxPg\\dx\\h\\Pg(yx)h{y)dydx

using the fact that Hfl̂ /H = A(x)~*||/|| . Now for h € CQ(G) i t follows

from Fubini's theorem that

g{x) J Pg{yx)Hy)dydx ,

and therefore the above inequality shows that I extends to a continuous

linear functional on L2(G) ; whence Pg * S*g € L2(G) .
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3. Reproducing kernels

Let TT be an irreducible subrepresentation of the left regular

representation of G acting on H . Let v € H^ be such that the

coefficient <j> : x -*• <U, ir(x)u> is square integrable and suppose that

IMI = 1 . Then by the result of Godement quoted previously <j) = \p * ty for

some square integrable positive definite function ty . Let H be the

closure of the linear span of {L \p \ y € G] . Then the restriction of L

tr H is unitarily equivalent to IT . We show that H is a reproducing

kernel Hilbert space.

Following Dixmier [2] w e define the operator R. by

R^f = L jj> , f i. CAG) .

Now R, is not necessarily bounded; nevertheless by the positive definite

property of \p , R. admits a Friedrich's extension which is positive and

self-adjoint. Further R. commutes with the operators L for all

V x

X € G .

We denote the spectral decomposition of R, by

XdE. .
0 A

The spectral projections £, commute with the operators L for all
A . x

x i. G , and we define ik = E,\p and H. = E.H . It follows as in the

proof of Theorem IT of Godement [7] that ip. is continuous and positive

definite. A short calculation yields the relation

whence i?(iK) is bounded. (Compare this paragraph with the proof of

Theorem 13.8.6 of [2].)

How choose A_ so that E, t 0 . Then it is not difficult to see
0 A0

that H. (which is invariant under L ) can have no non-zero, proper,
A0
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closed L invariant subspaces (by the irreducibility of L restricted to

a ). If g t L2(G) then

i n l y i n g that if g € H\ then i? <k \g = 0 '» whence RL W c # .

0 l V l V \ " \
Now since if\̂ \ \ i s bounded and commutes with L restricted to H, , it

must be a multiple of the identity on H-. . Putting this together we have
0

where P-, i s the orthogonal projection onto #•, and d, is a positive
Ko xo xo

constant.

If X > 'X then E-. > Ey and so H-. > H, . But tf, can contain0 X XQ X XQ X

no invariant subspaces whence fl^ = #, . Using the same analysis as above
0

we have -ff(<l̂) = P-^ /d-^ and hence

XX x x x x x x

0 0 0 0 0 0

This implies that dx = dx . Hence for X > XQ , R(ty)Ex = R{ty)Ex and

using the fact that as X -»• °° , Ex converges strongly to the identity we

have

0 0

Now

I2

implies that

d^ ty * d-, <(J = d, ̂  = d, P, i|> = d, ̂ ,
A A A A A A A

0 0 0 0 0 0 0
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Square-integrabIe representations 7

Hence iK = i|> £ H n # . and so # . = H . We h a v e a l m o s t p r o v e d
A0 A0 A0

THEOREM 3 .1 . Let v be an irreducible subrepresentation of the left

regular representation of G . Let § be a square integrable coefficient

of ir . Then there is a constant d, such that right convolution by

<Ji = d*% defines u. f . ^^ction, R. in L (G) . The space R.L (G) is a

reproducing kernel Hilbert space with kernel x, y ->• ty[x~ y) and the

2
restriction of L to R.L (G) carries a representation equivalent to ir .

Proof. Given <j> one defines \p. v ia the r e s u l t of Godement [ 7 ] ;

tha t i s , by the equation <j> = ty. * \p . Then we saw above tha t there i s a

constant d± , say, such tha t d,i?fi|;,) i s a pro jec t ion . Since t h i s implies

tha t d,U), * dA)., = d,i)~ we have \b. - d.b . So we define ib = djb , and<)) 1 cj)rl <jr 1 r l ()> <p

i?(tjj) i s then a pro jec t ion . The cont inui ty of elements of R.L (G)

follows from the cont inui ty of § , and the reproducing property of the

function

x, y •* ty{x~ y) = tyx(y)

follows from

= fix) if f € R L (ff) .

REMARK 3.2. The constant d. may also be characterized by the

relation

4 . The o r t h o g o n a l i t y r e l a t i o n s

To begin with we suppose that R L (G) is an irreducible subspace of

L (G) with reproducing kernel x, y ->• ty[x~ y) . Observe that
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p
D(S*) n R L (G) contains the vectors L ^ = \p since S*t|j = R ty is in

Y* 3C X X X

L2(G) . Noting that the linear span of {\px \ x € G\ is dense in RJ?{G)

we conclude that RJ^iG) n D(S*) is dense in RJ?(G) .

LEMMA 4 . 1 . For all f € D{S*) n R L2{G) and f € RJ>2(G) , the.

function c -„, : a; ->• < / , L~ f ) i s square integrable.
IT \ x /

Proof. The function x -»• ̂ / , i " 1 ^ ) = /(aT1) = S*f(x) i s , by

hypothesis, square integrable for every / f 0(5*) n i? £ (G) . Let D be

the subspace of all /' € i?,L (G) such that e~~, is square integrable.

D contains a non-zero vector ty and is invariant under L , whence D is

dense in RJ^iG) .

Now following Gaal [4] we define T„ : D -*• L2(G) by

, L _xf>) .

It now follows as in Proposition VII.1.1+ of Gaal [4] that 2\, is bounded

on D and hence D = H , proving the result.

By using the argument of the above lemma, it is clear that if

x -»• (f, L f'\ is square integrable for some /' € R L (G) then it is

square integrable for all /' € R,L {G) and hence in particular that

x -*- (f9 L \\)} is square integrable. Thus / € D(S*) and so the above

lemma specifies all the square integrable functions c~~, .

PROPOSITION 4.2. If f., g. , i = 1, 2 , are elements of the

2 2
irreducible subspace R.L (G) of L (G) , then there is a constant d.

such that
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Square-integrabIe representations 9

whenever f£, g2 € D(S*) .

Proof. Following the proof of Proposition VII.1.29 of GaaI [4] we

observe firstly that the integral has the form

('f/l- % 0 2 '
L2(G)

where T~ , T are the operators introduced in the preceding lemma. Now

T * Tf : RJ^iG) ->• R L
2(G) and it is not difficult to show that

T * T- commutes with the action of L in R L (G) . Hence T * T
»2 ?2 ^2 2

is a constant multiple, say kyg^, f^]l of the identity operator.

So we have the value of the integral as

To find k[g , / ) we set / = g = i|» -and ohtain

Hence

where d. i s defined t o be |ji|>|| .

To connect t h i s p ropos i t i on wi th t h e formulat ion of the o r thogona l i t y

r e l a t i o n s given i n [ 3 ] , [ S ] , [ 7 / ] we follow P h i l l i p s [ / / ] . Consider the

—2s 2 —it:

map A : D(S*) •* L (G) defined as in the introduction. Since A i s
2

closed i t s res t r i c t ion to D = D(S*) n RL (G) i s also closed as an

operator from D into the completion [in L (G) ) of A D . We may

therefore define the adjoint
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10 A .L . C a r e y

Now. l e t T : D •*• D be given by

It follows that

( U . I ) <Tf, Tf>) =

Furthermore

D{T) = D(S*) nR^L2(G) as ||A"*f|| = \\S*f\\ .

THEOREM 4 .3 . Let v be an irreducible representation of G in H

with a square integrable coefficient § : x -*• (v, ii(a;)u> , where v € H

2
and \\v\\ = 1 . Let W : H^ •* L (G) be the unitary equivalence of IT with

the restriction of L to RJ>2{G) ,where ty = ̂ /U\\2 . Let T^ = W-1TW ;

then for all u , v € D[T' ) and u2, Vp € H ,

T"1» T-nVl)(v2' M2

Proof. Combining Proposition k.2 and equation (U.l) we obtain the

result.

REMARKS 4.4. (i) T is the only positive operator defined on

WD(T) which satisfies (1+.2) for every Up, Up € H and u,, V Z WD(T)

(ii) Unlike the unimodular case, the "formal dimension"

P
d. = ip(e) = |MI depends not only on the equivalence class of IT but also

appears to depend on the choice of minimal projection i?. ; that is, on

the realization of the square integrable representation chosen.

(iii) In the case of separable unimodular G , Segal [7 2] introduced

o p
the projections on L (G) of the form i?, where f (. L (G) . He called

them finite projections and showed that every projection in the commuting

algebra of L is the least upper bound of the finite projections it

bounds. This enabled him to demonstrate that in the central decomposition
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of the commuting algebra, no type III factors occur. It would be

interesting to investigate to what extent similar results are true in the

non-unimodular case.
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