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Optimal control of tidal flow
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The tidal flow through a channel connecting two basins with different tidal regimes can
be optimally controlled by means of a turbine fence or array to maximise the extracted
mechanical power. The paper gives the optimal control strategy as a function of the
blockage ratio σ , i.e. the ratio of the turbine cross-section to the cross-section of the local
passage of a turbine. The results presented are a physically consistent generalisation of the
results of Garrett & Cummins (Proc. R. Soc. Lond. A, vol. 461, 2060, pp, 2563–2572), valid
only for σ = 1 and turbine efficiency of one, now for arbitrary blockage ratio 0 < σ � 1.
Published research over the past decade on the same topic has taken the momentum
equation and the turbine drag force as a starting point. The new approach presented
here, in contrast, takes the energy equation as the starting point and uses the relative
volume flow as the control variable. As the work shows, this new approach has three
advantages. First, starting with the energy equation allows us to derive an optimal flow
control problem resulting in an Euler–Lagrange equation using the physically consistent
and experimentally validated actuator disk model for the free surface flow of Pelz et al.
(J. Fluid Mech., vol. 889, 2020) in a direct and formal way. The optimal control problem
is solved (a) numerically and (b) analytically. In the latter case, the turbine characteristics
are approximated by a rational function in the relevant design and operating range. The
analytical solution (b) validated against the numerical solution (a) is surprisingly concise
and easy to apply in practice, as shown by use cases. Second, instead of the induction
factor, we use the volume flow that is the same for all turbines in a cascade, i.e. a row of
turbines in the direction of flow, which significantly reduces the complexity of the optimal
control task of turbine arrays. Third, we obtain a well-founded energy estimate, whereas
previous methods overestimate the energy yield due to inconsistent turbine disc models
(for the consistency and valid parameter ranges of different models, also in comparison
with experiments, see Pelz et al., J. Fluid Mech., vol. 889, 2020). The results can be used
for the conceptual design of turbine arrays, but also for a sound physically realistic and
consistent resource assessment of tidal power for a system consisting of two basins, a
channel and a turbine fence with 0 < σ � 1 and operated in a complete tidal cycle.

† Email address for correspondence: peter.pelz@tu-darmstadt.de

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 962 A37-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

17
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:peter.pelz@tu-darmstadt.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.172&domain=pdf
https://doi.org/10.1017/jfm.2023.172


C. Schmitz and P.F. Pelz

Key words: channel flow, hydraulics

1. Introduction

Low head hydropower such as tidal power offers a contribution to meet the world’s rising
electrical power demand, as long as the technology becomes economically viable (Rourke,
Boyle & Reynolds 2010). For power extraction, axial turbines have been or may be installed
at several promising sites on Earth. Many of these are narrow channels or straits between
two basins with different tidal regimes, cf. figure 1. For the evaluation of tidal channels
that are considered as sites for turbine fences or turbine arrays, the usable energy to be
harvested from the tidal stream is of central interest.

First assessments used the so-called ‘farm method’, which were solely based on the
energy flow through the channel undisturbed by any turbine. By ignoring the physically
relevant slowing of the tidal stream by the turbines, the method is only a summation of
nominal powers, leading to a vast overestimation of the tidal resource (Black & Veatch
Consulting Ltd 2005).

Garrett & Cummins (2005) recognised the limitations of this method and in contrast
considered a flow reduction due to the turbine’s operation from the undisturbed volume
flow Q0, i.e. the volume flow within the tidal channel without any turbine, to the volume
flow within the channel Q. The volume flow reduction is measured via the relative volume
flow rate

0 < q(t) := Q(t)
Q0(t)

� 1, (1.1)

and is controlled by the realised turbine array. They derived an upper limit, i.e. a factor
0.21 to 0.24 of the maximum energy flow P̂D,0 = �gQ̂0�Ĥ, by analysing the response of
the tidal system, i.e. the control volume (CV) labelled by CV I-II in figure 1, to a zero-loss
turbine fence. Here, � is the water density, g is the magnitude of the mass-specific gravity
vector, Q̂0 is the peak volume flow in the tidal cycle without a turbine installed and �Ĥ is
the peak difference in energy head between the two ends of the tidal channel.

For such an idealised fence, there are neither internal losses within the turbines, i.e. a
turbine efficiency ηT = 1, nor external losses PD,M due to mixing of bypass and turbine
volume flow downstream of the turbine fence. This is only valid for full blockage of σ = 1,
with the blockage ratio σ defined as usual (Garrett & Cummins 2007; Houlsby, Draper
& Oldflield 2008; Whelan, Graham & Peiró 2009; Pelz et al. 2020) as the ratio of the
turbine’s projected area AT to the passage cross-sectional area A1, cf. figure 1,

0 < σ := AT

A1
� 1. (1.2)

The ‘flux method’ of Garrett & Cummins (2005) was first applied by Black & Veatch
Consulting Ltd (2005), using an iterative combination of flux and farm method to take
the additional practical limitation of incomplete blockage into account. With a constrained
relative volume flow by a lower bound of 0.9 � q – for ecological reasons – the maximum
power output out of tidal stream sites was estimated to amount to CW = 8.6 %. This is
therefore the extractable fraction of the reference power P̂D,0. As a result, the projected
usable tidal energy per year on the coasts of the United Kingdom has been reduced from
formerly 58 TWh a−1 (ETSU 1993) to only 18 TWh a−1 (Black & Veatch Consulting Ltd
2005).
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Figure 1. Top and side views of a generic tidal channel as well as the electrical analogue. The energy is
extracted by a regular turbine fence with partial blockage ratio 0 < σ := AT/A1 � 1 with subsystem CV 1-2
and system CV I-II being in focus of this paper.

The fraction CW was originally introduced as the significant impact factor by Black
& Veatch Consulting Ltd (2005). However, since it is an energy coefficient, we use the
more appropriate term CW . One might argue in favour of calling the mentioned fraction
efficiency. In energy systems, however, the term efficiency is usually used to measure
the dissipation within a system boundary, e.g. within CV 1-2 depicted in figure 1. In the
context of this paper, the minimisation of the flow of unused exergy across the system
boundary is decisive for the energetic optimality of the system. Following Betz (1920) and
as is usual for energy systems, we therefore distinguish between the efficiency η (e.g. (1.9)
and (2.21)) and the coefficient of performance, which is either an energy coefficient CW
introduced for the system labelled by CV I-II (e.g. (1.6) and (1.7)) or a power coefficient
CP introduced for CV 1-2.

1.1. Overview of existing turbine disc models (CV 1-2)
The effect of blockage on the power coefficient CP for CV 1-2, namely the
interaction of the turbine with the lateral channel boundaries, was first studied by
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Garrett & Cummins (2007). They considered a Rankine–Froude momentum actuator disc
in a simplified channel with fixed water depth h1 = h2 and thus no influence of gravity
on the free surface. Essentially, even this simplest turbine disk model captures dissipation
due to mixing of flow through the turbines and flow bypassing the turbines. This mixing
causes considerable energy losses that are lost for power generation. To minimise these
losses, the turbines must be optimally tuned. According to Garrett & Cummins (2007), the
power output is maximised by tuning the axial induction factor, defined by α := uw/u1,
to the same optimal value as that found by Lanchester (1915) and Betz (1920) to be valid
for turbines in unbounded flow, i.e. αopt = 1/3 for the special case σ → 0. Here, u1 is the
velocity of the incoming flow far upstream of the turbine fence and uw is the flow velocity
in the turbine’s wake.

Past work has shown that the assumption h1 = h2 is in contradiction with the
conservation of energy, which tends to lead to an overestimation of the energy yield (Pelz
et al. 2020). Hence, there is a need for improved coarse-grained and fine-grained turbine
disk models. On the one hand, sound coarse-grained turbine disk models are needed
for three reasons: first, for the initial estimation of the potential energy yield of a tidal
channel, second, for the conceptual design phase of the turbine array required for this
and, third, for the model predictive control of the turbines in the usage phase. On the
other hand, for the subsequent embodiment design phase (Pahl et al. 2007) of the turbines,
fine-grained turbine models based on boundary or volume element methods are required
(Vogel, Willden & Houlsby 2019; Ouro & Nishino 2021).

For the conceptual design and resource estimation the model of Garrett & Cummins
(2007) was refined by Whelan et al. (2007, 2009), Houlsby et al. (2008) and Pelz et al.
(2020), taking into account the deformation of the free surface by gravity, i.e. h1 /= h2.

An in-depth analysis shows that the turbine disc models of Garrett & Cummins (2007),
Whelan et al. (2007, 2009) and Houlsby et al. (2008) conflict with either the continuity
equation (Garrett & Cummins 2007) or the energy equation (Houlsby et al. 2008; Whelan
et al. 2009). All named turbine disk models overestimate the energy yield compared
with a generic real experiment. Only the turbine disk model by Pelz et al. (2020) shows
convincing results in the entire range of upstream and downstream boundary conditions.
This model was developed specially for flows with free surfaces, whereby particular
attention was paid to conservation laws. Both models, the special model for σ = 1 (Pelz
2011) and the generalised model for 0 < σ � 1 (Pelz et al. 2020), consider the contraction
of the turbine streamtube due to the water head drop above the turbine and the associated
change in flow of kinetic energy and momentum across the turbine. Both turbine disc
models are for a steady or quasi-steady flow between cross-sections 1 and 2, cf. figure 1.

Schmitz & Pelz (2021) generalised the results of Pelz et al. (2020) valid for one turbine
fence to a cascade of L = 1, 2, 3, . . . turbine fences forming a regular turbine array within
the subsystem CV 1-2. The authors report that even for identically designed fences, each
fence has to be operated differently to achieve optimal tuning due to the changing water
depth over the turbine array. This corrects the statement that all turbines are operated in the
same way by Vennell (2010a), whose conclusion is consistent only with the very simple
turbine model of Garrett & Cummins (2007) but does not apply to the more physical model
of Pelz et al. (2020). Schmitz & Pelz (2021) further state that the relative gain of added
rows becomes smaller the more rows are added. As a consequence, even for a hypothetical
array with an infinite number of rows, the maximum power output is limited by the power
gained with a single fence of full blockage σ = 1 derived by Pelz (2011).
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1.2. Overview of existing channel models (CV I-II)
A combination of a model for CV 1-2 and the flux method introduced by Garrett
& Cummins (2005) for CV I-II was first done by Vennell (2010a) using the
induction-factor-dependent drag force from the simple turbine disc model of Garrett &
Cummins (2007). Vennell (2010a) rightly points out, that the tidal channel’s energy
potential depends on properties of the channel only and not on the array’s design and
operation, whereas the harvestable fraction does. The results show, as intuition would
indicate, that the exploitable fraction of the channel’s energy potential CW is higher if
more turbines are installed, especially, if the array is designed in a way to occupy most of
the channel’s cross-section, i.e. following the paradigm ‘filling rows first, then adding rows
up’. Vennell (2010a) further notices, that the optimal tuning of the turbines depends on the
topology of the array on the one hand and the channel’s properties on the other hand. He
derives the optimal axial induction factor to be approximately αopt ≈ 1/3 being the same
for all turbine of a ‘small’ turbine array and αopt ≈ 1 for all turbines of a ‘large’ turbine
array.

Vennell (2010b) extends the analysis to non-uniform channels with a constriction in
width.

Vennell & Adcock (2013) and Vennell (2016) point out that the power output can be
enhanced when using the inductance of the channel flow by smart operation of the tidal
turbines. This interesting approach is very shortly discussed in § 2.2.

Nishino & Willden (2012, 2013) and Vogel, Houlsby & Willden (2016) bring attention
to the fact that the energy extraction can be enhanced by asymmetric turbine arrays, as
an additional bypass around the turbine array can be beneficial for energy extraction. This
effect can be pushed to its limits, as Dehtyriov et al. (2021) have recently shown. The
influence of centred and staggered arrangements is discussed e.g. by Draper et al. (2014).

There are many further works on the solution of field equations, i.e. the shallow
water equations in two space dimensions (Vogel et al. 2019; Bonar et al. 2019); or
the Navier–Stokes equations in three space dimensions with detailed modelling of the
machine–fluid interaction, e.g. Ouro & Nishino (2021). These kinds of analyses are
important for the detailed optimisation of turbines or the application of turbines to specific
channels.

As mentioned earlier, the motivation of this paper is to improve the basis for conceptual
design. Therefore, blade element theory, boundary element methods or volume methods
are mentioned as important methods here. However, they will not be considered further in
the remainder of this paper.

1.3. Approach, objective, open research question, presentation and structure of the paper
To be concise, without contradiction to energy and mass conservation, the new approach
presented here takes the energy equation for the system CV I-II – not the momentum
equation as in previous works in the sequence of Betz (1920) being valid only for σ → 0
– as the starting point. As mentioned, this new approach for arbitrary blockage ratio,
0 < σ � 1, for the system labelled CV I-II has three advantages. First, starting with
the energy equation allows us in a strict, direct and formal way to end up with an
optimal control problem. This leads us to the three necessary conditions indicating a
quasi-steady channel flow. The optimal control problem is solved (a) numerically and
(b) analytically for this quasi-steady flow. Second, instead of the axial induction factor,
we use the volume flow that is the same for all turbines in a cascade, reducing the number
of controlled variables of a turbine array. In addition, using the volume flow as a control
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parameter simplifies the problem considerably, as the boundary conditions only enter the
problem via the relative volume flow. Third and finally, we obtain a well-founded energy
estimate.

The paper is in line with those of Vennell (2010a) and Garrett & Cummins (2005). It
continues the work with important new aspects and places it on a more solid foundation:
specifically, we make implicitly made assumptions by Garrett & Cummins (2005) explicit,
cf. § 2.6. We show consistency of the more general theory with previous results gained for
the special case σ = 1 only, cf. §§ 2.5 and 2.6 and figure 5.

More generally, we avoid overestimating the energy yield in any case ensured by the
focus on the energy equation and arrive at a concise and thus also practically applicable
answer to the question of how a tidal stream can be optimally controlled by turbine
arrays. We generalise the specific findings of Garrett & Cummins (2005), Pelz (2011)
and Pelz et al. (2020). In this way, a theory and results are presented that are free of
contradictions, conservative and applicable. The theory and results apply to the entire
system consisting of basins I and II, the channel and the turbine array within for a complete
tidal cycle.

The named conflicts in previous works become obvious by looking at one easy-to-show
example for the asymptotic case σ → 1. If such a turbine farm harvests a major part of the
energy lost in the channel, a change in energy height occurs over the array. This, however,
requires a water head drop and an acceleration of the downstream flow, i.e. α > 1. The
result reported by Vennell (2010a) that α is smaller than one for optimally tuned turbine
arrangements thus contradicts the energy equation; although this conflict is easy to miss
for small head differences with �H/HI → 0 and α → 1 where the limit is approached
from above, i.e. even for α being close to one it is still larger than one.

For its practical relevance, the paper develops a general and easy-to-use method for
calculating the maximum power output of tidal turbines in a tidal channel or strait, which
– in contrast to previous results based on Garrett & Cummins (2007) or Houlsby et al.
(2008) – is valid for any headloss amplitudes �H = HI − HII for subcritical channel flow,
i.e. Froude numbers Fr < 1, and arbitrary blockage ratio 0 < σ � 1. Thereby, it forms the
foundation for a physically sound optimal flow control rule.

To this end, the paper is structured as follows: in § 1.4 the underlying basis of Garrett
& Cummins (2005), Pelz (2011) and Pelz et al. (2020) is briefly restated. In § 2.1 the
variational problem for optimal flow control in general and for the special but highly
relevant case of quasi-steady flow is formulated. The optimality condition for quasi-steady
flow is first solved for the special case of a lossless turbine fence, discussing the results of
Garrett & Cummins (2005) (§ 2.4) and showing the consistency with the works of Garrett
& Cummins (2005) and Pelz (2011) (see § 2.6). The variational problem is solved second
for a regular turbine fence with arbitrary blockage, whose total system efficiency for the
control volume, i.e. subsystem, labelled CV 1-2 in figure 1 is derived from the generalised
actuator disc model of Pelz et al. (2020) in § 2.7. In § 2.9 exemplary applications of the
presented approach are briefly discussed, before a conclusive discussion of this work is
given in § 3.

1.4. Basis of the paper
As depicted in the upper left of figure 2, there exists an optimal flow control rule for the
complete system labelled CV I-II which is valid for the special case of full blockage σ = 1
and ηT = 1 (Garrett & Cummins 2005).

The introduced reference power for the system ranging from an upstream basin I to a
downstream basin II, cf. figure 1, is given innately. It is the maximum dissipated energy
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Figure 2. Classification of research on the optimal control of tidal flow and the upper limit of tidal power into
periodic vs steady flow on the one hand and complete blockage vs partial blockage on the other. Only papers
on which the paper presented here is based are cited in the figure.

per unit time due to the undisturbed flow between the two basins driven by the difference
in energy head �H = HI − HII : the energy equation in integral form for CV I-II (for a
strict derivation of this equation from the first law of thermodynamics, see e.g. Pelz 2011)
spanning from I to II without any turbine, i.e. σ = 0, gives this dissipated energy per unit
time at any instant of the tidal cycle

CV I-II, σ = 0 : PD,0(t) = �gQ0(t)�H(t). (1.3)

It should be pointed out here that PD,0 is not only due to the flow of kinetic energy through
the channel, as is sometimes reported.

As the flow in most tidal channels is quasi-steady, cf. § 2, there is usually no phase
shift between the volume flow Q(t) = Q(t + T) through a channel between two basins
and the head difference �H(t) = �H(t + T) between these basins (here T denotes the
cycle time). In a true quasi-steady flow, this phase shift is indeed zero. This is of course
not the case for the heads HI(t) and HII(t) of the two basins themselves. In fact, their
phase difference is the reason for a cyclic head difference �H(t) = �H(t + T) to occur.
Thus, the peak values �Ĥ = max(�H(t)) and Q̂ = max(Q(t)) occur at the same time and
the peak dissipated power is indeed

P̂D,0 = �gQ̂0�Ĥ. (1.4)
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The denominator P̂D,0 of the energy coefficient CW , (1.6), is thus given innately,
whereas the numerator is of course the total mechanical work

WT =
∫ T

0
PT dt (1.5)

extracted from the tidal flow by all turbines along a full tidal cycle divided by the cycle
time T . Here, PT is the accumulated power of all turbines. The energy coefficient is thus
defined by

CV I-II : CW := WT/T

�gQ̂0�Ĥ
. (1.6)

For the common case of quasi-steady flow, i.e. zero time shift between head difference
and volume flow rate, Garrett & Cummins (2005) derive the upper limit (see the upper left
picture in figure 2)

CV I-II, σ = 1 : CW,max = 0.21ηT for qopt =
√

3
3

≈ 58 %. (1.7)

The turbine efficiency ηT was added by the authors to achieve a physically consistent
representation. Garrett & Cummins (2005) obtained the upper limit by analysing the
response of a time harmonic, i.e. sinusoidal oscillating, tidal flow through a zero-loss
turbine fence. Thus, there is no dissipation due to mixing of bypass and turbine volume
flow downstream of the turbine fence, i.e. PD,M = 0. This is only true for the special
case σ = 1. In addition, Garrett & Cummins (2005) assume no internal losses in the
turbine’s near field, i.e. ηT = 1 where the hydraulic turbine efficiency is defined as usual:
ηT := PT/(PT + PD,T). Here, PT is the turbine power and PD,T is the energy dissipated
in the turbine per unit time. This internal dissipation has three main contributions: (i)
viscous or turbulent friction in the boundary layers of the turbine blades; (ii) losses due to
wake flow of each blade section in case of partial flow separation, e.g. by boundary layer
separation or also by sheet cavitation; and (iii) losses due to tip and hub vortices.

As depicted in the lower left of figure 2, there is for σ = 1 as well an upper limit for
the power coefficient (1.12) for the subsystem labelled CV 1-2 in figure 1: Pelz (2011)
analysed the turbine fence solely within control volume CV 1-2. The energy equation in
integral form in this case reads

CV 1-2: �gQ (H1 − H2) = PT

ηT
+ PD,M = PT

η
. (1.8)

Here, the total dissipation within CV 1-2, i.e. the sum of turbine internal dissipation PD,T
and dissipation that takes place downstream of the turbine due to wake mixing PD,M is
measured via the total system efficiency (see figure 3)

η(σ, q, h̄) := PT

PT + PD,T + PD,M
= ηT

1 + PD,M/(PT/ηT)
. (1.9)

Here, h̄ := HII/HI is given as the boundary condition of the problem (Pelz et al. 2020).
For the special case of full blockage, σ = 1, the total system efficiency becomes η = ηT

as the mixing losses are not present, i.e. PD,M = 0. Pelz (2011) solves the optimisation
problem max(PT) for given H1 and width b of the tidal channel, yielding h̄opt =
2/5, HT,opt = 2/5 HI . The turbine head is defined as usual by HT := PT/(ηT�gQT),
where QT is the part of the total volume flow Q entering the turbines. In terms of volume
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Figure 3. Total system efficiency 0 � η/ηT � 1 vs blockage 0 < σ � 1 (a) and relative flow rate 0 � q � 1
(b) with h̄ = 0.80, 0.85, 0.90, 0.95 being the Coulter parameter, each close to one. The system efficiency
characterises the subsystem CV 1-2 of the system CV I-II. The broken lines show (a) the numerical solution of
the turbine disc model. The solid lines show (b) the analytical approximation given by (2.21).

flow, this optimality condition and the resulting upper limit writes (see the lower left
picture in figure 2)

CV 1-2, σ = 1 : h̄opt = 2
5
, Qopt = bg1/2

(
2
5

HI

)3/2

, PT,max = ηT�bg3/2
(

2
5

HI

)5/2

.

(1.10a–c)

At this optimal operation point, the first half of the tidal power is extracted within the
ideal turbine fence and the second half is lost in the tailwater. Hence, the available power
harvestable by a hypothetical ideal machine without tail water, h̄ = 0, is twice the above,
i.e.

Pavail := 2
PT,max

ηT
= 2�bg3/2

(
2
5

HI

)5/2

, (1.11)

for a turbine efficiency ηT = 1, cf. Pelz (2011). The upper limit of the power coefficient is
therefore

CP,max := PT,max

Pavail
= ηT

2
. (1.12)

Two points are worth mentioning here. First, Pavail cannot be obtained by applying
the asymptotic limit h̄ → 0 to the energy equation (1.8). Instead, the reference power is
obtained by setting h̄ = 0. This means a change in topology, namely that in the thought
experiment a machine without tailwater is considered (Pelz 2011). This corresponds to the
thought experiment of Betz (1920) to determine the available reference power for a wind
turbine. Second, and clearly more important in the context of this paper, we will show that
the two upper limits for the power coefficient CP,max = ηT/2 (1.12) on the one hand and
the energy coefficient CW,max ≈ 0.21 ηT (1.7), on the other hand, are consistent.
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C. Schmitz and P.F. Pelz

This special case σ = 1 treated by Garrett & Cummins (2005) for CV I-II and by Pelz
(2011) for CV 1-2 is, however, quite academic. A more practical question is:

‘What energy gain is theoretically possible over a complete tidal cycle for the CV I-II system,
where the blockage ratio σ may be limited by ecological and economic constraints and the volume
flow ratio q may be limited by a constraint due to the flow resistance given by the drag coefficient
CD of the turbine, ensuring that the strength of the structure and mooring is greater than the
stress?’

To answer this question for the subsystem CV 1-2, Pelz et al. (2020) consistently generalise
the upper limit (1.12) for arbitrary blockage ratio 0 < σ � 1 by solving the optimisation
problem

CV 1-2: CP,opt(σ, h̄) = max
H̄T

CP(σ, H̄T , h̄) � ηT

2
, (1.13)

with H̄T := HT/HI for a regular turbine fence with L = 1, cf. lower right picture in
figure 2.

To the best of the authors’ knowledge, there is so far no analysis concerning the
complete transient system covered by CV I-II, which is valid for any headloss amplitudes
ΔH = HI − HII with subcritical Froude numbers Fr < 1 and arbitrary blockage ratio
0 < σ � 1, cf. upper right of figure 2. To derive the optimal control variable, i.e. the
optimal operational parameter 0 < qopt � 1 at any instant of the complete tidal cycle,
0 < t � T , we solve the optimal control problem for the complete system

CV I-II: max
q(t)

WT = max
q(t)

∫ T

0
PT

(
σ, q(t), h̄(t)

)
dt, (1.14)

for the total mechanical work extracted from the tidal flow by all turbines along a full
tidal cycle as a function of the given design parameter 0 < σ � 1 and given time history
of the constraint 0 < h̄(t) = h̄(t + T) � 1, which is given by the downstream boundary
condition

0 < h̄(t) := HII(t)/HI(t) � 1. (1.15)

2. Optimal flow control problem

The optimisation problem (1.14) is equivalent to the variational problem

0 = δ

∫ T

0
PT(σ, q(t), h̄(t), . . .) dt. (2.1)

This optimal control problem is to be solved by the variational principle aiming for an
optimal trajectory of the control variable qopt(t) for given partial blockage 0 < σ � 1, i.e.
the design of the fence, and arbitrary given cyclic boundary condition h̄(t) = h̄(t + T).

The selection of the relative volume flow q (1.1) as the control variable instead of
the induction factor α, as in Garrett & Cummins (2007) or Vennell (2010a), or the
turbine head HT , as in Pelz (2011) and Pelz et al. (2020) has two major advantages.
First, for a turbine cascade, i.e. a row of turbines arranged in flow direction, the volume
flow is always the same for all turbines, whereas the turbine head differs (Schmitz &
Pelz 2021). This is important for a possible generalisation of the approach presented
here where one turbine fence is considered alone, in relation to turbine arrays where
several turbine fences are cascaded. Second, by selecting the relative volume flow q(t)
as operational parameter, we can ignore the influence of h̄(t) on the optimal flow
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Optimal control of tidal flow

control problem (2.1) as the reference volume flow Q0(t) results from the upstream
and downstream boundary condition, i.e. H1/HI = 1 and h̄ = HII/HI . In other words, q
depends on the boundary condition h̄ and the design parameter σ only. Hence, for a given
design parameter σ , the variational problem (2.1) reads

0 = δ

∫ T

0
PT (q(t), q̇(t)) dt, (2.2)

where q̇ = dq/dt is the time derivative of the operational parameter (1.1). This variational
problem (2.2) is equivalent to the Euler–Lagrange equation

d
dt

(
∂PT

∂ q̇

)
= ∂PT

∂q
. (2.3)

2.1. Optimality condition for quasi-steady flow
For a quasi-steady problem, all terms with partial time derivatives in the continuity
equation, the momentum equation and the energy equation are negligibly small and time
enters the problem only as a parameter in the boundary conditions: H1(t) = HI(t) and
h2(t) = HII(t). If this is the case, the left-hand side of (2.3) is negligibly small and the
optimisation problem assumes the most-simple form

∂PT

∂q
= 0. (2.4)

There are three conditions that must be fulfilled in order to qualify a channel flow as
quasi-steady, as outlined in Appendix A,

Π1 := f
√

LC = fl√
gh0

� 1, Π2 := fL
R

= fh0

u∗
� 1,

Π3 = Π2
1

Π2
= fRC = fu∗

g

(
l

h0

)2

� 1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5a–c)

Here, the capacitance C, inductance L and resistance R are used for the electrical analogue
of the flow, cf. figure 1 and Appendix A. The three conditions can be derived by an order
of magnitude analysis of the equations of motion (Pelz, Lemmer & Schmitz 2022) or by
an extended dimensional analysis, as is presented in the Appendix A.

With the frequency of the tidal cycle f = 1/T ∼ 10−4 Hz, the undisturbed water
depth h0 ∼ (101 . . . 102) m, the typical length range of tidal channels l ∼ (103 . . . 104) m
and the typical frictional velocity (see Appendix A) u∗ ∼ (0.2 . . . 0.3) ms−1 the three
dimensionless products show a magnitude of 10−3 . . . 10−1. Therefore, the necessary
conditions for the quasi-steady flow are fulfilled for the vast majority of tidal channels.
Only for very long and shallow channels, transient effects become relevant. The turbulent
diffusion time u∗/h0 can only have an effect for very deep channels.

In fact, it would be valuable information to represent the large number of narrow
channels or straits between two basins that are considered to be suitable for tidal power
plants on Earth in three diagrams and evaluate them in terms of their dynamic properties.
This would mean that that the dimensionless products of the channels are plotted in three
diagrams, i.e. Π2 vs Π1, Π3 vs Π1 and Π3 vs Π2, each in a range of values between
zero and one. Each diagram would be the projection of a unit cube. The so far publicly
available data are still so rare and incomplete that this representation cannot be given in
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C. Schmitz and P.F. Pelz

this paper. The aim of the work is a scientific analysis and a consistent method. However,
the relevance of the work naturally increases with its applicability. Based on the available
data and using the estimation of the dimensionless products made above, we can only
assume in the context of this work that most channels are so ‘short’ that the flow is indeed
quasi-steady.

For quasi-steady flow, (2.4) leads us to the optimal control of the quasi-steady flow and
thus to the amount of tidal power achievable by an optimally operated turbine fence or
array with partial blockage over the entire tidal cycle.

2.2. Transient channel flow
Although a channel flow unaffected by a turbine can be quasi-steady, it can still be set to
a transient state by latching the turbine in one time phase and allowing it to operate in the
following time phase. This so-called latching control strategy known in the field of wave
power is discussed by Vennell & Adcock (2013) and Vennell (2016) for tidal channels.

The approach from Vennell (2016) is very interesting and promising from our point of
view: it is common knowledge that the potential for extracting mechanical energy from
a dynamically oscillating system such as a wave point absorber with natural frequency
1/

√
LC, which interacts with waves of frequency f , reaches its maximum at resonance,

i.e. for f
√

LC ≈ 1. Usually, the eigenfrequency of the unit is much higher than the
excitation frequency from wave (or tide) due to technical limitations, i.e. f

√
LC � 1 as

is the case with many tidal channels. By applying the latching control strategy, the system
can be forced to behave as if f

√
LC ≈ 1, i.e. it is forced to behave dynamically and to

approach resonance. For the dynamic and hence transient case, the left-hand side of the
Euler–Lagrange equation (2.3) is different from zero. Although this is a promising strategy
to improve the energy yield, it is not the focus of this paper. Here, we only consider
continuously operated turbines whose operating point is determined by q(t).

2.3. General solution for quasi-steady flow
In order to find a general solution to (2.4), it is useful to apply a suitable reference power.
As stated earlier, Garrett & Cummins (2005) and Black & Veatch Consulting Ltd (2005)
define the peak power P̂D,0 given by (1.4) as a reference. As this paper shows, it is more
beneficial to use the dissipated energy for the undisturbed channel at every instant in time
of the tidal cycle PD,0(t) = �gQ0(t)�H(t) (1.3) as a reference.

In addition to the energy equation formulated for the system labelled by CV I-II in
figure 1 without turbines, cf. (1.3), we consider the energy equation formulated for the
same system with turbines installed

CV I-II, 0 < σ � 1 : �gQ�H = PT

ηT
+ PD,M + PD = PT

η
+ PD. (2.6)

The upstream boundary condition of the energy equation is energetic, the downstream
boundary condition dynamic. A kinematic boundary condition is often used upstream
of turbine fences and arrays. However, it has been shown that this kinematic
boundary condition, which follows the theory of wind turbines, is misleading, cf.
Pelz et al. (2020, 2022). Upstream, the hydraulic grade line is level due to usually
negligible dissipation for an accelerated flow. Hence, the upstream boundary condition
is H1/HI = 1 with the total head defined by H := z + h + u2/2g. Here, z is the level of
the seabed, u = Q/(bh) is the flow velocity averaged over the cross-section and h is the
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Optimal control of tidal flow

water depth. For the purposes of this paper, we assume a levelled seabed within the tidal
channel. The downstream boundary condition is given by the ratio of downstream water
depth to effective head, h̄ := h2/HI . For subcritical flow, i.e. Fr2 < 1, Newton’s third law
‘actio est reactio’ for the tidal stream entering the lower basin gives h2 = HII . Hence,
the cyclic downstream boundary condition reads 0 < h̄(t) := HII(t)/HI(t) � 1. For h̄ = 1
there is no channel flow. For h̄ < 1 the flow is from left to right (see figure 1). For h̄ > 1
the flow is from right to left which is covered by switching the indices I → II, II → I,
1 → 2 and 2 → 1. Hence, it is sufficient to analyse the interval 0 < h̄ � 1 only. For real
tidal channel flow, h̄ is close to one and Fr2 is much smaller than one. We will use this
fact in § 2.7 to give a concise analytical approximation to the numerical solution of the
physically consistent actuator disk model Pelz et al. (2020) with (2.21).

To account for dissipation due to fluid friction at the seabed, we define a loss factor
ζ := cf l/h0 with the seabed friction factor cf . Thus, we obtain for the dissipation powers
for the disturbed and undisturbed tidal channel

PD = 1 + ζ

2
�

Q3

b2h2
2
, PD,0 = 1 + ζ

2
�

Q3
0

b2h2
2,0

. (2.7a,b)

There might be a discussion regarding modelling the loss factor ζ . Interestingly, however,
this is not necessary, since the results are independent of the loss model. This is true
provided the following assumptions hold. First, viscous shear stress is small compared with
turbulent stress and, second, no hydraulic jump or surge wave occurs. Both assumptions
are true for most marine open channel flow; there is no hydraulic jump in subcritical flow
to reflect the latter concern. In addition, the viscous shear stress is generally negligible
because the viscous sublayer usually ‘disappears’ in the roughness of the seabed, i.e.
k � ν/u∗. Hence, PD ∝ Q3 and the downstream water depth in (2.7a,b) is given by the
boundary condition h2(t) = h2,0(t) = HII(t) for both cases, i.e. σ = 0 and 0 < σ � 1
respectively. In the framework of the optimisation, the dissipation due to friction at the
channel bottom and at the exit of the channel flow into the basin is proportional to the
resistance constant R and proportional to Q3. The resistance constant is only parametrically
dependent on time via the boundary condition, i.e. the water depth h2 = HII , which is
typical for quasi-steady flows

R := 1 + ζ

2
�

b2H2
II

. (2.8)

Hence, (2.7a,b) read PD = RQ3 and PD,0 = RQ3
0, keeping in mind that R(t) = R(t + T)

since HII(t) = HII(t + T). With the total system efficiency (1.9) and the abbreviation (2.8)
the energy equations (2.6) and (2.7a,b) read

σ /= 0 : �gQ�H = PT

η
+ RQ3 and σ = 0 : �gQ0ΔH = RQ3

0 = PD,0. (2.9a,b)

Besides the analysis of the special case σ = 1 and sinusoidal periodic flow in § 2.6 we are
only bounded by relative quantities such as the relative volumetric flow q := Q/Q0 and
the relative turbine power p defined by p := PT/PD,0. Hence, the details of any loss model
like friction on the seabed ground is only of minor relevance. The combination of the
two energy equations (2.9a,b) using the definitions for q and p results in the surprisingly
concise equation

p = η(σ, q)q(1 − q2), (2.10)

which is still an energy equation in integral form for the control volume CV I-II with the
turbines’ power output on the left-hand side.
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To obtain the optimal power output at every instant in time along the tidal cycle and the
maximum of work per cycle

max
∫ T

0
ηq(1 − q2) dt, (2.11)

we solve the special form of the Euler–Lagrange equation for quasi-steady flow (2.4). As
the system efficiency η = η(σ, q) does depend on the relative volume flow q, this yields

− 1
η

∂η

∂q
q(1 − q2) = 1 − 3q2. (2.12)

This optimality condition for deriving the optimal trajectory of the relative volume flow
qopt(t) applies to any periodic but quasi-steady flow in the tidal channel for any turbine
array.

2.4. Optimal flow control for full blockage σ = 1
Before determining the slope (∂η/∂q)/η, using the generalised actuator disc model for
free surface flow by Pelz et al. (2020), we first treat the simple and special case of full
blockage σ = 1 and η = ηT = const. For this case, the left-hand side of (2.12) vanishes as
∂η/∂q = 0. Hence, (2.12) yields the special result of Garrett & Cummins (2005), i.e.

σ = 1 : qopt =
√

3
3

≈ 0.58. (2.13)

Using this result in (2.10), we gain the result for the maximal relative power

pmax = 2
√

3
9

ηT ≈ 0.39ηT . (2.14)

This analytic result in form of a fractional irrational number is new and not given by
Garrett & Cummins (2005). With the track based on optimal control theory and making the
implicitly made assumptions explicit, cf. § 2.6, the theory of Garrett & Cummins (2005)
is put on an even more solid basis.

2.5. Consistency with Pelz (2011) for quasi-steady flow and σ = 1
The upper limit (2.14) is consistent with the upper limit (1.12) of Pelz (2011), as the
following analysis shows: The difference in the reference power PD,0 := �gQ0�H used
in this paper and Pavail := 2�bg3/2(2/5HI)

5/2 defined by Pelz (2011) is due to the
difference in the considered systems. That is, they serve different purposes and are as
such complementary, but consistent. This becomes obvious by inserting the result (2.14)
into the upper limit for the power coefficient (1.12) yielding

CP,max = PT,max

Pavail
= ηT

√
3

9
Q0�H

bg1/2(2/5HI)5/2 . (2.15)

With �H = HI (1 − h̄) and the optimal operation point Qopt = bg1/2 (2/5HI)
3/2, h̄opt =

2/5 (1.10a–c) derived by Pelz (2011), as well as the optimal operation Qopt = Q0/
√

3
(2.14) derived in this paper, (2.15) collapses into

CP,max = ηT

2
. (2.16)

This is indeed the upper limit (1.12) for the power output out of any quasi-steady free
surface flow (Pelz 2011; Pelz et al. 2020).
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Optimal control of tidal flow

2.6. Consistency with Garrett & Cummins (2005) for harmonic flow and σ = 1
The analyses and results presented so far apply to any cyclic but quasi-steady flow. Garrett
& Cummins (2005) considered a special case by assuming two things in deriving their
upper bound for the energy coefficient (1.7). First, the authors assume a harmonic, i.e.
sinusoidal, flow. Second, they assume that the flow resistance R(t) ≈ Rc is approximately
constant without considering the time variation that actually exists (see (2.8)).

Although both assumptions are not necessary as this paper shows, only in this section
do we make these very assumptions to show that the analysis presented here is consistent
with that of Garrett & Cummins (2005) and, moreover, a generalisation of it.

For this special case, we have �H(t) = �Ĥ sin(Ωt), Ω = 2π f = 2π/T . With R ≈
Rc = const. (2.9a,b) yields

Q0 =
√

�g�H
R

≈ Q̂0
√

sin(Ωt) (2.17)

with the peak volume flow rate Q̂0 =
√

�g�Ĥ/Rc. The dissipated energy per unit time in
the undisturbed channel is hence given by the approximation

PD,0 ≈ P̂D,0 sin3/2(Ωt), (2.18)

with the peak power P̂D,0 = �gQ̂0�Ĥ already given in (1.4).
With the result PT,max = ηT2

√
3/9 PD,0 (2.14), the time averaged maximal power output

for σ = 1 thus calculates as

CW,max = 1
2π

∫ 2π

0

PT,max

P̂D,0
d(Ωt) = ηT

2
√

3
9

c ≈ 0.21ηT , (2.19)

with the conversion factor c between the relative turbine power p used in this paper and
the energy coefficient CW usually used for resource characterisation of tidal power

c := CW

p
≈ 1

2π

∫ 2π

0
| sin3/2(Ωt)| d(Ωt) ≈ 0.56. (2.20)

(It is clear that with non-harmonic tidal flow, the conversion factor takes on a different
value. This can be easily calculated for any measured time cycle.)

Equation (2.19) is indeed the upper limit given by Garrett & Cummins (2005).
For quasi-steady flow, the results and methods presented in the previous sections

are thus a consistent generalisation of the special harmonic case treated by Garrett &
Cummins (2005). As this paper shows, neither the consideration of sinusoidal flow, nor
the approximation of a time-invariant R = Rc is necessary when having p and not CW as
objective.

So far, the consistency of the optimal control approach has been proven for the special
case σ = 1. The following section closes the knowledge gap for the arbitrary blockage
ratio 0 < σ � 1.

2.7. Optimal flow control for a regular turbine fence with partial blockage 0 < σ � 1
The present section fills the mentioned knowledge gap by (a) solving the model of
the turbine disk numerically in conjunction with the Euler–Lagrange equation which
covers the entire time-periodic system CV I-II and (b) solving the problem analytically
using an approximation of the turbine properties. Thereby, the analytical solution (b) is
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validated against the numerical solution (a). The validation shows only a very small model
uncertainty in the relevant parameter range. It is also surprisingly concise and easy to use
in practice, as we will show with the help of use cases, cf. § 2.9.

The approach based on the Euler–Lagrange equation derived in § 2.1 provides a rigorous
and consistent way to generalise the results presented in the previous section for full
blockage σ = 1 for arbitrary, i.e. also partial blockage (see (2.12)). To solve the optimality
condition (2.12) the total system efficiency η and its slope −(∂η/∂q)/η has to be
determined for arbitrary blockage 0 < σ < 1, volume flow q and boundary condition h̄.
This is done using the axiomatic and physically consistent turbine fence model of Pelz
et al. (2020).

Figure 3 shows the total system efficiency η/ηT for 0 < σ � 1 and 0 < q � 1 for the
subsystem CV 1-2 derived from the turbine disc model of Pelz et al. (2020). The dashed
lines show (a) the numerical results of the turbine disc model being valid for free surface
flow. The Coulter parameter in the two plots shown in figure 3 is the basin head ratio
h̄ = 0.80, 0.85, 0.90, 0.95.

The solid lines represent (b) the analytical approximations of the numerical results. The
basis for the approximation is the following analysis: For σ → 1 we have the asymptotic
behaviour η → ηT as no mixing occurs. The same is true for the limit q → 1 : η → ηT ,
where the resistance and hence the mixing losses disappear. Operating the turbines at
increased resistances results in a decreased turbine volume flow and increased energy loss
due to mixing in the wake. In the theoretical limit of maximum resistance, i.e. a closed
disc, there is no turbine volume flow. All the volume flow is bypassed and all power is
dissipated in the turbine wake, i.e. η → 0. This gives the monotonic behaviour, which is
revealed in figure 3. Further, there is only a negligible sensitivity of η/ηT with respect to
h̄. This is true at least for the practically relevant range where h̄ is close to one. This is
because the main dependence on h̄ is already covered by q = q(h̄). The total efficiency
of the system η is therefore only implicitly dependent on h̄, but only to a small extent
explicitly: η(q, h̄, σ ) ≈ η(q(h̄), σ ).

The asymptotes, the monotonicity and the implicit dependence of the total system
efficiency on h̄ suggest a rational ansatz function (b) for the approximation. Indeed, the
numerical solution (a) of the turbine model yielding the total system efficiency can be
approximated by a rational ansatz function (b) mapping the limiting characteristics for
σ → 1 and q → 1. An analytical approximation to the numerical values is given by the
rational function

η

ηT
≈ 1 − a

1 − σ

σ

1 − q
q

. (2.21)

Here, the second quotient (1 − q)/q is an ‘operating’ function, whereas the first quotient
is a ‘design’ function of the regular turbine array. In the following we will use the
abbreviation for this first quotient defined by

D(σ ) := a
1 − σ

σ
. (2.22)

For a single regular turbine fence, the constant a is determined by means of a Gaussian
root means square method to be a ≈ 0.62. In the context of this paper, we focus on one
single turbine fence L = 1 in a tidal channel only.

Provided the turbine fence is extended to a turbine array in which L = 1, 2, . . . turbine
fences are arranged in a cascade, it is conjectured that a will be a function of this additional
parameter which, along with σ , defines the design of the ideal turbine array. In fact, our
current research on turbine arrays shows that the rational design function is then given by
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Optimal control of tidal flow

D(σ, L) = (a/L) (1 − σ)/σ for an ideal turbine array spanning the entire width b of the
tidal channel. For L = 1, the special case of an ideal turbine fence (2.22) is part of this
general design function. For L → ∞ the design function becomes zero and η → ηT as
for the special case σ = 1. The asymptotic behaviour is thus correctly reproduced by the
approach taken.

In the following, the importance of the system efficiency of the subsystem CV 1-2
for the overall system CV I-II and the admissibility and simplicity of the approach
will be discussed: First of all, the approach (b) is an approximation only to the turbine
characteristics given by numerical model solution (a) in the relevant parameter space
as turbine efficiency for subsystem CV 1-2, cf. figure 3. However, the relevant physical
information about the subsystem CV 1-2 for the overall system CV-I-II, which is the focus
here, is completely contained in figure 3. Thus, all independent parameters for design,
considered by σ , operation, determined by q, and boundary condition, given by h̄, are also
included. The information used for CV I-II in this work is the system efficiency of the
subsystem CV 1-2, which is always less than one. This ensures the consistency with the
conservation of energy. It is given implicitly from the first in the new approach presented
here. This would not necessarily be the case if the information from the subsystem CV 1-2
for the overall system CV I-II were a turbine’s drag coefficient, as in the approaches that
can be found in the reviewed literature: as already stated, up to now momentum and forces
have practically always been discussed first and only energy and dissipation second. In the
new approach presented here, this order is reversed, resulting in an indubitable consistency.

The prerequisite for the obvious simplicity and quality, i.e. small model uncertainty,
of the approximation (b) is the careful choice of the independent variables, namely the
relative volume flow q as operational parameter and the relative blockage σ as design
parameter, as well as the natural restriction of the efficiency to the range of values between
zero and one. The discussion of the monotonic behaviour, the asymptotic behaviour
towards one and the zeros was also helpful. The validity of the approximation is obvious
throughout the paper, cf. figures 3, 4 and 5. The discussion reveals that the approximation
is more than just an ad hoc approach, as one might assume from its surprising simplicity.
The simplicity only becomes apparent through the energy approach, the careful choice of
variables and their reference values.

Using (2.21) and (2.22) the energy equation (2.10) yields

p
ηT

= −(1 + D)q3 + Dq2 + (1 + D)q − D. (2.23)

For σ /= 1 this equation can be represented by the even simpler form

p
ηT

= Dd(q − d)(1 − q2), (2.24)

by using the abbreviation

d := D
1 + D

. (2.25)

For σ → 1 the design functions D, d both become zero and hence p would vanish in the
more special form (2.24). However, the special case σ = 1 is already covered. For brevity
and clarity, however, we prefer the given simple representation. Equation (2.24) has two
positive roots, namely q = 1 and q = d. The first root is clear, the second root is due to the
fact that for q = d there is no turbine volume flow and only a bypass volume flow.

The approximation of the sweet points is gained by applying the optimal flow control
condition (2.12), i.e. ∂p/∂q = 0, to the approximation (2.23) or (2.24), which yields the
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Figure 4. Relative turbine power vs relative volume flow for different blockage ratios σ =
0.1, 0.2, 0.3, . . . , 1.0 and boundary condition h̄ = 0.80, 0.85, 0.90, 0.95. Panel (a) shows the whole
range of relative volume flow, whereas (b) highlights only the relevant parameter range. The thin broken lines
represent (a) the numerical results derived from the turbine disc model, whereas the thick solid lines represent
(b) the rational function model given by (2.24).
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Figure 5. Optimal relative volume flow qopt as well as the associated and achievable relative turbine power
p as a function of blockage of the turbine fence; the thin dashed lines represent the numerical solution (a)
based on the turbine disc model, the thick solid lines represent the rational function model (b) given by (2.21)
and (2.22).
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quadratic equation

3q2
opt − 2dqopt − 1 = 0, (2.26)

for the optimal relative volume flow to be controlled by the operator of the turbine array.
The one relevant root of this (2.26) is given by the concise equation

qopt = 1
3(d +

√
3 + d2). (2.27)

For the special case σ = 1 and thus D = d = 0, the new solutions collapse into the familiar
condition qopt = √

3/3, cf. (2.13), as it should be for consistency.
The strength of the analytical approach using a rational function model is revealed in

figure 4. Figure 4(a) shows the relative turbine power p(σ, q, h̄) with 0 < q � 1 as abscissa
and σ as the Coulter parameter. Figure 4(b) zooms into the relevant range

√
3/3 < q �

1 with relative volume flow higher than the optimum for σ = 1, as turbine arrays are
usually operated at an operating point given by q � qopt, as will be seen in the case studies
presented in § 2.9. The non-relevant regime q < qopt is greyed out accordingly.

The thin broken lines present the numerical solution (a) of the axiomatic and for free
surface flow generalised actuator disc model by Pelz et al. (2020) for various blockages
σ = 0.1, 0.2, . . . , 1 and boundary conditions h̄ = 0.80, 0.85, 0.90, 0.95. The thick solid
lines represent the rational function (2.24), i.e. representing the analytical approach (b).

The sweet points fulfilling the optimality condition given by the Euler–Lagrange
equation (2.12) are marked by white circles in figure 4. The root-mean-square error of the
approximation is 8/1000, resulting in a model uncertainty of less than 2 % for |h̄| ≥ 0.8.
This uncertainty is due to an under-prediction of the relative volume flow q for low
blockages σ < 0.3 within the non-relevant regime q < qopt and a slight over-prediction
of the relative power output p/ηT for medium blockages 0.5 < σ < 0.8. For the relevant
regime q � qopt, the approximation of the rational function model is remarkably good, as
depicted in figure 4(b).

Figure 5 gives the collection of the sweet spots marked in figure 4 by circles, i.e. the
optimal relative volume and the associated achievable relative turbine power being both
only a function of blockage σ . For σ = 1, the plot shows the result of Pelz (2011) and
the matching approximation of Garrett & Cummins (2005). The thick solid lines represent
the optimal relative flow rate (2.27) and the associated achievable turbine power. The thin
broken lines represent the numerical solution of the model by Pelz et al. (2020).

The result presented in figure 5 is surprisingly concise: For any Q0(t) and any σ , the
maximum energy yield and the necessary optimum relative flow rate are given with the
result. This applies to the complete tidal cycle. The result is of practical importance for
the optimal control problem that is not constrained by a bearable drag force of the turbine
fence and its mooring. The constrained optimal control problem for cases limited by a
maximum bearable drag force is treated in the following section, § 2.8.

The quantitative comparison with other works was possible for Pelz et al. (2020)
when considering the subsystem CV 1-2. Unfortunately, it is not yet possible to make
a meaningful comparison of the results obtained here with literature data for the
CV I-II system. The difficulties are due to the fact that channels were often considered
in which the flow was actually transient and not quasi-steady. This applies, for example, to
Vennell (2016). Instead of making a comparison, we point to the consistency of the new
results with older more specific results for σ = 1 and to the fact that the complete model
is free of contradictions avoiding an overestimation of energy yield which is confirmed by
experiments, at least for the model of the turbine disc forming the basis of this work.
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Figure 6. Required drag coefficient CD to reach the relative volume flow q with the associated achievable
relative turbine power p given by the numerical solution based on the experimental validated turbine model by
Pelz et al. (2020); for the curves shown dissipation due to friction at the channel ground is assumed to be small
relative to the Carnot loss at the channel exit.

2.8. Constraint due to the bearable turbine drag force
The marked sweet spots in figure 4 and the collected sweet points shown in figure 5
presuppose that the turbines and their mooring bear the required drag force FD on all
turbines of one turbine fence to reach the optimal specific volume flow rate qopt and
extract the associated and achievable turbine power popt. This raises the question of the
relation between required and bearable force on the turbine fence. This section answers
this important question from a practical point of view. From a mathematical point of view,
the optimal control problem is complemented by a constraint due to the drag force that can
be withstood by the turbine fence and its mooring.

The drag is represented by the drag coefficient, i.e. drag force FD on the turbine fence
non-dimensionalised with the upstream cross-sectional area A1 and flow speed u1

CD := FD

�A1u2
1
, (2.28)

whereby the often used factor 2 has been omitted here for reasons of conciseness. If the
turbine fence is formed by K turbines, then of course the force on one turbine is FD/K.

Figure 6 shows the required drag coefficient CD for all σ = 0.1, 0.2, . . . , 1 and h̄ =
0.80, 0.85, 0.90, 0.95 from figures 4 and 5, which was determined by numerically solving
the turbine disk model for the subsystem CV 1-2.

As already mentioned, the drag and the associated drag coefficient is a result of the
theory presented here and not an input as in previous works by other authors. The output
shown in figure 6 is for a generic channel neglecting dissipation due to turbulent shear
stress near the channel ground, i.e. ζ = 0 (2.7a,b) and (2.8). Thus, the only loss considered
for this part of the study is the Carnot loss at the channel exit and the energy loss due to
mixing. In fact, the dissipation due to fluid friction at the seabed is often much smaller
than mixing or Carnot losses.

As figure 6 shows, the necessary drag coefficient CD is independent of the blockage
ratio σ and furthermore only marginally dependent on the boundary condition h̄ for the
named reasons.
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Optimal control of tidal flow

The practical value of figure 6 is obvious: in most practical situations, the drag
coefficient is constrained by an upper bound, CD,max, due to the bearable load. With
CD,max as input, figure 6 gives the bearable volume flow: qmax = q(CD,max). Hence, only
the parameter interval

√
3/3 � qmax � 0 is of practical relevance for the conceptional

design and operation of a turbine array. This is the reason why we focused on this interval
in figures 4 and 6. The regimes in light grey on the left side of the two figures are practically
irrelevant.

In order to enhance the applicable drag for a given blockage ratio σ , multiple turbine
fences may be cascaded to a turbine array, i.e. L > 1. As stated earlier, this can be
considered by adapting the rational design function to D(σ, L) = (a/L)(1 − σ)/σ .

The results so far are summarised by three points. First, the results presented are a
consistent generalisation of the results by Garrett & Cummins (2005) and Pelz et al.
(2020) for arbitrary blockage ratios 0 < σ � 1, for the full tidal cycle 0 < t � T and
for the complete system CV I-II. Second, the overall efficiency of the system can
be advantageously approximated by a rational ansatz function. Both (a) the numerical
solution of the optimal control problem and (b) the analytical approximation result in a
concise method. This allows to derive the optimal turbine power popt and the associated
optimal volume flow qopt as a function of any blockage ratio σ . The results are revealed in
figure 5 and (2.27), (2.24). Third, if for technical reasons the drag force is limited, figure 6
gives the necessary mapping

√
3/3 � qmax = q(CD,max) � 0.

Due to the conciseness of the representation, the results can easily be used for initial
resource estimates of tidal power, as shown in the following section.

2.9. Application of the optimal control flow rule for three typical use cases
The paper’s findings may be used to analyse the optimality of design σ and operation q
under different constraints and objectives. This is shown in the following by exemplarily
using the data q � 0.9 and CW = 8.6 % from the report of Black & Veatch Consulting
Ltd (2005). Appendix B provides a calculation flow diagram for the blockage-dependent
power potential estimation.

In the following we consider three use cases (i), (ii) and (iii). In the first use case (i)
we calculate the optimal blockage for the given volume flow reduction of q = 0.9. For this
fixed operational parameter, (2.27), (2.25) and (2.22) yield the optimal design parameter of
the turbine fence σopt = 0.13. For this combination of design and operation, the turbines
are operated at their maximum possible power output and thus in the most economical
manner

Use case (i): q = qopt = 0.9 → σopt = 0.13,
CW,max

ηT
= 5.0 %,

pmax

ηT
= 8.9 %.

(2.29)

This corresponds to only approximately 60 % of the expected output of tidal stream sites
(Black & Veatch Consulting Ltd 2005) even for ideal turbines with an efficiency ηT = 1,
provided that, first, only turbine fences but no turbine arrays are installed and, second, that
the turbine fences are optimally designed and operated.

The second use case (ii) is a turbine fence not operating at its optimum, while assuming
CW = 8.6 % and q = 0.9 are both constraints of the system design. This means that the
optimality condition is relaxed and q will be larger than the optimal volume flow, i.e.
q > qopt. In this set-up, CW/ηT = 8.6 % yields the constraint p/ηT = CW/(cηT) = 15 %.
From figure 4 or equivalently from (2.24), we derive a required blockage to reach this
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target of σ = 0.43 for a single turbine fence, which is quite ambitious but theoretically
doable in terms of technology and ecology. For a turbine array, the required turbine area
is even higher

Use case (ii): q = 0.9,
CW

ηT
= 8.6 %,

p
ηT

= 15 % → σ = 0.43. (2.30)

The third and last use case (iii) shall be the following. The first and second use case
reveal that CW/ηT = 8.6 % is very ambitious, with a constraint volume flow of 90 %. In
this last use case, we have the prospected power output of CW/ηT = 8.6 %, p/ηT = 15 %
as a constraint and look for an optimal control of the tidal flow as well as for the optimal
design of the turbine fence regarding the blockage ratio. From figure 4 or the presented
model based on rational functions we derive qopt = 0.86 and σopt = 0.23, i.e.

Use case (iii):
CW

ηT
= 8.6 %,

p
ηT

= 15 % → qopt = 0.86, σopt = 0.23. (2.31)

Of course these values have to be ecologically and economically assessed. The three cases,
however, indicate how the result of the paper can be used for resource assessment using
different constraints and objectives.

3. Discussion

The resource assessment with the presented method gives first (a) numerical results
accompanied by a complementary purely (b) analytical approach similar to the approach
of Vennell (2010a). However, instead of using the results of Garrett & Cummins (2007),
the physically consistent model of Pelz et al. (2020) is used to close the gap of validity and
to prevent overestimation of any energy yield. As shown by the combined experimental
and theoretical research of Pelz et al. (2020) this is necessary for non-negligible water
head differences, i.e. h̄ < 0.95, Froude numbers Fr > 0.1 or blockage ratios of at latest
σ > 0.5.

The additional degree of freedom associated with the model of Pelz et al. (2020), i.e.
the downstream boundary condition h̄, is handled by proposing the relative volume flow q
(1.1) as an operational parameter for the system instead of the often used induction factor
a or turbine head H̄T . As q is implicitly dependent on the boundary condition q = q(h̄),
the influence of the latter on the relative power p = p(q(h̄)) is negligible. In other words,
p is only implicitly dependent on h̄ as indicated by the above equation.

Furthermore, when considering turbine arrays, the volume flow q is identical for all
fences, whereas induction factor α or turbine head H̄T may differ (Schmitz & Pelz
2021). Instead of considering the momentum equation, the paper starts from the energy
conservation. In this changed point of view, the system efficiency η is the leading
characteristic to be tuned instead of the drag coefficient CD. Due to η � 1, this naturally
shows the limited power output of large turbine arrays, namely the power output of a
zero-loss turbine fence, i.e. σ = 1, ηT = 1 : η = 1 as considered by Garrett & Cummins
(2005).

By applying a simple rational approximation function, the paper gives a general and
easy-to-use formula for the maximum power output of a more general turbine fence with
partial blockage 0 � σ � 1. This result may easily be adapted for regular arrays with
multiple rows L = 1, 2, 3, . . .. As a generalisation to Garrett & Cummins (2005), the
presented work considers the influence of additional constraints like limited blockage,
volume flow reduction or maximum realisable drag coefficient.
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Optimal control of tidal flow

The paper aims to be a starting point for a physically consistent analysis of optimal
flow control in tidal channels, as neither multiple fences nor a dynamical operation
is considered. This is to be addressed in future work together with the dominating
economical limits to the applicable number of turbines, i.e. the weighing up of the
additional investment and operational costs vs the added revenue. For channels with
dominant inductance and capacitance or for the latching control strategy proposed by
Vennell (2016), the method needs further elaboration, taking the left-hand side of the
Euler–Lagrange equation into account.

For channels with strong local effects, the generic model surely is insufficient. For those
cases two-dimensional or three-dimensional fine-grained numerical models are needed as
they are used already today. However, as these calculations are expensive, the presented
model may serve as a first estimation in the early conceptual design phase of a project. It
may also serve for a model predictive control strategy when operating a turbine array.
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sectors.

Declaration of interests. The authors report no conflict of interest.
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Appendix A. Three necessary conditions for quasi-steady channel flow

The system in question in this paper consists of two basins I and II, which are connected
by a channel of length l and water depth h0. The two basins are modelled as infinite in the
context of this work. Therefore, the periodic volume flow in the channel Q(t) = Q(t + T)

has no feedback on the total energy heights HI(t) = HI(t + T) and HII(t) = HII(t + T) of
the two basins. On the other hand, Q is of course a function of HI and HII . For the main
part of this work, the answer to the question of whether the channel flow is unsteady or
quasi-steady is crucial.

There are two approaches to answer this question. First, by a general dimensional
analysis that provides the dimensionless products of the imposed frequency f = 1/T ∼
10−4 Hz by the tides and the intrinsic time scales of the problem. Second, through an
analysis of the magnitude of the dimensionless model equations. Pelz et al. (2022) have
done this, by showing that the dimensionless products (2.5a–c) derived in the following
serve as perturbation parameters of terms in the continuity and momentum equation that
can be treated by methods known from regular or singular perturbation theory.

Provided the dimensionless products (2.5a–c) are small, the solution presented in the
main part of this paper is in the context of perturbation theory a zero-order solution of
the model equations. For the purpose of this paper, those solutions are sufficient in the
first place. With no perturbation analysis in focus, it is sufficient to employ a general
dimensional analysis.

For this, it is indeed helpful to use the electrical analogue of capacitance C, inductance
L and resistance R of the flow, as it is already becoming known in the context of tidal
power (Draper et al. 2014).

With C, L, R there are two intrinsic time scales
√

LC and L/R and hence two
dimensionless products Π1 := f

√
LC, Π2 := f L/R. One might think that there is a third

dimensionless product f RC. This third product is given by f RC = Π2
1 /Π2. Hence, its

logarithm is linearly dependent on the logarithm of the other two products, known as
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linear dependent dimensionless product in the context of dimensional analysis. When it
comes to the order of magnitude analysis, all three products shall be smaller than one to
justify the flow to be called quasi-stationary:

The first of the time scales, i.e.
√

LC, is the inverse of the eigenfrequency. The order
of magnitude of this time scale is

√
LC = l/

√
(gh0) ∼ (101 . . . 103) s for typical tidal

channels with water depth h0 ∼ (101 . . . 102) m and length l ∼ (103 . . . 104) m. Hence, the
first dimensionless product is, in fact, much smaller than one: Π1 := f

√
LC = fl/

√
gh0 ∼

10−3 . . . 10−1. This magnitude analysis is already given by Pelz et al. (2020, 2022). It has
been shown that Π1 � 1 gives the magnitude of the unsteady terms in the dimensionless
continuity and momentum equation as a perturbation parameter. Since the attention to Π1
is not sufficient to judge whether a flow on a free surface is quasi-stationary or not, we
extend the preceding analysis to completeness to obtain complete clarity regarding this
question.

The second intrinsic time is the diffusion time L/R = h2
0/ν needed for a velocity

profile to develop across the channel depth, where ν is the kinematic viscosity. However,
since the Reynolds number is high, Re = h0u0/ν ∼ 106 for u0 ∼ (1 . . . 10) m s−1 and
ν ≈ 106 m2 s−1, any viscous shear stress is negligible. Taking only turbulent shear stress
τt into account, the diffusion time becomes h0/u∗ when the kinematic viscosity is replaced
by the eddy viscosity νt ∼ u∗h0. Here u∗ = √

τt/� is the frictional velocity. Using von
Kármán’s log law u0/u∗ ≈ 0.4−1 ln h0/k + 5 for an order of magnitude estimation of the
frictional velocity u∗ ∼ (0.2 . . . 0.3) m s−1 for a seabed roughness of k ∼ (1 . . . 10) cm, the
order of magnitude of the diffusion time is L/R = h2

0/νt ∼ h0/u∗ ∼ (101 . . . 103) s. Hence,
also the second dimensionless product is much smaller than one: Π2 := fL/R = fh0/u∗ ∼
10−3 . . . 10−1; only for very deep channels, transient effects in the velocity distribution can
become relevant.

The third and last intrinsic time scale is given by the relaxation time RC =
(l/h0)

2u∗/g ∼ (101 . . . 103) s. Hence, also the third and last (dependent) dimensionless
product is much smaller than one: Π3 = Π2

1 /Π2 = fRC = (l/h0)
2 fu∗/g ∼ 10−3 . . . 10−1.

In summary, the time scales confirm that the flow in a typical tidal channel, which is the
subject of this paper, is quasi-steady. Thus, time enters the problem only as a parameter in
the boundary conditions H1(t) = HI(t) and h2(t) = HII(t).

Appendix B. Calculation flow diagram for the blockage-dependent power potential
estimation

To assess the energy potential of a site, one only needs to know the amplitude of the
head loss �Ĥ and the undisturbed volume flow amplitude Q̂0 as well as, if existing,
navigational, technical or ecological restrictions for the blockage ratio σ . Also there may
be a constrained volume flow due to technical limitations as discussed above yielding qmax.
The results may be further refined using the turbine efficiency ηT or a detailed conversion
factor c to capture the specific time history of one tidal cycle 0 < t � T .

The calculation flow diagram is given in figure 7. Using the head loss amplitude �Ĥ
and the undisturbed amplitude of the volume flow Q̂0, one may first calculate the maximal
natural power dissipation within the channel P̂D,0, cf. step 1 in figure 7. It is easy to derive
the maximum averaged extractable power, i.e. the power potential derived by Garrett &
Cummins (2005) and the maximal meaningful volume flow reduction, cf. steps II, III in
figure 7. In order to derive the power potential with restrictions applied, one first calculates
the design constants D and d from the maximum possible blockage σ via (2.22) and
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Head loss amplitude

Conversion factor

(0.56 for harmonic oscillation)

Turbine efficiency

Undisturbed velocity amplitude

Maximum volume flow

reduction due to technical or

ecological restrictions

Blockage ratio

Volume flow reduction at maximum

power extraction for partial blockage σ

Target volume flow reduction

Design constants

Natural power dissipation

Maximum averaged extractable power

(Potential of Garret & Cummins 2005)

Volume flow reduction at

maximum power extraction

Extractable fraction of

natural power dissipation

Maximum averaged extractable power

for incomplete blockage and/or

constraint volume flow reduction

h

I

II

1

2

3

4

5

6

, D = 0.62d =
D 1 – σ

σ1 + D

qopt =
1

3
(d + �3 + d2)

q = max(qopt, qmax)

p = Dd(q – d ) (1 – q2)

P̄T = p c P̂D,0 ηT

P̂D,0 = �gQ̂0 �Ĥ

σ = 1: P̂opt = 0.39 c P̂D,0 ηT

σ = 1: qopt = 0.58

σ

qmax

c
ηT

�Ĥ
Q̂0

Figure 7. Calculation flow diagram for the blockage-dependent power potential estimation with process steps
1, 2, 3, 4, 5, 6, I and II.

(2.25), cf. step 2. This directly gives the optimal volume flow reduction for maximum
power extraction qopt, cf. (2.27), step 3, which may be limited by qmax due to further
constraints, step 4. The resulting target volume flow reduction gives the extractable fraction
of the natural power dissipation p via (2.10), step 5. Together with the reference P̂D,0 from
step 1, the conversion factor c ≈ 0.56, cf. § 2.6, and – if available – the turbine’s efficiency
ηT , this gives the maximum averaged extractable power for incomplete blockage and/or
constraint volume flow reduction P̄T . Of course, the relative power p may as well be taken
from figure 4 instead of steps 2 to 5.
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