CENTRALIZING AUTOMORPHISMS OF PRIME RINGS

BY

JOSEPH H. MAYNE

ABSTRACT. Let R be a prime ring and T be a nontrivial automorphism of R. If \(xx^T - x^T x \) is in the center of the ring for every \(x \) in \(R \), then \(R \) is a commutative integral domain.

An additive mapping \(L \) of a ring \(R \) to itself is called centralizing if \(x(L) - (L)x \) is in the center of \(R \) for every \(x \) in \(R \). In [4] Posner showed that a prime ring must be commutative if it has a nontrivial centralizing derivation (see [1] for another proof). In this note the analogous result for a centralizing automorphism is proved.

THEOREM. If \(R \) is a prime ring with a nontrivial centralizing automorphism, then \(R \) is a commutative integral domain.

This generalizes the results of Divinsky [2] and Luh [3]. Divinsky showed that a simple ring is commutative if it has a nontrivial automorphism \(T \) such that \(xx^T = x^T x \) for all \(x \) in the ring and Luh extended this result to prime rings.

Let \([x, y] = xy - yx \) and note that \([x, yz] = y[x, z] + [x, y]z \). Assume that \(R \) is a prime ring and let \(Z \) be the center of \(R \). The next two lemmas will be used in the proof of the theorem.

LEMMA 1. [3] Let \(T \) be a nontrivial automorphism of \(R \). If \([x, x^T] = 0 \) for all \(x \) in \(R \), then \(R \) is commutative.

Proof. Linearizing \([x, x^T] = 0 \) gives \([x, y^T] = [x^T, y] \) and thus \([x, (xy)^T] = [x^T, xy] \). But \([x, (xy)^T] = x^T [x, y^T] \) and \([x^T, xy] = x[x^T, y] = x[x, y^T] \). Thus \((x - x^T)[x, y^T] = 0 \) and since \(T \) is an automorphism \((x - x^T)[x, z] = 0 \) for all \(x \) and \(z \) in \(R \). Since \(y[x, z] = [x, yz] - [x, y]z \), \((x - x^T)R[x, z] = 0 \). If \(x \neq x^T \), then \(x \) is in the center since \(R \) is prime. Since \(T \) is nontrivial, there must be at least one \(x \) such that \(x \neq x^T \). Suppose \(y \) is not in the center of \(R \). Then \(x + y \) is not in the center and \(y^T = y \), \((x + y)^T = x + y \). But then \(x = x^T \) which is a contradiction. Hence \(R \) is commutative.

LEMMA 2. If \(xy = 0 \) and \(x \) is a nonzero element in \(Z \), then \(y = 0 \).

Proof. If \(xy = 0 \), then \(zxy = xzy = 0 \) for all \(z \) in \(R \). Since \(R \) is prime, and \(x \neq 0 \), \(y \) must be 0.

Proof of the theorem. Let \(T \) be a nontrivial automorphism of \(R \) such that \([x, x^T] \) is in \(Z \) for all \(x \) in \(R \). The proof will consist of showing that \([x, x^T] = 0 \) for
all \(x \) in \(R \) and then using Lemma 1 to conclude that \(R \) is commutative. Linearization of \([x, x^T]\) in \(Z \) gives

(1) \[[x, y^T] + [y, x^T] \text{ is in } Z \text{ for all } x \text{ and } y \text{ in } R, \]

and thus

(2) \[[x, [x, y^T] + [y, x^T]] = 0 \text{ for all } x \text{ and } y \text{ in } R. \]

Now \(R \) is a prime ring so \(R \) is either of characteristic two or \(2x = 0 \) implies \(x = 0 \) for \(x \) in \(R \).

Suppose \(R \) is not of characteristic two and let \(y = x^2 \) in (2). Then \(0 = [x, x^T] + [x^2, x^T] = [x, 2x^T] + [x, 2x] - 2[x, x^T]^2 \). Hence \([x, x^T]^2 = 0 \). By Lemma 2 \([x, x^T] = 0 \) for all \(x \) in \(R \) and thus \(R \) is commutative.

Now suppose that \(R \) is of characteristic two. Then \([x^2, x^T] = 2x[x, x^T] = 0 \) and \([x^2, x^T] = 2x^T[x, x^T] = 0. \) Let \(y = x^T \) in (1), then \([x, x^T] + [x^T, x^T] = [x, x^T]^2 \) is in \(Z \). Using the Jacobi identity (2) can be rewritten as

(3) \[[x, [y^T, x]] + [x^T, [x, y]] = 0. \]

Letting \(y = x^3 x^T \) in (3) gives

(4) \[[x, [(x^3 x^T)^T, x]] + [x^T, [x, x^3 x^T]] = 0. \]

Now \([x, [(x^3 x^T)^T, x]] = [x, (x^3 x^T)^T x + x(x^3 x^T)^T] = [x^2, (x^3 x^T)^T]. \) But expanding the last commutator gives

\[
x[x, (x^3 x^T)^T] + [x, (x^3 x^T)^T]x
\]

\[= x(x^3 x^T)^2[x, x^T] + x[x, (x^T)^3][x, x^T] + x(x^T)^3[x, x^T] x + [x, (x^T)^3][x, x^T] x
\]

since

\[[x, (x^T)^2] = 0.\]

Hence

\[[x, [(x^3 x^T)^T, x]] = [x, (x^T)^3][x, x^T] + [x^T, [x, x^T]] = 2[x, (x^T)^3][x, x^T] = 0.\]

Thus (4) reduces to

(5) \[[x^T, [x, x^3 x^T]] = 0. \]

But then \(0 = [x^T, x^3[x, x^T]] = [x^T, x^3][x, x^T] \) and using \([x^T, x^2] = 0 \) results in

(6) \[x^2[x, x^T]^2 = 0 \text{ for all } x \text{ in } R. \]

By Lemma 2, if \([x, x^T] \neq 0, \) then \(x^2 = 0. \) So assume \(x^2 = 0, \) then \((x^T)^3 = 0 \) and \((x^T)^2 = 0. \) Now \((x^T)^2 = 0^T = 0 \) and \([x, x^T] = xx^T + x^T x = z \) for some \(z \) in \(Z. \)

Therefore \((xx^T + z)(xx^T) = 0 \) and thus \((xx^T)^3 = z(xx^T). \) If \((xx^T)^2 = 0, \) then \(z = 0 \) or \(xx^T = 0. \) But if \(xx^T = 0, \) then \([x, x^T] = 0 \) and hence \([x, x^T] = 0 \) or \(x = 0. \) So from now on, assume that \(x^2 = 0 \) and \((x^T)^2 \neq 0. \)
Now (6) with xx^T replacing x implies that $[xx^T, (xx^T)^T]=0$. Expanding gives $x[x^T, x^T x TT] + [x, x^T x TT] x^T = 0$. If this equation is left multiplied by x, then $x[x, x^T x TT] x^T = 0$ and so $xx^T [x, x^T x TT] x^T + x[x, x^T] x^T = 0$. But $xx^T [x, x^T x TT] x^T = x(x^T)^2 [x, x^T x TT] = 0$. Thus $x[x, x^T] x^T x TT = [x, x^T] x x^T x TT = 0$. If $[x, x^T] = 0$, then $xx^T x TT = 0$.

Thus $[x, x^T x TT] x^T = x TT x x^T$, and so $xx^T (x^T)^2 [x, x^T] x^T = 0$. Hence if $[x, x^T] = 0$, then $x^T x = 0$. But this forces $x^T x = 0$ and so $x = 0$ or $[x, x^T] = 0$.

Suppose then that $[x, x^T] = 0$. Letting $y = xx^T$ in (2) results in $[x, [x^T, xx^T]] + [x, (xx^T)^T] = 0$. Thus $x TT [x, x^T] x^T + [x, x^T] x x^T x TT] = 0$. But then $[x, x^T]^2 + 2[x, x^T] [x, x^T] = [x, x^T]^2 = 0$. Therefore $[x, x^T] = 0$ for all x in R and by Lemma 1, R is commutative.

REFERENCES