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Linear approximation by primes

Kee-Wai Lau and Ming-Chit Liu

In this present paper we shall prove the following. Suppose that

Al, Az, A3 are any non-zero real numbers not all of the same
sign and that Al/kz is irrational. If n 1is any real number

and O < o < 1/9 , then there are infinitely many prime triples

(pl, Pys p3) for which

-a
In#A,p) #A A p5] < (max p)

1. Introduction
Suppose that Al’ ey As are any non-zero real numbers, not all of
the same sign and not all in rational ratio. In 1946, Davenport and

Heilbronn [3] proved that if %k 1is a positive integer and s = 2k +1

b

then for any € > 0 the inequality

8
k
Z Ajnj

J=1

(1.1) < g

has infinitely many solutions in integers nj = 1 . This result sparked
off a series of investigations (for information, see the introductions in
[91, (101, [11]). Schwarz [8] was able to replace all the " in (1.1) by

primes pj and obtained a better lower bound for s if k = 12 . For the

special case Kk =1 , Baker [1] introduced a new kind of approximation by
showing that for any number A4 > O the inequality
(1.2) IAlpl+A2p2+A3p3| < (log max p.]_A
- J
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has infinitely many solutions in primes pj . Later, Ramachandra [7]
. . A4
refined matters still more and replaced the (1og max pj) in (1.2) by

%
exp[—(log plp2p3]2] . Recently Vaughan [9, p.374] made remarkable progress

by proving that the right hand side of (1.2) can be replaced by

)—1/10[ ]20 . He also remarked that it is interesting that

(max pj log max pj

one can save as much as 1/10 and on the generalized Riemann hypothesis,
only 1/5 ‘may be saved. The object of this paper is to show that we can

save as much as 1/9 - § for any 8§ > 0 . We have:
THEOREM. Suppose that Al, A2, A3 are any non-zero real numbers not
all of the same sign and that Al/kg is irrational. If n is any real

nunber and 0 < o < 1/9 , then there are infinitely many prime triples

(pl, Pys p3) for which

-0
|n+klpl+k2p2+k3p3| < (max pj] .

Our proof is a refinement of the elegant argument of Vaughan's [9]
which, in general principle, is based on the method of Davenport and
Hei lbronn [3].

2. Notation and definitions

Throughout, a 1is a real variable and =, p , with or without
suffices, denote any positive integer and any prime respectively. Since

kl/)\2 is irrational it is known [4, Theorem 183} that there are infinitely
many convergents a/q with (a, q) =1, 1=2gqg, such that

(2.1) | (A /2)-(a/q) ]| < 1/2¢° .

For the given o < 1/9 , let A Dbe any constant with

(2.2) max(1/5, 20) < 4 < 2/9
Put
(2.3) X = ql/(l-ZA) , L =1log X,

(2.4) e = xA/2,20

b
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92 if =0,
(2.5) K =
2 2 .
(sin Tex)“/(mxz)“ otherwise,
e(x) = exp(ionz) ,
(2.6) S(x) = Y elpz) logp , S.(x)=5(A.x) ,
p=X J J
3
(2.7) Flz) =TT 5.(x) .
g=1 7

Throughout, & > 0 1is a small number, and constants implied by the symbols
<< and >> may depend on Aj, §, n, and A only.

- -ha
Let T, = XA i s Ty = Sx* s Ty = XA » and E = {x: || = Tl} s
Byfe ity <ol =ty . Bi=fosr,< el =7,
B, = o st < lal} -

Here we partition the real line into four regions instead of the usual

three regions such as in [9]. Our new region, E3 , is similar to the

range (20) in [2]. By introducing such a new region we are able to obtain
our result, & < 1/9 . In §3 we shall give a proof for the estimation of a

certain integral over E3 and in §4 known integral estimations over the

remaining regions, El, E2, Eh ,will be used.

3. The integral over Eq

LEMMA 1. If integers b, r satisfy (b, r) =1, 1=r, and if

v e(bp/r) log p << (rl/zYl/2+Y5/7r3/lh+Yr_l/2)(log Y)l7 .
p=Y

Proof, This follows immediately from Theorem 16.1 in [6].
Put

1-k4+8
(3.1) 6,=0, 6 =m(294)/2, =z =6 mn
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E3m = {x : |x| € (xm-l’ xm]} ’

where m=1, 2, ... , N =[2(54-1)/(2-94)] + 1 . We see that

1-hA+eN>A.

So
N
(3.2) U E. DE_ .
m=1 3m 3
LEMMA 2, If x ¢ E3m , then
1-4/2436 /u
min[!Sl(x)I, |52(x)|) << ¥ m 1T .
Proof., Put
1-4
(3.3) Q=X
For each x € E3m and J =1, 2 , by Theorem 36 in [4] there are
(aJ., qj) =1, 15q;=Q, such that
-1 -1,-1
b ’A | =qg.7@ .
(3.4) A q;
-
We see that
(3.5) ala2 #0 H

for if a, = 0, then by (3.4%), (3.3), and (2.2),

el = A 17l < oM
This is impossible as z € B -
Next suppose that
(3.6) nax(q,, q,) = ATMEOA/L
Write
ayq, (A /A) - ajq, = la,/q,) (g,9,/2 @) (A 2-(a /q,))
- (ay/q) a0, ) (ye-(ayra)) = 1) - 7,
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say. By (3.4), (3.6), and (3.3), we have

- -1,-1 -1,-1 _ -1 -1} -1
|7, ] = [|A2x|+q2 Q )(qlqg/lkle)ql Q" = [q2+Q Azl )Q
<< XzA-14W(2-9A)/h ]

Similarly we have |T,]| << y2A-1-m(2-94) /b

Hence, in view of (2.3), we have

2A-1-m(2-94) /4

(3.7) laga, (A A )-ayq,] << X <1/2q .

Now for any integers a', q' satisfying 1 =gq' < q , by (2.1) we have
(3.8) lqg' (A /A)=a'| = q'((la'q-aq’ l/aa")-1(alq)-(A /2 ) 1)
> ¢'((1/a9")-(1/247)) > 1/2q .

Put gq' = |a2ql| and a' = tfq By (3.5) we see that 1 =g¢g' . It

follows from (3.7), (3.8), and (2.3) that

1-24
(3.9) lajg,l = q =x
But by (3.4), (3.6), (3.1), and x € B, , ve have
- 1 -1 24-m(2-94)/2
(3.20) lagg,l = llay/a,)lqya, = [|>‘2x|+Q a5, )qlq2 <« @i
<< SXl_ZA <gq.

Since (3.10) contradicts (3.9), (3.6} must be false. Therefore we may

assume that
(3.11) A-m(2=94) /4 a (= Xl—AJ

Put

e(alp/ql] logp if n is a prime p ,

0 otherwise,
and 2z = Xlx - (al/ql) . By Theorem 421 in [4], Lemma 1 (with b = a s
r=gq ), and (3.4), we have
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S(Alx) = Z ane(nz) = e(Xz) Z e(alp/ql] log p
n=x p=X

X
- J 2ﬂize(12){ ¥ eﬁzlp/ql) log p}dY
1 p<Y

<« [ql/le/2+X5/7q3/1h+xq—1/2) L17[1+Xq-lg~l)
1 1 1 1
It follows from (3.11), (3.3), and (3.1) that

S(Alx) < yl-A/2+m(2-94) /8 1T, m(2-94) /b

1-A4/2+36 /4
<« X moAt
This proves Lemma 2.
LEMMA 3. We have
X
m 221
(3.12) J |F(x)|K€dx << Xe°LT .
X
m-1
Then
(3.13) j |F(x) |K do << X221
E
3

Proof. By (2.6), Parseval's identity, and 9 1 << X/L , we have
=X

1 2 o
J |S(y)|“dy = ¥ (log p)© << XL .
0 p=X

So, by (2.5) and (3.1),
z
m

(3.1%) J

xm- 1

2
ISJ.(x) [ Kedx

<< Jm
¥
Wa-p

m-1
<< X[,/:r:m_l << X L .

{3
IS(y)IZy’zdy << n=2 I |S(y) | %dy
n>|}\j x M-

>| )‘j 'xm—l m-1

On the other hand, note that
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3
|F(2)| << min(|S (=)}, [Sy(=)]) jgl |Sj(x)|2 X

Then by Lemma 2, (3.14), and (3.1), we have

1-A/2+38 /b 17( ha-g
L X

xm N
J |7(2) |K dz << X ™)
X

m-1

<< X1+7A/2+(2-9A)(h-m)/8L18 <« ¥l )
The last inequality follows from (2.4) and
1+ 74/2 + (2-94)(b-m)/8 < 2 - 4

So (3.13) follows from (3.12) and (3.2).

4. Completion of the proof

LEMMA 4. If x € E, then

2

min(]s ()], |5,(2)]) << P

Proof. The proof is similar to that of Lemma 2. But here we put

Q = 6-1Xl"4 instead. Then following the same argument as that of Lemma 2

we must have
max(ql’ q2) > )/l s

since X = ql/(l_ZA) . Then apply Lemma 1.

LEMMA 5. #e have
J |P(z) |k dx << x%207T
E,

Proof. This follows from Lemma Y4 and the same argument as that of
Lemma 12 in [9].

LEMMA 6. e have

J e(an)F(z)K dx >> X%° .
E €

Proof. Note that we may apply Lemmas 2 to 8 in [9] directly without
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any changes since these results do not depend on E'l .

Lemma 9 in [9] still holds if we replace T there by our T = A1

But we need to make a slight modification to (33) in [9] as follows. By
Lemma 5 in [9] the integral in (33) is

-1

!
« $/3.C j

1 (1+X|)\jx|)2dx

<« x*/3.C2x3(4-1) |>\j|2

<< AL o x?

The last inequality follows from (2.2); that is, 4 < 2/9 . Then we
continue the proof exactly as in [9, p. 379].

Finally, Lemma 10 in [9] still holds if we replace T there by our

T, . No modification is necessary in the proof. Then Lemma 6 follows.

LEMMA 7. We have
J |F(2) |K de << x%€2L7T .
B €
L
Proof. This is Lemma 13 in [9].

LEMMA 8. For any real y we have

J“’ e(xy)](edx = max(0, e-|y]|) .

Proof. This is Lemma 1 in [70].

We come now to prove our theorem. By Lemma 8 and (2.7) we have

J = r e(an)F(2)K do
3 3
= y [T_r log p.)ma.x[o, s—'n + Y A.p.”
pSx Ngel I = 7Y
J=1,2,3
<< 3en

E]

where N is the number of solutions in primes pj of
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3
n o+ Jz; Ajpj < g = (max pj)'A/z(max log pj)20

with pj =X (4=1,2,3) . So, by (2.2), that is a < A/2 , our theorem

follows if JL el > as X +o . Now
L
J= Y J e(an)F(z)K dx .
v=1 ‘E €
v

By Lemmas 5, 3, 7, we have

4 22.-1
(k.1) Y J |F(x) | K dx << X“€°L™" .

v=2 'E €

So Lemma 6, together with (4.1), shows that JL73%™Y 5> ¥%e1™3  as desired.

This completes the proof of our theoren.

5. Remark

In §3 and in the proof of Lemma 6 we need A < 2/9 , which leads to
our result a < 1/9 (see (2.2)). 1In fact, in the proof of Lemma 6 we can
replace 4 < 2/9 by a better one, namely 4 < (V21-1)/15 = 2/(8.37 ...)
if we modify the argument as in [5, §4]. So it seems that the first

difficulty encountered in any further improvement lies in §3.
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