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CARD COUNTING IN CONTINUOUS TIME

PATRIK ANDERSSON,∗ Stockholm University

Abstract

We consider the problem of finding an optimal betting strategy for a house-banked casino
card game that is played for several coups before reshuffling. The sampling without
replacement makes it possible to take advantage of the changes in the expected value as
the deck is depleted, making large bets when the game is advantageous. Using such a
strategy, which is easy to implement, is known as card counting. We consider the case of
a large number of decks, making an approximation to continuous time possible. A limit
law of the return process is found and the optimal card counting strategy is derived. This
continuous-time strategy is shown to be a natural analog of the discrete-time strategy
where the so-called effects of removal are replaced by the infinitesimal generator of the
card process.
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1. Introduction

We will consider a typical house-banked casino card game, similar to, e.g. blackjack, trente
et quarante, and baccarat, which is played for several coups before the deck is reshuffled. We
thus have a case of sampling without replacement and as the game progresses the relative
occurrence of the different cards will change and so will the expected value of the game. Card
counting is the technique of using a betting strategy that takes advantage of these fluctuations
in the expected value, making large bets when the game is advantageous and small bets when
it is not. In addition, the betting strategy should be easy to use, i.e. be possible for the gambler
to implement without the use of any aids. These ideas were first introduced in [10], where it
was applied to blackjack.

Gottlieb [5] found an approximation of the expected return from card counting when using
proportional betting. Equation (6.2) below, in the case of Kelly betting, can also be found there.
Ekström and Wanntorp [2] considered a card game with two types of cards and derived a limit
process. They then proceeded to find the optimal time to stop playing the game.

2. A general card game

The game is played with D decks, each consisting of c cards, all unique but not necessarily
different with respect to the game, and we will assume that all permutations of the cards in
the decks are equally likely. We let Ci (i = 1, 2 . . . , cD) denote the ith card in the D decks.
The game is played for a number of coups without reshuffling and each coup requires exactly
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m cards to determine the outcome. Many actual card games, like blackjack, require a stochastic
number of cards to determine a coup. To avoid complications, we only treat the case of fixed m.
We denote the profit (or loss) from betting one unit in coup i by Yi = f (Cm(i−1)+1, . . . , Cim),
where f is some bounded, not necessarily symmetric, function. This function will depend on
the rules of the game and the particular strategy used by the player. In general, the player’s
strategy, and thereby f , could vary as the deck is depleted, but we will assume a fixed f for
all coups. There is of course also a dependence on D in Ci and Yi , but we sometimes suppress
this in the notation for convenience. We will assume that the deck is reshuffled while there are
still cards left, as is usually the case in actual casinos.

3. Some general properties

Some properties of the general card game will be useful. Let Fi = σ(C1, . . . , Cmi), i.e.
the σ -algebra generated by the cards removed when the ith coup is completed. Also, let
Ei = E[Yi | Fi−1] be the expected value of a one unit bet in coup i conditioned on the cards
removed before the coup. Then Ei is a martingale with respect to Fi−1 and in particular
E[Ei] = E[Y1] = E1 for all i. This fact is part of the so-called fundamental theorem of card
counting, first introduced in [11] (see also [4]). Furthermore, it was shown in [4] that

Ei = E[f (Cm(i−1)+1, . . . , Cim) | Fi−1]

= (cD − mi)!
(cD − m(i − 1))!

∑
j1,...,jm∈{m(i−1)+1,...,cD}

E[f (Cj1 , . . . , Cjm) | Fi−1]

=
(

cD − m(i − 1)

m

)−1 ∑
m(i−1)+1≤j1<···<jm≤cD

f �(Cj1 , . . . , Cjm), (3.1)

where j1, . . . , jm are distinct and

f �(i1, . . . , im) ≡ 1

m!
∑

π∈Sm

f (π(i1), . . . , π(im)),

with Sm being the set of permutations of {1, . . . , m}. The second equality follows since the Cis
are exchangeable, and the third equality since the sum is symmetric in the remaining deck and,
therefore, measurable with respect to Fi−1. We may therefore conclude that Ei is a U -statistic
with symmetric kernel f �.

4. Card counting in discrete time

The idea of card counting is to, for each number of played coups i, assign each card a value,
say vi(Cj ), such that we can estimate the conditional expected value of the depleted deck by

Ei(C1, . . . , Cm(i−1)) =
m(i−1)∑

j=1

vi(Cj ).

The best choice of vi , in the sense of the least expected square error, i.e. the Ei that minimizes

E[(E[Yi | C1, . . . , Cm(i−1)] − Ei(C1, . . . , Cm(i−1)))
2]

https://doi.org/10.1239/jap/1331216841 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1331216841


186 P. ANDERSSON

is

Êi(C1, . . . , Cm(i−1)) = E1 + cD − 1

cD − m(i − 1)

m(i−1)∑
j=1

e(Cj ), (4.1)

where the quantities

e(j) = E[f (C2, . . . , Cm+1) | C1 = j ] − E1

are known as the effects of removal. This result was first shown in [6] and can also be found in
[3, pp. 415–417], where it was shown by solving the normal equations. It can also be viewed
as a projection on a linear subspace of a U -statistic; see, e.g. [7, p. 459]. The gambler would
keep adding the terms (cD − 1)e(Cj ), thereby obtaining the so-called running count. When it
is time to make a bet, the player divides the running count by the number of remaining cards in
the deck, cD − m(i − 1), thereby obtaining the so-called true count. If this is a large number,
the gambler expects the game to be favorable and makes a large bet. It should be noted that in
practice the numbers (cD − 1)e(Cj ) would be replaced by some correlated integers, thereby
making the calculations easier to perform.

5. Towards continuous time

To study the problem in a continuous-time setting, we are interested in the cumulative profit∑
i YD,i , properly scaled, as the number of decks becomes large. We will let D = ∞ indicate

that the cards are sampled with replacement. In the following we let Wt , W ◦
t , dWt , and dW ◦

t

denote Brownian motion, the Brownian bridge, and their respective differentials.
We note that since the cards are sampled without replacement, the different coups are

dependent. The decks admit �cD/m� coups and we thus define the total profit from betting
one unit in a proportion t ∈ [0, 1) of the available coups as

RD,t =
�tcD/m�∑

i=1

YD,i .

Furthermore, note the decomposition

RD,t − ED,1

⌊
t
cD

m

⌋
=

�tcD/m�∑
i=1

(YD,i − E[YD,i | Fi−1])

+
�tcD/m�∑

i=1

(E[YD,i | Fi−1] − ED,1), (5.1)

where ED,1 = E[YD,1].
As noted before, the deck is usually reshuffled before all cards have been used. We will

therefore only consider the case t < 1, thus avoiding technical problems.
The following definition and two lemmas will be useful.

Definition 5.1. (Martingale difference array.) Let {ξn,i; i = 1, 2, . . . , kn} be an array of
random variables, and let {Fn,i; 0 ≤ i ≤ kn} be an array of sigma-algebras such that ξn,i

is Fn,i-measurable and Fn,i−1 ⊂ Fn,i . We then call ξn,i a martingale difference array with
respect to Fn,i if E[ξn,i | Fn,i−1] = 0 almost surely for all n and i.

https://doi.org/10.1239/jap/1331216841 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1331216841


Card counting in continuous time 187

Lemma 5.1. ([8].) Suppose that ξn,i is a martingale difference array and that kn(t) is a
sequence of integer-valued, nondecreasing, right-continuous functions on [0, 1] such that
kn(0) ≡ 0 for all n. If

(i) maxi≤kn(t) |ξn,i | L2→ 0, and

(ii)
∑kn(t)

i=1 ξ2
n,i

p−→ t for each t ∈ [0, 1],

then
∑kn(t)

i=1 ξn,i
J1⇒ Wt as n → ∞, i.e. we have weak convergence in Skorokhod’s J1 topology.

Lemma 5.2. ([1].) Let P∞ and Pn be the probability measures representing sampling with and
without replacement of k balls from an urn containing n balls with c different types of balls,
not necessarily equally represented. Then the total variation distance

dTV(P∞, Pn) ≤ 2ck

n
.

We use this to show the following.

Lemma 5.3. It holds that

1√
D

�tcD/m�∑
i=1

(YD,i − E[YD,i | Fi−1]) J1⇒ σ1Wt as D → ∞ (5.2)

and
σ 2

1 = c

m
var(Y∞,i ).

Proof. We identify

ξD,i = YD,i − E[YD,i | Fi−1]√
(cD/m) E[(YD,i − E[YD,i | Fi−1])2]

and kD(t) = �tcD/m�. To see that the convergence of ξD,i implies the lemma, we introduce
the notation c2 = (cm(i−1)+1, . . . , cmi) and C1 = (C1, . . . , Cm(i−1)), and P∞ and PD as the
probability measures representing sampling the cards from the D decks with and without
replacement, respectively. We then have

|E[YD,i | Fi−1] − E[Y∞,i]| =
∣∣∣∣ ∑

c2

f (c2) PD(c2 | C1) −
∑
c2

f (c2) P∞(c2)

∣∣∣∣
≤ fmax

∑
c2

|PD(c2 | C1) − P∞(c2 | C1)|

= O

(
1

D

)
→ 0 as D → ∞,

since the probability conditioned on the cards removed again represents sampling without
replacement, only from a different urn. Analogously, we find that

lim
D→∞ E[YD,i] = E[Y∞,i].
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We also have

E[YD,i E[YD,i | Fi−1]] =
∑
c1,c2

PD(c1, c2)f (c2) E[YD,i | C1 = c1]

→
∑
c1,c2

P∞(c1, c2)f (c2) E[Y∞,i]

=
∑
c2

P∞(c2)f (c2) E[Y∞,i]

= E[Y∞,i]2 as D → ∞.

So that
lim

D→∞ E[(YD,i − E[YD,i | Fi−1])2] = var(Y∞,i ).

Next we verify the conditions of Lemma 5.1. The first condition holds since YD,i is bounded.
Towards showing that the second condition holds, we note that

E

[�tcD/m�∑
i=1

ξ2
D,i

]
=

�tcD/m�∑
i=1

m

cD

E[(YD,i − E[YD,i | Fi−1])2]
E[(YD,i − E[YD,i | Fi−1])2] → t as D → ∞.

Also,

E

[(�tcD/m�∑
i=1

ξ2
D,i

)2]

=
�tcD/m�∑

i=1

�tcD/m�∑
j=1

(
m

cD

)2 E[(YD,i − E[YD,i | Fi−1])2(YD,j − E[YD,j | Fj−1])2]
E[(YD,i − E[YD,i | Fi−1])2] E[(YD,j − E[YD,j | Fj−1]2]

=
⌊ tcD

m

⌋(
m

cD

)2 E[(YD,i − E[YD,i | Fi−1])4]
E[(YD,i − E[YD,i | Fi−1])2]2

+
(⌊ tcD

m

⌋2 −
⌊ tcD

m

⌋)(
m

cD

)2

× E[(YD,i − E[YD,i | Fi−1])2(YD,j − E[YD,j | Fj−1])2]
E[(YD,i − E[YD,i | Fi−1])2] E[(YD,j − E[YD,j | Fj−1])2]

→ t2,

by exchangeability and by again using Lemma 5.2. Thus,

var

(�tcD/m�∑
i=1

ξ2
D,i

)
→ 0 as D → ∞,

which implies the second condition of Lemma 5.1.

Now, for the second term in decomposition (5.1), we will use the following result.

Lemma 5.4. ([9].) Let UD,i be a U -statistic with kernel f � based on a sample of size i taken
without replacement from a population of size ND , where ND → ∞ as D → ∞. That is,

UD,i =
(

i

m

)−1 ∑
1≤i1<···<im≤i

f �(CD,i1 , . . . , CD,im).
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Define ED,1 = E[f �(CD,1, . . . , CD,m)] and ẼD,1 = E[f �(CD,1, . . . , CD,m) | CD,1], and
assume that

(i) limD→∞ E[(ẼD,1 − ED,1)
2] = σ 2

2 ,

(ii) supD∈N E[f �(CD,1, . . . , CD,m)2] < ∞,

(iii) supD∈N E[|ẼD,1 − ED,1|2+δ] < ∞ for some δ > 0.

Now let

ζD,t =

⎧⎪⎨
⎪⎩

0 if t < m/ND,

�tND�(UD,�tND� − ED,1)

m

√
NDσ 2

2

if m/ND ≤ t ≤ 1.

Then ζD,t
J1⇒ W ◦

t as D → ∞.

We now obtain the weak convergence of the second term in the decomposition.

Lemma 5.5. It holds that

1√
D

�tcD/m�∑
i=1

(E[YD,i | Fi−1] − ED,1)
J1⇒ √

cσ2

∫ t

0

W ◦
s

1 − s
ds, t < 1, (5.3)

where σ 2
2 = var(Ẽ∞,1).

Proof. Let UD,i = E[f (CD,i+1, . . . , CD,i+m) | CD,1, . . . , CD,i], i.e. the conditional
expected value with i cards removed. Then UD,i is a U -statistic and ED,i = UD,m(i−1).

The second and third conditions of Lemma 5.4 follow since f is bounded. The first condition
can be shown by using Lemma 5.2, similarly to the proof of Lemma 5.3. Comparing (3.1) with
Lemma 5.4 we see that in (3.1) the index refers to the number of coups not in the summation
while in Lemma 5.4 it refers to the number that are in the summation. The indices thus run in
opposite directions and we obtain

(cD − �tcD�)(UD,�tcD� − ED,1)

m

√
cDσ 2

2

J1⇒ W ◦
1−t

d= W ◦
t ,

where
σ 2

2 = var(Ẽ∞,1).

We also note that

ZD,t = (cD − m�tcD/m�)(UD,m�tcD/m� − ED,1)

m

√
cDσ 2

2

J1⇒ W ◦
t

for the same reasons. Now, for t < 1,

1√
D

�tcD/m�∑
i=1

(E[YD,i | Fi−1] − ED,1)

= 1√
D

�tcD/m�−1∑
i=0

(UD,mi − ED,1)

= 1√
D

∫ �tcD/m�

0
(UD,m�s� − ED,1) ds
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= 1√
D

∫ �tcD/m�

0
ZD,sm/cD

m

√
cDσ 2

2

cD − m�s� ds

= 1√
D

∫ �tcD/m�(m/cD)

0
ZD,s

m

√
cDσ 2

2

cD − m�scD/m�
cD

m
ds

J1⇒ √
cσ2

∫ t

0

W ◦
s

1 − s
ds,

where the convergence follows by the continuous mapping theorem.

Theorem 5.1. The sequence

RD,t − �tcD/m�ED,1√
D

, t < 1,

is tight and each limit point (in the sense of weak convergence) is a continuous semimartingale
with decomposition Rt = Mt + At , where

Mt
d= σ1Wt

and

At
d= √

cσ2

∫ t

0

W ◦
s

1 − s
ds.

Remark 5.1. Note that Theorem 5.1 does not specify the joint distribution of the decomposition
and, thus, does not specify the distribution of Rt . However, knowing the marginal distributions
in the decomposition will be enough for our purpose.

Proof of Theorem 5.1. Let MD,t denote the left-hand side of (5.2), and let AD,t denote the
left-hand side of (5.3). Then it follows from Lemmas 5.3 and 5.5 that the sequence(

MD,t

AD,t

)

is tight and that all limit points have the marginal distributions given in the theorem. Therefore,
MD,t + AD,t is tight and each limit point can be given the above decomposition.

6. In continuous time

Theorem 5.1 justifies the approximation of RD,t for large D by the solution to the stochastic
differential equation (SDE)

dRt =
(√

cDσ2
W ◦

t

1 − t
+ cD

m
ED,1

)
dt + √

Dσ1 dWt ≡ µt dt + √
Dσ1 dWt, (6.1)

with R0 = 0. In the continuation we treat the case of continuous time and take (6.1) as our model
of a continuous-time card game. Note that we suppress the dependence on D in the notation
dRt and µt , and that the limiting values σ1 and σ2 can be replaced by the exact variances for a
D-deck game. We assume that at every instant we bet a proportion at of our current fortune Ft

so that our fortune evolves according to

dFt = atFt dRt = atFt (µt dt + √
Dσ1 dWt), F0 = 1, (6.2)
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where at is assumed to be an adapted semimartingale. Our objective is to choose at in such
a way as to maximize our fortune. The objective of maximizing the fortune is not well posed
unless we quantify this further. The standard solution in gambling problems, which is also
sometimes used in economics and finance, is to maximize the expected logarithmic fortune at
some terminal time. In gambling theory this is usually referred to as Kelly’s strategy and it
turns out to have some desirable properties; see, e.g. [3]. We are therefore interested in the
logarithm of our fortune, which according to Itô’s lemma satisfies

d(log Ft) = 1

Ft

dFt − 1

2

1

F 2
t

d[F, F ]t

= at (µt dt + √
Dσ1 dWt) − 1

2

1

F 2
t

a2
t F

2
t Dσ 2

1 dt

= (
atµt − 1

2a2
t Dσ 2

1

)
dt + at

√
Dσ1 dWt.

Assuming that at is regular enough, we have

d

dt
E[log Ft ] = E

[
atµt − 1

2a2
t Dσ 2

1

] = 1

2Dσ 2
1

(E[µ2
t ] − E[(atDσ 2

1 − µt)
2]).

Now, E[µ2
t ] is a parameter of the game which we cannot control and what then remains, in

order to maximize E[log Ft ], is to minimize∫ t

0
E[(asDσ 2

1 − µs)
2] ds.

That is, we want to minimize the mean square error between the expected value of our game
and our betting proportion multiplied by the variance and the number of decks.

7. Betting strategies

The continuation now depends on the restrictions we put on at . The most liberal restriction
would be to let at ∈ Ft and this should also be the most favorable to the gambler. A more
realistic restriction would be to instead let at be a linear function of the removed cards. This is
more realistic since in a practical situation this would be possible for the gambler to implement
and this is the one we would consider to be card counting. Let us denote the optimal choice in
the first case by a∗

t and in the second case by ât .

7.1. No restrictions

Letting at ∈ Ft , the optimal strategy is of course to choose

at = µt

Dσ 2
1

≡ a∗
t .

Now, since

µt = √
cDσ2

W ◦
t

1 − t
+ cD

m
ED,1 ∼ N

(
cD

m
ED,1,

cDσ 2
2 t

1 − t

)
,

we obtain
d

dt
E[log Ft ] = (cDED,1/m)2

2Dσ 2
1

+ cσ 2
2

2σ 2
1

t

1 − t
(7.1)
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and

E[log Ft ] = (cDED,1/m)2

2Dσ 2
1

t − cσ 2
2

2σ 2
1

[t + log(1 − t)].

In most casino games it is not allowed to bet a negative amount; the optimal strategy then is to
choose

at = max{a∗
t , 0}.

We then obtain
d

dt
E[log Ft ] = 1

2Dσ 2
1

E[µ2
t − (max{µt , 0} − µt)

2]

= 1

2Dσ 2
1

E[1{µt>0} µ2
t ]

= 1

2Dσ 2
1

E[µ2
t | µt > 0] P(µt > 0).

Now, since, for ζ ∼ N(µ, σ 2), we have

E[ζ 2 | ζ > 0] = σ 2 + µ2 + µσ
φ(µ/σ)

�(µ/σ)
,

where φ and � are the standard normal density and distribution functions, respectively, we
obtain

d

dt
E[log Ft ] = 1

2Dσ 2
1

[(
cDσ 2

2 t

1 − t
+

(
cDED,1

m

)2)
�

(√
cDED,1

mσ2

√
1 − t

t

)

+ (cD)3/2σ2ED,1

m

√
t

1 − t
φ

(√
cDED,1

mσ2

√
1 − t

t

)]
.

In the special case where ED,1 = 0, which is approximately true in many casino games, we
find that

E[log Ft ] = − cσ 2
2

4σ 2
1

[t + log(1 − t)], (7.2)

where we note that t + log(1 − t) < 0 for t > 0. We see that the expected logarithmic fortune
of the player is independent of the number of decks. Since the time it takes to reach this fortune
is proportional to the number of decks, this explains why the player should prefer to play a
game with fewer decks.

7.2. Linear function

Now, let at be a linear function of the removed cards. To this end, let XD,t be the
c-dimensional vector of cards removed after a fraction t of the available coups has been played.
Denote the normalized limit of this process by Xt , i.e.

XD,t − itD√
D

J1⇒ Xt,

where i is a c-column vector of 1s. It follows from standard arguments that Xt is a Gaussian
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process with mean 0 and variance of the j th component determined by

var

(
X

(j)
D,t − tD√

D

)
= 1

D

�tcD/m�mD(cD − �tcD/m�m)(cD − D)

(cD)2(cD − 1)

→ t (1 − t)
c − 1

c

= var(X(j)
t ) as D → ∞,

since X
(j)
D,t is hypergeometrically distributed. Since the components of Xt are exchangeable

and the sum of the components is deterministic, we also obtain

0 = var

( c∑
j=1

X
(j)
t

)
= c var(X(j)

t ) + c(c − 1) cov(X
(j)
t , X

(k)
t ),

so that

cov(X
(j)
t , X

(k)
t ) = −t (1 − t)

1

c
for j �= k.

We summarize these calculations by stating that

E[XtX
�
t ] = t (1 − t)

(
I − 1

c
ii�

)
. (7.3)

Based on the above we make the approximation that, for large D, XD,t is distributed as
iDt + √

DXt .
We set at = X�

D,tβt , where βt is a c-dimensional vector. We aim to determine the optimal

βt , β̂t , and, thus, ât ≡ X�
D,t β̂t . The drift µt of the SDE (6.1) can be thought of as a function

µ(XD,t ). The optimal βt should then minimize

E[(Dσ 2
1 at − µt)

2] = E[(Dσ 2
1 X�

D,tβt − µ(XD,t ))
2].

We differentiate with respect to βt to obtain

0 = ∂

∂βt

E[(Dσ 2
1 X�

D,tβt − µ(XD,t ))
2]

= 2D2σ 4
1 E[XD,tX

�
D,t ]βt − 2Dσ 2

1 E[XD,tµ(XD,t )]. (7.4)

Now, since E[XD,tX
�
D,t ] = D2t2ii� + D E[XtX

�
t ], β̂t is determined by

σ 2
1 D2(Dt2ii� + E[XtX

�
t ])β̂t = E[XD,tµ(XD,t )]. (7.5)

Let β̄t = ∑
k β̂

(k)
t . Then the j th row of (7.5) now reads, using (7.3),

σ 2
1 D2

[
Dt2β̄t + t (1 − t)

c
((c − 1)β̂

(j)
t − (β̄t − β̂

(j)
t ))

]
= E[X(j)

D,tµ(XD,t )].

Summing these c equations over j we obtain, since
∑

j X
(j)
D,t ≡ cDt ,

σ 2
1 D2

[
cDt2β̄t + t (1 − t)

c
((c − 1)β̄t − (cβ̄t − β̄t ))

]
= cDt

cD

m
ED,1.
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This implies that

β̄t = cED,1

mDσ 2
1 t

.

Solving for β̂
(j)
t now gives

β̂
(j)
t = E[X(j)

D,tµ(XD,t )] − DtcDED,1/m

D2σ 2
1 t (1 − t)

+ ED,1

mDσ 2
1 t

. (7.6)

It remains to calculate E[XD,tµ(XD,t )]. We know from the previous calculations that there
are random variables Z1 and Z2, with zero-mean Gaussian marginal distributions independent
of t , such that [

X
(j)
D,t

µ(XD,t )

]
d=

[
Dt + √

Dt(1 − t)Z1

cDED,1/m + √
t (1 − t)Z2/(1 − t)

]
.

We may then write

E[X(j)
D,tµ(XD,t )] = E

[
(Dt + √

Dt(1 − t)Z1)

(
cD

m
ED,1 +

√
t (1 − t)

1 − t
Z2

)]

= t

(√
D E[Z1Z2] + cD2ED,1

m

)
;

the fact that E[Z1Z2] is not a function of t can be motivated through a limit argument, so that
E[XD,tµ(XD,t )] is a linear function of t . In particular, we have

E[XD,tµ(XD,t )]
t

= lim
h→0

E[XD,hµ(XD,h)]
h

= A(xµ(x))|x=0 ≡ A0, (7.7)

where A is the infinitesimal generator of XD,t . This, together with (7.6) and the definition of
ât , gives

ât = X�
D,t β̂t

= X�
D,t

A0/D − icDED,1/m

Dσ 2
1 (1 − t)

+ ED,1

mDσ 2
1 t

c∑
i=1

X
(i)
D,t

= 1

Dσ 2
1

[
cDED,1

m
+ X�

D,t

A0/D − icDED,1/m

1 − t

]
. (7.8)

Remark 7.1. Comparing the estimate of the conditional expectation given in the square
brackets in (7.8) with (4.1) we see that both are the unconditional expectation plus a linear
function of the removed cards divided by the fraction of cards remaining. In the continuous-
time case the infinitesimal generator is the analog of the effects of removal from the discrete-time
case.

Towards calculating the growth of the fortune, we find that

d

dt
E[log Ft ] = E[âtµt ] − 1

2Dσ 2
1 E[(ât )

2]
= E[β̂�

t XD,tµt ] − 1
2Dσ 2

1 E[(β̂�
t XD,t )

2]
= 1

2Dσ 2
1 β̂�

t E[XD,tX
�
D,t ]β̂t

= 1
2D3σ 2

1 t2(β̄t )
2 + 1

2D2σ 2
1 β̂�

t E[XtX
�
t ]β̂t ,
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where the third equality uses (7.4). Calculations now show that

β̂�
t E[XtX

�
t ]β̂t = t (1 − t)

c∑
j=1

(
β̂

(j)
t − β̄t

c

)2

= t (1 − t)

c∑
j=1

(
A

(j)
0 − DcDED,1/m

D2σ 2
1 (1 − t)

)2

= t

(1 − t)D4σ 4
1

(
A2

0 − D2c

(
cD

m
ED,1

)2)
,

where A2
0 ≡ ∑c

j=1(A
j
0)

2. Then

d

dt
E[log Ft ] = (cDED,1/m)2

2Dσ 2
1

+ t

1 − t

1

2D2σ 2
1

(
A2

0 − D2c

(
cD

m
ED,1

)2)
, (7.9)

and, thus,

E[log Ft ] = (cDED,1/m)2

2Dσ 2
1

t − 1

2D2σ 2
1

(
A2

0 − D2c

(
cD

m
ED,1

)2)
(t + log(1 − t)). (7.10)

We note that if
A2

0

cD2 = σ 2
2 +

(
cDED,1

m

)2

,

i.e. if the variance of a∗
t and ât are equal and, thus, the variance of the residual from the

linearization is 0, (7.1) and (7.9) are equal and the expected logarithmic fortune does not
depend on which of the two restrictions we choose. In fact, straightforward calculations show
the correlation between a∗

t and ât :

corr(a∗
t , ât ) =

√
A2

0 − cD2(cDED,1/m)2

cD2σ 2
2

.

8. Example

We consider the following game, essentially the same as in Example 11.3.6 of [3], where we
have a deck with two cards, one red and one black. Upon placing a one-unit wager, the player
either makes a (net) profit of three units if two consecutive cards are red, or loses the one unit
wagered. We thus have c = m = 2 and

Yi =
{

3 if C2i−1 = C2i = red,

−1 otherwise.

Easy calculations show that in a D-deck game the expected value is

ED,1 = E[YD,i] = − 1

2D − 1
→ 0 as D → ∞,

so that the game is fair in the limit of many decks. We also have E[Ẽ∞] = 0 and

σ 2
2 = E[Ẽ2∞]

= E[E[f �(C∞,1, C∞,2) | C∞,1]2]
= 1

2 E[f �(C∞,1, C∞,2)
2 | C∞,1 = red] + 1

2 E∞[f �(C∞,1, C∞,2)
2 | C∞,1 = black]
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= 1
2

(
3 · 1

2 + (−1) · 1
2

)2 + 1
2 (−1)2

= 1,

σ 2
1 = c

m
var(Y∞,i ) = c

m
E∞[Y∞,i]2 = 2

2

(
32 · 1

4 + (−1)2 · 3
4

) = 3.

The limiting approximation of the return process of this game thus has the dynamics

dRt =
(√

2D
W ◦

t

1 − t
− D

2D − 1

)
dt + √

3D dWt.

Let

XD,t =
[
X

(1)
D,t

X
(2)
D,t

]
=

[
#red cards removed

#black cards removed

]
.

The optimal betting strategy involves µt . In discrete time this corresponds to

cD

m
E[YD,�tcD/m� | XD,�tcD/m�/D],

where the factor cD/m is due to t running from 0 to 1, while the index of the discrete processes
runs from 1 to cD/m. The optimal betting strategy is thus

a∗
t = µt

Dσ 2
1

= 2D

2

E[YD,�tD� | XD,�tD�/D]
3D

,

where

E[YD,�tD� | XD,�tD�/D] = 4
(D − X

(1)
D,t )(D − X

(1)
D,t − 1)

(2D − X
(1)
D,t − X

(2)
D,t )(2D − X

(1)
D,t − X

(2)
D,t − 1)

− 1

= (1 − X
(1)
D,t /D)(1 − X

(1)
D,t /D − 1/D)

(1 − t)(1 − t − 1/(2D))
− 1.

For large D, an approximation of the optimal betting proportion is thus given by

a∗
t ≈ (1 − X

(1)
D,t /D)2

3(1 − t)2 − 1

3
.

To find the optimal card counting strategy, we use (7.7) and choose t = 1/(2D), i.e. the time
after one card has been removed. We find that

A0 = E[XD,tµ(XD,t )]
t

= 2D E[XD,1/(2D)µ(XD,1/(2D))]
= 2D E

[
XD,1/(2D)

2D

2
E[Y | XD,1/(2D)]

]
.

Easy calculations also show that

E

[
Y

∣∣∣∣ XD,1/(2D) =
[

1
0

]]
= − 3

2D − 1
,

E

[
Y

∣∣∣∣ XD,1/(2D) =
[

0
1

]]
= 1

2D − 1
.
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Figure 1: E[log Ft ] (dashed line) and a simulated trajectory (solid line) for the game in the example with
D = 100.

We then obtain

A0 = 2D2 1

2

([
1
0

] −3

2D − 1
+

[
0
1

]
1

2D − 1

)
= D2

2D − 1

[−3
1

]
.

So that, according to (7.8), the optimal betting proportion in the linear case is, asymptotically
as D → ∞,

ât = 1

3(2D − 1)

(
−1 + X�

D,t

1 − t

[−2
2

])
≈ X�

D,t

3D(1 − t)

[−1
1

]
.

We also see that corr(a∗
t , ât ) → 1, so the optimal betting proportion is asymptotically

perfectly correlated with the betting proportion in the linear case and there is no loss in the
expected logarithmic fortune in using a linear function.

With these strategies we are able to calculate E[log Ft ] using (7.2) or (7.10), which is plotted
in Figure 1 together with a sample trajectory of log Ft .
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