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The dynamics of suspensions of particles has been an active area of research since Einstein
first calculated the leading-order correction to the viscosity of a suspension of spherical
particles (Einstein, Proc. R. Soc., vol. A102, 1906, pp. 161-179). Since then, researchers
have strived to develop an accurate description of the behaviours of suspensions that
goes beyond just leading order in the particle volume fraction. Here, we consider the
low-Reynolds-number behaviour of a suspension of spherical particles. Working from
the Green’s functions for the flow due to a single particle, we derive a continuum-level
description of the dynamics of suspensions. Our analysis corrects an error in the derivation
of these equations in the work of Jackson (Chem. Engng Sci., vol. 52, 1997, pp. 2457-2469)
and leads to stable equations of motion for the particles and fluid. In addition, our
resulting equations naturally give the sedimentation speed for suspended particles and
correct a separate error in the calculation by Batchelor (J. Fluid Mech., vol. 52, 1972,
pp- 245-268). Using the pair-correlation function for hard spheres, we are able to compute
the sedimentation speed out to seventh order in the volume fraction, which agrees with
experimental data up to 30 %—35 %, and also get higher-order corrections to the suspension
viscosity, which agree with experiments up to ~15 %. Then, using the pair distribution for
spheres in shear flow, we find alterations to both the first and second normal stresses.

Key words: suspensions, general fluid mechanics

1. Introduction

Mixing small solid particles or phase-separated liquid or gas droplets into a bulk liquid
creates a fluid-like suspension that, while behaving somewhat like a simple fluid, also has
its own unique properties. Think, for instance, of the motion of mud or paint relative to that
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of water or honey. Or the more dramatic motion of bubbles in a pint of Guinness, where
the small and lighter-than-water nitrogen bubbles flow downward along the edge of the
pint glass due to the interplay between the pint geometry and the Boycott effect (Benilov,
Cummins & Lee 2011). Suspensions are ubiquitous, from naturally occurring ones, such
as sand in water, to a range of various culinary sauces and pastes (dressings, pestos, soups,
etc.) to the industrial realm of printer inks and oil slurries. Therefore, understanding their
physical properties and having an accurate physical theory of their dynamics are essential.
It is not surprising that a vast extent of research over more than a hundred years has sought
to make progress in this area.

The first calculation to explore the physical consequences of suspended particles in a
fluid was Einstein’s classic analysis of the change in the effective viscosity of a fluid due
to the presence of a low volume fraction of spheres (Einstein 1906). For a volume fraction
¢ of spheres of radius a suspended in a fluid of viscosity 1, the leading-order correction to
the viscosity was found to be /19 = 1 4+ 5¢ /2. Since Einstein, other authors have found
the same result using differing approaches (Jeffrey 1922; Burgers 1938; Brenner 1958).
These calculations all ignore the interactions between the spheres in the suspension. To
get to higher-order contributions to the viscosity, these interactions need to be taken into
account. Various methods have been used to accomplish this, such as using the method
of reflections (Guth & Simha 1936), computation of the added stress from the particles
(Batchelor 1977; Brady & Morris 1997) and cage models (Happel & Brenner 1983). All
of these methods compute the effective viscosity up to second order in the volume or
beyond, but all differ in what value they find for the second-order coefficient. Other groups
have used fits to empirical data to determine approximate ad hoc functional relationships
for the dependence of suspension viscosity on particle volume fraction (see e.g. Finke
et al. 2021; Konijn, Sanderink & Kruyt 2014). Therefore, even in simple suspensions of
spherical particles, the proper relationship between the volume fraction and the effective
viscosity remains unclear.

Other calculations for suspension flow are equally ambiguous. For example, at low
Reynolds number an isolated sphere of radius a and density p, falls through a fluid of
viscosity 1o and density pr ata speed Uy = 2a2g(ps — £r)/9m0, where g is the acceleration
due to gravity. A suspension of similar spheres, however, falls through the same fluid at
a speed Ug, which is slower than that for the single sphere, and this hindrance increases
nonlinearly with increasing volume fraction. To date, there is no consensus on what the
leading-order correction to the sedimentation speed as a function of volume fraction is.
The original analysis of this problem was also initiated over a hundred years ago in the
work of Smoluchowski (1912). As detailed in Batchelor (1972), the theoretical work on this
problem has fallen into three main categories. First are methods using regular geometrical
arrangements of particles, such as the work by Hasimoto (1959). The second category
involves using ‘cell’ models, where the motion of a single particle within an isolated
region is computed. The influence of the other particles is then incorporated through the
choice of boundary conditions at the edge of the isolation region. The book by Happel
and Brenner describes these models in detail (Happel & Brenner 1983). Both of these
types of calculations lead to a first-order effect that scales like ¢'/3, since each sphere
is confined within a region of volume a*/¢. Experimental data, though, do not support
that the leading-order hindrance to sedimentation scales so steeply with volume fraction.
The third type of calculations that have been performed consider a random distribution of
spheres. These calculations generally lead to an order ¢ correction to the sedimentation
speed. The most notable of these calculations is that by Batchelor (1972). In that paper,
Batchelor considered the average effect on the sedimentation speed due to a uniform
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suspension of spheres under the stipulation that the average total flow (from both the
fluid and the particles) is zero. Taking only these effects into account, he computed the
relative sedimentation speed to be Us/Uy = 1 — 5¢. Batchelor then considered removing
a test sphere embedded within the flow. However, because the test sphere also creates its
own disturbance flow, Batchelor reasoned that he needed to correct for the alterations
to the boundary conditions on the other spheres, which he did using a two-particle
reflection method. With these interactions taken into account, the leading-order correction
became Ug/Uy ~ 1 — 6.55¢ for monodisperse suspensions and Ugs/Uy =1 — 5.6¢ for
polydisperse suspensions (Batchelor & Wen 1982). This result, though, does not agree
well with data, which has led other groups to posit that hydrodynamic effects may
alter the pair-distribution function, which could account for the experimentally observed
deviation from Batchelor’s result (Cichocki & Sadlej 2005). Many other groups have
offered empirically determined functional forms to try to describe the dependence of
sedimentation speed on volume fraction (see e.g. Amin, Girolami & Risso 2021).

The aforementioned theoretical calculations on viscosity and sedimentation speed each
addressed specific aspects of suspension dynamics. A more general question is whether
it is possible to write out a system of equations that accurately describes the physics and
dynamics of suspensions. Suspensions fall into the category of multiphase fluids. Two
separate methodologies have been employed to study these systems. The first category
involves using direct simulations to compute the motions of discrete particles moving
within a continuum fluid, such as described in Yin er al. (2019). The second method
considers volume elements that are large compared with the size of any of the components
within the multiphase fluid and averages over the dynamics of each phase. In this way,
each phase becomes an interpenetrating continuum defined by its averaged velocity and
volume fraction. This methodology was pioneered by Drew & Segel (1971), and has been
an active area of interdisciplinary research since (see e.g. Cogan & Guy 2010; Kim &
Mudawar 2015). For a suspension composed of solid particles at volume fraction ¢ in
a fluid of viscosity 19 at low Reynolds number, a force balance equation is needed to
describe the net force per volume on the spheres and a separate force balance equation is
needed for the force per volume on the fluid. In general, each phase can feel intra-phase
forces, inter-phase forces and body forces. Deriving the intra- and inter-phase forces from
first principles can be difficult or impossible. Often, some form of approximate closure
relationship is proposed. In the context of a dilute suspension of spherical particles at low
Reynolds number, Jackson (1997) derived an explicit closure relationship by averaging
the Stokes equations and the forces exerted on the particles from the fluid. While these
equations were derived directly from well-defined physics, Jackson (1997) found the
equations to be ill-posed and to lead to unstable solutions, even for simple one-dimensional
fluidization/sedimentation problems.

Here we aim to develop a physically correct continuum theory for two-phase
suspensions of spherical particles at low Reynolds number. We begin by considering the
Green’s function for a sphere in an arbitrary flow field, which can be written as a sum
over singular solutions. Each sphere in the suspension can then be described by a similar
Green’s function. By averaging the Stokes equations over an intermediate length scale and
using these Green’s functions, we show that if the singularity strengths are known, then
the effective stress tensor for the fluid can be defined. In order to compute the singularity
strengths, we use the Taylor series expansion of the fluid velocity about the centre of a
given sphere to set the singularity strengths on an order-by-order basis. This leads to a
set of Faxen law-type equations that define the singularity strengths in terms of the local
background flow of the fluid and the disturbance velocities due to all the other spheres.
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To close the system of equations, we relate the average local fluid velocity about a sphere
to the fluid-phase averaged velocity. The resulting solution provides the effective stress
tensor for the averaged fluid velocity, correcting the original calculation in Jackson (1997)
and leading to stable equations of motion for the suspension.

2. Green’s functions and the averaged Stokes equations
At low Reynolds number, the fluid component of a suspension obeys the Stokes equations:

2
noV2v — VP 4 by = 0,} o
V.v=0,

where v is the velocity, P is the pressure and by is the body force on the fluid. In the
presence of suspended spheres, these equations are only valid in the fluid region. Since the
Stokes equations are linear, the effect due to the presence of the spheres can be accounted
for by a Green’s function contribution from each sphere. We, therefore, decompose the
fluid velocity into a background flow vy and a disturbance flow from the spheres u, such
that the velocity at point x is v(x) = vo(x) + u(x), with the total disturbance flow being a
sum over the contribution from each individual sphere:

u(x) = Z Uy (x). (2.2)

Consider the sphere located at x,,,. This particle experiences an external flow given by
the background flow and the disturbance flows from all the other particles, excluding itself,
which we will denote as u_,,. That is, the external flow about this particle is v_,, = vo +
u_p,. This flow field is not the same as the velocity field that would be present if the sphere
at x,,, were removed, as is described in more detail in § 4. In general, the disturbance flow
due to a spherical object in an arbitrary background flow at low Reynolds number can be
written as an expansion in singular solutions (i.e. Green’s functions) centred at the sphere
centre. For example, if the external flow is constant, the disturbance flow at location x due

to the sphere centred at x;;, is

F 2 .
Uy () = —— - (1 4 ”—V2> S (x. x) . 2.3)
81‘57)0 6

where FO is the net force that the particle exerts on the fluid and S is the ‘Stokeslet’ or
Oseen tensor:

S" _ 51] 4 (X — xm); (x — xm)j' 2.4)

i =
lx — X Ix — x|

Similarly, for a sphere in pure linear flow, the disturbance flow is given by

F! a? 2 A
Upx)=—: {14+ —=V° VS, x,), (2.5)
81tno 10

where F! is a rank-2 tensor with its antisymmetric part giving the net torque that the
particle exerts on the fluid and the symmetric part giving the added fluid stress due to the
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presence of the particle. For a general arbitrary external flow, the disturbance velocity can
be written as an expansion of singular solutions as

1 ., .
U (x) = F— ZFk o Sk. (2.6)
k=0

Here F* are rank k + 1 tensors that are determined from boundary conditions at the surface
of the sphere. Tensors Sk are rank k + 2 tensors given by (Kim & Karilla 2005)

2

Sk y Xm) = 1 Papre——
(%, Xin) ( T 2kt

v,%m) VE S (x.xm) . 2.7)

and we are using notation that © denotes the full contraction of F* with the 2 to k + 2
indices of S*. For example, for k = 2,

F? 0 8% = FSh,. (2.8)

where we are using the Einstein summation convention that repeated indices are summed

over. Given the magnitudes of the singularity strengths F* for each sphere, the general
solution for the fluid velocity is

v (x) = v (x) + %ﬂo Xn: Xk:ﬁ’; O 8K (x, x,) (2.9)

where the sum on 7 is over the particle positions x,. Note that the velocity defined here
is only valid in the fluid region. In the region surrounding the particle centred at x,,
the velocity is given by v(x) = v, + @p m X (X — Xp,), Where v, , and @) ,, are the
translational and rotational velocities of the particle, respectively.

The corresponding Stokes equations for the fluid velocity are then given by

~ a2
Vv —VP+b+> Y Frovk (1 + mvﬁﬂ) 83 (x—x,) =0. (2.10)
n k

Note that the ® operator now denotes a full contraction of the singularity strength F* with
the kth power of the gradient operator, which acts on the coordinate x,, and 83(x) is the
three-dimensional Dirac delta function. Equation (2.10) is the effective dynamic equation
for the fluid valid at all points in space and defines the fluid velocity in all regions outside
the particles. To get to a continuum description of the suspension, we average (2.10) over a
mesoscopic scale that is large compared with the size of the spheres, but small compared
with the system size. We define an averaging kernel K (]x — y|) that satisfies the conditions

/K(|x—y|)d3y=1; K(x—y) =0 aslx—y| — oo, @11)

and assume that K(x) is a smooth function that is differentiable as often as required by
our manipulations. We also define R to be the effective radius of the averaging kernel.
When computations do not involve derivatives of the averaging kernel, it is sometimes

convenient to choose a step function where K(x) = 3 /47tR3 for x < R and K(x) = 0 for
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x > R, which enables direct calculation of integrals over this kernel. Multiplying (2.10) by
the averaging kernel and integrating over all space, we find

3 a® N
VE) =V (P) 4+ (b)) + ——= Y (D[ 14— V2|V, Fry) =0,
noV? (v) <>+<f>+4m3;< >(+2(2k+3) ) O ($(F*)
(2.12)
where
) ) = [ Kllx=yho @13)
with a similar definition for (P), and where
2Py (0 = 3K (x — ) B (2.14)
4ma’ p memm '
with the volume fraction defined by
b (x) = Z[ K(jx — x, — X' )dx. (2.15)
o Y Ixl'<a
Since the averaged velocity in (2.13) is over regions containing particles and fluid,
(v) =0 —@) v+ ¢vp, (2.16)

where vy is the fluid-phase averaged velocity and v), is the particle-phase averaged velocity.
In order to define the effective stress tensor for the fluid, we can rewrite (2.12) as

. 3¢ (FO)
V.o + (by) + yo =0, (2.17)

with the general form for the averaged two-phase fluid stress tensor ¢ given by

.0 ; A
o5 =mno (8 twl; + <v)-’) — Péj + Li(d>(F°>i)

0x; 0x; 7" 87a 0x;

3y k a—2 2\ k-1 2k
* dma’ kX:I: =D (1 T 2 2k + 3)V ) Vi O (o(F). (2.18)

This is the first major result of our paper. Given the singularity strengths for the spheres,
this equation completely defines the effective stress tensor for the two-phase fluid. An
interesting aspect of this stress tensor is that it is not necessarily symmetric. For example,
the last term in the first line includes the jth component of the gradient and the ith
component of the force FO. In single-phase fluids, the stress tensor should be symmetric
to prevent self-torquing. However, consider a suspension of sedimenting particles with a
horizontal gradient in the volume fraction. In this case, any given volume element has more
spheres on one side than it does on the other. Since the spheres are acted on by gravity,
they exert a net force on the fluid, which is larger on one side of the volume element than
on the other. Consequently, the spheres produce a net torque on the volume element, which
is accounted for in this stress tensor. The possibility of an antisymmetric stress tensor was
previously noted by Batchelor (1970) and later by Pedley & Kessler (1992) in the context
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of microorganism swimming. This same term also accounts for the primary difference
between our results and the results from Jackson (1997), which derived a similar term:

9 (3
2 <’?T°¢(Up,,- - vf,,»)> : (2.19)

9x;
For non-interacting particles, Faxen’s first law gives FO = 6mnoa(v, — (1 + (a® / 6)V2)vf)
(Kim 1985; Chen & Ye 2000), in which case the last term in the first line of (2.18) is

3 (3no¢ a?
— (T (vp,l- — v — gvzvf,i . (2.20)

0x;

In the case of neutrally buoyant particles for which FO =0, our term does not contribute
to the stress tensor, whereas Jackson’s term becomes

3 (3a*p_,
— Vi), 2.21
ax]-< 24 Uf”) .21

which gives a force per volume that is positively proportional to the bi-Laplacian of the
velocity and causes short-wavelength perturbations, on lengths smaller than the size of the
individual particles, to be unstable in Jackson’s formulation. As we show, our formulation
leads to a term in the force per volume that is negatively proportional to the bi-Laplacian
of the velocity, thereby providing a stabilizing effect to the dynamics.

In what follows, we consider a truncation of the sum on k such that it only includes
terms up to k = 2. In that case, the stress tensor simplifies to

. 0 . ~
ot — o (a whi M]) P+ L)

0x; 0x; 8ma dx;

71 @ oo d 72
T I <¢(F )ij+EV (P(F)ij) — B—Xk(flﬁ(F )ijk))- (2.22)
We show that the leading-order contribution to each singularity strength Fkis proportional
to a®**! times the kth derivative of the average velocity field. Since the contribution from
each F* comes into the stress as VA1 @ F¥, truncating at k = 2 omits terms that are
proportional to the sixth derivative of the velocity field and are of order (a/L)* and smaller
in the force per volume, where L is a natural length scale for the system. To be consistent,
we have, therefore, left off the term in (2.22) that depends on the Laplacian of F2asitis

of order (a/ L)*.

3. Determining the singularity strengths

In order to complete the closure of the stress tensor, we need to relate the singularity
strengths (i.e. F*) to the flow profile. This is handled by enforcing the no-slip boundary
condition on the surface of the spheres. We begin by considering the Taylor series
expansion of the external flow, v_,,, around a sphere with centre located at x,, that is
translating with velocity v, and rotating with angular speed @),:

dV_m.i L, . 0%v_pm,

S il L . 3.1
o |, 2 oo G

Vem,i = V—m,i () + )ACj
Xm

where X is the vector displacement measured from the centre of the sphere. Comparing the
velocity defined by the Green’s functions evaluated at the surface of the sphere with the
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terms in the Taylor series expansion, we find the following relationships:

3

FO— i (5% — 2F% — 2F%) = 6m0a(vp,i — v_m,0), (3.2)
S| 3 ( 0V—m,i
4Fij — Fji = —20mnoa o €ijkwp.k | » 3.3)
]

14Tcn0a5 82v_m,i
3 dxjoxg

12 -2 72 72 72 22
OF . — Flig — Figi — Fiyedj — (Fijy + Fydix = —

As mentioned previously, FF are proportional to the kth derivative of the velocity. They
also depend on the F*2 terms. Indeed, it is a general result that the kth term in the Taylor
expansion only depends on F* and F**2, since the functional form of the lower-order
Green’s functions only includes powers of x* when evaluated at the surface of the sphere,
and because the bi-Laplacian of the velocity field is zero, terms of higher order than k + 2
also do not contribute. To be consistent with our previous truncation in the stress, we
also truncate the Taylor series at k = 2. Because the truncation ignores the higher-order
derivatives in the velocity field, we are effectively not considering short-range lubrication

forces or contact forces between the spheres. We have also used that V - v_,, = 0 (which
also implies that F l.li = 0). Contracting (3.4) on each pair of its indices, we find

A 2mnoa’ A 20mnoa’ A 16mtnoa’
2 2 2 2 2 2
i = TV Vomi,  Fi= TV Vomir  Fiji = TV V_m.is
(3.5a—c)
which we can use to simplify (3.2) as
70 @,
F; = 6mnoa (vp’i — VU i — FV v_m,,) . (3.6)

Equations (3.3) and (3.6) are equivalent to Faxen’s laws, with the imposed fluid velocity
replaced by v_,, (Kim 1985; Chen & Ye 2000). Note, however, that (3.3) does not contain
the Laplacian term that is often included in Faxen’s third law (which sets the symmetric
part of F 1). This term comes in at order k£ = 3, which would be inconsistent to include
here, without adding the k = 3 term. It is interesting to note that the fluid stress tensor

(2.18) does include the Laplacian term acting on F'. The solution to the third equation,
(3.4), is found to be

5 2 2 2
A 0“V_pi 0°VU_py,; 0°v_
Fl‘ij _ _7”7061 5 V_m,i n V—m,j n Vom,k
6 0xj0xk 0x;0x) 0x;0x;
Tfnoas 2 2 2
+ TQV Vom,iOjk + LIV 0y j8ik + TV 0 18j5). (3.7

4. Relating the local flow about a sphere to the fluid-phase averaged velocity

Equations (3.2)—(3.4) determine the singularity strengths in terms of the external flow
about a sphere, v_,,. This velocity field represents the local background flow that a sphere
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located at x;,, experiences. That is, it is the total flow minus the disturbance flow from this
sphere:

Vo (X) =V (x) — #ﬁo > FE 08 (o xm) . 4.1)

As mentioned previously, this is not the same as the velocity field that would be present if
the sphere at x;,, were removed, since removing the sphere would alter the singularity
strengths on the other spheres. The specific values of the singularity strengths are
important, as they are defined in such a way as to provide the correct boundary conditions
on the surfaces of the spheres, up to the order of our truncation. As defined, then, v_,,
is not measurable. To develop a physically meaningful continuum description, we need
to relate v_,, to an experimentally measurable quantity, such as the fluid-phase averaged
velocity, vy. Since vy is an averaged velocity, we consider first the average of v_,, over the
same averaging region as is defined by K(x), using a similar point averaging as was done

for F* in (2.14):

(o) @ = 7 Z(vo (xm>+—Z Y Fros (xm,xn)>1<(|x Xnl)
m k n#£m (4‘2)

where the sum on n #=m is equivalent to subtracting the contribution from the sphere at
Xpm.

The fluid-phase averaged velocity is defined by integrating only over the fluid volume V¢
contained within the averaging region. Following the definition given in Jackson (1997),

B 1 1 Ak ok . 3
v = T /Vf (vo <y>+—8m02ijnan@S <y,xn>)1<(|x yhdy. 43)

Using these two definitions and taking the continuum limit (as shown in Appendix A),
we find

B 3¢ ~ r=2R B o ;3
(Vo) (x) = vp (x) + 20 (1= ) Xk: |:F (x) © /r:a (g —1DS" (rndr
2¢ r=2R .
+ WF" (x) ® / g (r) V28K () d%] (4.4)

where r = |r|, g(r) is the pair-distribution function, which gives the probability of finding
a particle at location r with respect to the centre of another particle (Kirkwood 1935;
Guazzelli & Morris 2011), and we have dropped the brackets on the averages of F* for
simplicity.
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For isotropic g = g(r), only even values of k give non-zero integrals. In addition,

r=2R R
f g(nV2skd*r =0, (4.5)
;

=a
since the flow rate through any closed surface enclosing one of the singularities of the

Green’s functions is zero (Pozrikidis 1997), and it can be shown that only the £k = 0 term
contributes to the first integral. Therefore, when the pair-distribution function is isotropic,

3¢

70 M0
Dl (=g P2 (+6)

(vom) (x) = vy (x) +

where we have defined
r=2R .
Q0 = (g — 1S () dr. (4.7)
r=a
In general, for non-isotropic g, the other integrals can contribute to the relationship
between (v_,,) and vy.
Using similar calculations, it is straightforward to compute (Vv_,,). We find that

3¢
32n2noad (1

r=2R

—5f @o / g —-DHVS' ¢,
o 4.8)

(Vo_p) (x) = (Vo)r (x) +

where (V) is the fluid-phase average of the gradient of v, which is not the same as Vvy.
Indeed, from the definitions of the averaging procedure,

(1 =9¢) (Vo) + ¢ (Vv), = V(1 — ¢) vy + $v,], (4.9)
with (), denoting the particle-phase average (see Jackson 1997). For isotropic g(r), the
integral in (4.8) is zero, and we find

1 ¢
(1-9) (I—-¢)
For cases where the pair-distribution function is not isotropic, such as in the presence of

shear, the gradient of v_,, can also depend on the values of F. We discuss this case later.
Using the same analysis, we also find

(VVu_,) = (VVo),. (4.11)

(Vo_p) = VI = @) vr + ¢pv,] — (Vo). (4.10)

Taking into account the discontinuity in the gradient of v at the surface of the spheres,
VV (v) = (1 — ¢) (VVv>»+Zl/ (Vv)ndsS (4.12)
B f m V SP ’ .

where the integral is over the surfaces S, of the sphere included in the averaging region
and n is the outward normal to the surface. Combining the results from (4.11) and (4.12),

¢ S (AF S5 — F)sy — Fsy). (4.13)

ViVi{v)) =(ViViv_p, i) — ————
k ]( l) < kVYj m,t> 201‘[7’]061

The Laplacian of v_,, is then

(V20_p) = V2[(1 — ¢) v + pv,] + FO. (4.14)

2mnoa’
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Note that both the gradient and the double gradient of v_,, only depend on the full average
velocity and therefore

1
Vv — \Y ,
A—g) =g VW

¢ o

2mnoa’”

<Vv—m> =
(4.15)
(V2o_,) = Vi) +

The second term on the right-hand side of the Laplacian equation above is equivalent to
the ¢ /2 correction that was found by Batchelor (1972).

5. The dynamic equations for low-Reynolds-number suspensions

The results from the previous sections can now be used to write out the full dynamic
equations for the two-phase suspension. We begin with the averaged equations of motion
for the spheres. These equations are dictated by the condition that the sums of the forces
and torques on the spheres are equal to zero. These two conditions are directly related

to Faxen’s first and second laws, (3.6) and (3.3), and set the values for FO and the
antisymmetric part of F'.In the absence of body forces on the spheres, the net force that
the sphere exerts on the fluid must be zero, which gives that FO = 0. When there are body
forces on the fluid and the spheres, such as when the spheres are not neutrally buoyant,

then FO needs to be related to the body forces. We begin by integrating (2.10) over the
volume of a single sphere, from which we find

4na’ -
—/ o ndS, + b+ F0 =0, (5.1)
S, 3
where n is the outward normal to the sphere and o is the pure fluid stress tensor (not the

effective stress tensor). The integral of the stress tensor dotted with the normal is the force
that the fluid exerts on the sphere. In the presence of body forces b, on the particles, this

force must be equal to —4na3bp /3, from which we get that

70 dnta’
3

(b, — by). (5.2)

When the body forces are from gravity, FOis just equal to the difference between the
gravitational force on the sphere and the buoyant force from the fluid. If the net torque on
the particles is zero, then the antisymmetric piece of F! must be zero. From (3.3), (3.6)
and the relations between v_,, and (v), the equations of motion for the spheres are then

a* (1 —¢) a? 9%
v, — (V) — Tv2<v> = 5 ((2 —¢p—PHT + WQO> - (b, — by), (5.3)
d(v); 9(v);
(1 + ¢) enjops = 3)’; - (5.4)

with Z the identity tensor. One difference between this result and the results from Jackson
(1997) is the presence of the overall average velocity in the Faxen force in the first equation.
In addition, this equation includes the dependence of the particle velocity on the volume
fraction of the particles. Indeed, if the full pair-distribution function is known, then (5.3)
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should give the correct relationship between the particle velocities, the fluid velocity and
the body forces for any volume fraction. Another interesting aspect is the presence of the
factor of 1 4 ¢ between the magnitudes of the angular velocity of the particles and the
vorticity of the average fluid velocity. It is important to note that the spheres still rotate
with the local vorticity; the factor of 1 + ¢ arises because the average fluid vorticity is not
the same as the local fluid vorticity.

The force balance equation for the fluid is given by (2.17) with FO as in (5.2) and the
effective stress tensor

ot =1 (a i d (v);

0x; 0x;

_Smo a a<v>,- 9 (v); (3¢ - )
2(1—¢) (1+ V)(d)( dx; * 0x; )) oxp (4Tca3<F Jie ) (55)

where F? is given by (3.7) with the double gradient of v_,, given in (4.13). This stress
tensor has the nice property that it only depends on the overall average velocity, and does
not depend independently on either vy or v,. The first term in the second line reflects not
only the Einstein correction to the viscosity, but also an additional correction that goes
as 1/(1 — ¢). We also find terms of third order in gradients of the velocity. For neutrally
buoyant particles at constant volume fraction, the fluid equation of motion simplifies to

a2

> Pglj + (¢(bp i bf,i))

2
Negy V2 (v) — #v%) _vVP=0, (5.6)

where the effective viscosity is

_ 5
Neff = N0 (1 + m) . (5.7)

As mentioned, the bi-Laplacian term in the dynamic equation is negative, which provides
stability to the equations.

The force and torque balance on the spheres, (5.3) and (5.4), along with the effective
stress tensor (5.5) and the averaged Stokes equation (2.17) are the dynamic equations
for the flow of the two-phase suspension. These equations of motion are closed by the
conservation of volume condition:

V. (v)=0, (5.8)

which defines the pressure. For cases where the volume fraction is not constant, (5.6) will

include terms that involve derivatives of the volume fraction, and the continuity equation
d¢

— + V. (pv,) =0 (5.9)

ot

needs to be solved for the dynamics of ¢ with v, given by (5.3).

In order to close this system of equations and solve for the dynamics of a suspension
in a specified situation, boundary conditions need to be defined. However, our averaging
method defines the average fluid and particle velocities at position x using a spherically
symmetric averaging kernel of effective size R centred about this location. Therefore,
these averages are only well defined in regions where x is sufficiently far away from
any boundaries (at least a distance R or greater). Because of this limitation, we are not
currently able to define the proper boundary conditions for the suspension, but we are
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Figure 1. Comparison of experimental measurements of suspension viscosity from Eilers (1941) (black
squares), from table 3 of Ward & Whitmore (1950) (other open symbols), from Maron & Fok (1955) (blue
filled circles) and from Maron & Levy-Pascal (1955) (filled green circles) with the results of our theory for the
effective viscosity 7 (red curve). As a comparison with other theories, we have also included the Batchelor
& Green (1972) equation (black line) and the Mooney equation with K; = 2.5 and K> = 1.0 (blue line).

actively working on the proper way to do this. Even so, it is obvious that our model predicts
an additional correction to the viscosity beyond the Einstein result, since our effective
viscosity 7.4 includes an additional factor of 1/(1 — ¢). In figure 1, we plot this function
against the following experimental data: Eilers (1941); table 3 of Ward & Whitmore (1950);
Maron & Fok (1955); and Maron & Levy-Pascal (1955). In this figure, we also compare
our equation with the second-order expression calculated by Batchelor & Green (1972)

who predicted neg/no = 1+ 2.5¢ + 5.2¢? and with the empirically determined equation
by Mooney (1951) that estimated n.p/no = exp(K1¢/(1 — K2¢)), where K is typically
between 2 and 5 and K> is between 0.6 and 2 (Pal 1990). The effective viscosity that we
predict works well out to 15 % volume fractions, but then underestimates the effective
viscosity. It is likely that the deviation between our result and the experimental data at
higher volume fractions is due to our k = 2 truncation, which ignores lubrication forces
that become more important as the suspended particle density increases. It is interesting
to note that this is also the point where the experimental data begin to spread out more,
suggesting that the experimental conditions may have a strong effect on the measured
viscosity. There is also another, potentially more important, reason that our results might
underestimate the effective viscosity at higher volume fractions. Our analysis assumes that
the pair-distribution function is isotropic, which leads to the integral in (4.8) being zero.
Consequently, there are no additional corrections to the viscosity. In the presence of shear,
however, it is expected that the pair-distribution function is not isotropic (Batchelor 1977;
Brady & Morris 1997), which could lead to additional corrections to the viscosity. The
consequences of a shear-induced, non-isotropic distribution function are described in § 7.

6. The speed of sedimenting particles

A long-standing problem in suspension dynamics is the question of the correct theoretical
description of the speed for sedimenting particles. To date, one of the most widely
cited expressions relating the settling speed Ug to the volume fraction is the empirically
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determined Richardson—Zaki equation:
Us = (1 —¢)" Vo, (6.1)

where 7n is an empirically determined parameter that is found to approach 4.65 as the
Reynolds number goes to zero (Richardson 1954; Richardson & Zaki 1954; Silva et al.
2015). This exponent does not exactly agree with the aforementioned calculation in
Batchelor (1972) that derived Ug =~ (1 — 6.55¢)Uy. Some authors also use a modified
form of the Richardson—Zaki equation, where the volume fraction is scaled by the
maximum random packing fraction; however, this introduces an extra parameter that can
vary between theories and experiments (Silva et al. 2015).

For the case of sedimentation in a stationary fluid where (v) = 0, (5.3) can be used to
determine the settling speed predicted by our analysis for a given pair-distribution function.
While there has been significant debate in the literature about what the appropriate
distribution function should be (see e.g. Batchelor 1972; Cichocki & Sadlej 2005),
we make the simplest assumption and use the hard-sphere pair-distribution function.
This choice is convenient because the pair distribution is isotropic and the functional
dependence of the distribution function on the volume fraction has been well studied.
For an isotropic g(r), the sedimentation speed is found from (5.3) to be

1. 1, 3¢ (R
Us=[1—=¢p—=¢ +—2f r(g(r)y—1)dr) Uy, (6.2)
2 2 as J,

where we have ignored terms of order a/R and smaller. In general, the pair-distribution
function is zero for r < 2a and can be written as an expansion in ¢:

g(r=2a) =1+ ¢"g,(r). (6.3)

n=1

The functions g, in this expansion have been determined analytically for n =1, 2
(Kirkwood 1935; Nijboer & Van Hove 1952) and computed numerically up to n = 6 (Ree,
Keeler & McCarthy 1966; Kolafa & Labik 2006). We use the analytic expression for g
(Kirkwood 1935) to compute the first-order correction to the integral in (6.2). For g2, the
analytic expression is sufficiently complex that we just use the tabulated values given in
Nijboer & Van Hove (1952) and use the midpoint rule to integrate g» numerically. Similar
numerical integrations are done using the tabulated values of g3 from Ree ef al. (1966) and
for g4, g5 and ge from Kolafa & Labik (2006). Our analysis then predicts that the hindered
settling function is
Us

e I T E 2 3 4 5 6 7
=150 + 07— 25.76¢ +45.53¢" — 73.064° + 108.65¢° — 151.70¢
0

+ 0(¢%). 6.4)

In order to compare the sedimentation speed predicted from (6.4) with experiments, we
use the meta-analysis data in Brzinski & Durian (2018) that compiled sedimentation results
from 14 different publications and also included three new measurements (figure 2). In that
work, Brzinski & Durian (2018) discovered two separate branches in the hindered settling
function, depending on whether the Péclet number was greater or less than O(10%).The
agreement between our model and the high-Péclet-number data is quite good out to
around 30 %, beyond which the truncated expansion in powers of ¢ breaks down. This
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Figure 2. Comparison of our theory with experimental data on sedimentation speed from the meta-analysis in
Brzinski & Durian (2018), for high Péclet numbers (Pe > 0(10%)) (black triangles) and lower Péclet numbers

(Pe < O(10%)). The red curve shows (6.4) and the yellow squares are computed using our equation with the
discrete values of g(r) from the Monte Carlo data in Kolafa ef al. (2002, 2004). We also compare these data
with the Batchelor results (black solid and dashed lines) and the Richardson—Zaki equation with n = 4.65
(green circles). Our theory agrees well with the high-Péclet-number data. The inset shows a log—linear plot of
the same comparisons, with the Richardson—Zaki function omitted for clarity.

equation also compares extremely well with the empirical Richardson—Zaki equation with
n =4.65 (figure 2). It is somewhat surprising that this analysis works so well using
the hard-sphere pair-distribution function. It may be that due to random movements of
the spheres, they behave sufficiently like a gas of particles that this pair distribution is
reasonable. In order to explore how well the pair-distribution function does at higher
volume fractions, we used the Monte Carlo and molecular dynamics simulations data from
Kolafa, Labik & Malijevsky (2002, 2004) that compute the pair-distribution functions at
various volume fractions ranging from 10 % to 53 %. These functions were then integrated
numerically to determine Ug/ Uy at specific values of ¢ (figure 2). From these results, we
find that our results with the hard-sphere pair-distribution function agree well with the
Richardson—Zaki equation out to around 40 %, at which point our results drop to zero near
50 %, whereas the Richardson—Zaki equation approaches zero as ¢ — 1. Above 40 %,
both the Richardson—Zaki and the hard-sphere pair-distribution function results fall below
the data from Brzinski & Durian (2018).

A weakness of our hindered settling function is that the polynomial expansion is
cumbersome and has a limited range of validity. While the Richardson—Zaki equation
is often used and agrees well with our analytic expression, one fault with this function is
that it does not go to zero at the correct volume fraction. To address these concerns, we
found that our analytic expression and the hindered settling function computed with the
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numerically determined hard-sphere pair distribution are very well fitted by
Us 1—-6¢/n
Uo (1+¢)°

The term in the numerator goes to zero at the cubic packing limit, ¢ ~ 0.52. It should
be noted that on a term-by-term basis, this function is not the same as our polynomial
expansion; nevertheless, it closely follows (6.4) and provides a simple expression that can
be used up to the cubic packing limit.

It is worthwhile to discuss the difference between our results and those from Batchelor
(1972). Indeed, our leading-order result of 1 — 5¢ is identical to the Batchelor result
before he corrected for the flows to satisfy boundary conditions and for exactly the same
reasons: (i) in the dilute limit, when g(r) = 1 for r < 2a (which is what Batchelor used),
the integral in (6.2) is simply over the single-sphere disturbance flow from a < r < 2a,
which contributes a factor of —4.5¢ to the hindered settling function; (ii) the restriction
that the net flow is zero leads to an additional factor of —¢; and (iii) the average Laplacian
term from the Faxen force contributes a term ¢ /2. In Batchelor’s procedure, though, he
considered removing an arbitrarily chosen test sphere from the suspension and replacing it
with a uniform velocity pure fluid. He argued that he then needed to correct for the changes
to the boundary conditions on the other spheres to account for the missing test sphere.
Using the two-particle sedimentation interaction, this procedure led to a flow correction
of —1.55¢, and a total linear-order hindered settling function of 1 — 6.55¢. However, the
test sphere is an idealization for which its removal should leave the average statistical
distribution of the suspension unaffected. That is, the remaining spheres should ‘see’ the
same distribution of particles with or without the test sphere. Consequently, the removal
of the test sphere should not alter the flow experienced by the remaining spheres, and,
therefore, no corrections to the sedimentation speed need be considered. By accounting
for alterations due to the test sphere, the statistical distributions between the two scenarios
are not the same, and the system including the test sphere must have a larger volume
fraction. Thus, Batchelor’s calculation overestimates the leading order of the hindered
settling function.

In our analysis, rather than removing or introducing a test sphere, we considered the
background flow, v_,,, that a given sphere experiences due to the presence of all the
other spheres. As mentioned already, this is not the flow that would exist if the sphere
were removed, but is rather the real background flow at the current sphere, caused by
the disturbance flows from all the other spheres. We define these disturbance flows using
Green'’s functions that automatically satisfy the boundary conditions on the surfaces of the
spheres, when the background flow is known in a Taylor-series-type expansion. Hence, we
are considering the average real flow about an average sphere in the suspension, with no
need to correct the forces on the other spheres to account for the presence of this sphere.
Its effect is already included.

(6.5)

7. The effect of shear flows on neutrally buoyant suspensions

Shear flows lead to anisotropy in the pair distribution (Gadala-Maria & Acrivos 1980;
Parsi & Gadala-Maria 1987; Brady & Morris 1997). In the context of the work presented
here, this anisotropy does not alter the averaged Stokes equation (2.12) nor does it affect
the Faxen laws (3.2)-(3.4); however, it does change the integrals that relate the average
local background flow about the sphere (v_;,) to the average fluid velocity vf. To examine
the consequences in a specific system, we consider a suspension of neutrally buoyant
spheres in shear flow directed along the x axis with shear rate y along the z axis.
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Our choice of a neutrally buoyant suspension sets FO = 0.In addition, the symmetry of the
pair-distribution function under shear, g(x) = g(—x), maintains that odd and even k terms
do not affect one another. Therefore, to the order of our truncation, the only modification
to our results comes from the integral in (4.8), for which we need g(r). Using the diffusion
coefficient for the spheres D = kT /67tnoa, where kpT is thermal energy, we define a
Péclet number Pe = ya®/2D. In the dilute limit, the pair-distribution function is then
defined by the two-particle Smoluchowski equation (Brady & Morris 1997):
g

V2g — Pez—> = 0, (7.1)
ax

with boundary conditions

d
o8 = 2Pesin 6 cos b cos pg(r = 2),
ar| (7.2)

glr=00) =1,

where 6 is the azimuthal angle from the z axis, ¢ is the polar angle and we have
non-dimensionalized length by the sphere radius. We solve this equation numerically
using a finite volume spatial discretization on a grid in spherical coordinates. Due to
the symmetry of the flow, we solve on a hemispherical domain defined by 0 <6 <=
and —7/2 < ¢ < 1/2. Since the distance over which g varies depends on Pe, we use
a hemispherical radius 2 < r < R4y, Where Ry, = 16 for Pe < 1 and Ry, = 2.15 +
30/(1 4 Pe) otherwise, where this range was empirically determined by requiring that
the integral of g — 1 over the domain had sufficiently converged. We discretized angular
coordinates with 45 nodes, the radial coordinate with 200 nodes and then solved (7.1)
over a range of Péclet numbers from 0.1 to 1000. Our results for the pair-distribution
function show the expected increase in g at the boundary in the compressional quadrants
and decrease in the extensional quadrants and also agree with previously reported solutions
of (7.1) (figure 3; Koo & Hess 1987; Brady & Morris 1997).
Using the numerically determined value of g, we then computed

r=Rmax

= / (g(r)— 1) VS () d’r, (7.3)
r=2a

by integrating over the full spherical domain, where the lower limit on the integral is
r = 2a because in the range a < r < 2a where g(r) = 0 the integral is zero. Note that I"
is a rank-4 tensor. From the symmetry of the velocity gradient, components that are odd
in the y direction are identically zero. Using (3.3) and (4.8) leads to the linear system of
equations that defines the k = 1 singularity strengths:

% o 10mnod’y o L.
<H+ 167 (1 —¢)F> OF = 30-0¢) (xz + 2x), (7.4)

where [ is the rank-4 identity tensor. The only non-zero components of F are the diagonal,
xz and zx components, and the effective stress tensor is

0x; dx; 4rgd Y

The effective viscosity is then given by n = o,;/y and the first and second normal
stress differences are oy, — 0, and oy, — oy, respectively. For the effective viscosity,
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Figure 3. Numerical solution of the pair-distribution function at four values of the Péclet number: Pe = 0.1
(a), 1.0 (b), 10 (c¢) and 100 (d). The cross-section shows the pair distribution in the x—z plane. Only half the
radial domain is shown in order to highlight the distribution near the boundary.

we compare the results with our previous results using the isotropic pair distribution,
Neff = 1 +5¢/2(1 — ¢). As shown in figure 4(a), the effect is largest at moderate values
of Pe and at larger values of ¢, but over the full range of Pe and for ¢ < 0.3, the viscosity
varies by no more than 1% from the result predicted with the isotropic pair-distribution
function. The absence of a significant alteration to the viscosity could be due to the fact
that we are calculating the pair distribution in the dilute limit. We do, however, find that
the shear pair-distribution function leads to non-negligible first and second normal stress
differences (figure 4b,c), with both being negative. Similar to the viscosity, the normal
stress differences are largest at moderate values of Pe, with a peak near Pe ~ 8 and
increase with ¢. Both also go to zero as Pe — 0 and asymptote to a non-zero negative
value as Pe — oo. Fitting the high-Pe results to a quadratic polynomial, we estimate that

Oxx — 07z & =10y (0.057¢ + 0.37¢?) and oy — oy = —10y(0.32¢ + 2.0¢?) at large Pe.

8. Conclusion
Here we have addressed the problem of determining an accurate physical description of
the phase-averaged dynamics in a suspension composed of spherical particles immersed

in a viscous fluid. We used a sequence of Green’s functions centred about each sphere to
account for how the force distribution on the surface of the sphere affects the fluid. This
sequence of Green’s functions is constructed such that the strength of each term in the
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Figure 4. Fluid stresses as a function of volume fraction and Péclet number. () The ratio of predicted viscosity
to nefr. The shear flow pair-distribution function only alters the viscosity by small amounts at moderate values
of Pe and larger volume fractions. The non-isotropic, shear flow pair distribution produces both first (b) and
second (c¢) normal stress differences. Both are negative and are largest at moderate values of Pe. The colourbars
for (b,c) are the same.

sequence for a given sphere corresponds to a specific term in the Taylor series expansion of
the background flow about that sphere. Since the Green’s function strengths define the net
disturbance flow from all of the spheres, the strengths of the singular solutions are coupled.
By averaging the flow in a given region, we derived a relationship between the strengths
of the Green’s functions and the fluid-averaged flow that allows us to derive an averaged
equation of motion for the fluid that depends only on the overall average velocity (v), its
derivative and the body forces that act on the fluid and particles. Truncating the Taylor
series expansion of the background flow at second order gives a modified Stokes equation
that includes up to fourth derivatives of the velocity and predicts an effective viscosity
of 1 +5¢/2(1 — ¢) for a uniform suspension described by an isotropic pair-distribution
function. The term in the denominator represents a correction to the standard Einstein
effective viscosity. The Einstein correction is only considered to be valid up to a few
per cent in volume fraction, whereas our expression seems to be valid up to around
15 % volume fractions. We believe that the deviation between our result and experimental
data is driven by two factors. First, our expression is partially the result of an isotropic
pair-distribution function, which is not expected to be correct in the case of shear flow.
Second, the spread in the experimental data at higher volume fractions suggests that
experimental conditions (e.g. shear rate, particle size, etc.) may also play significant roles
at higher volume fraction.

We used the resulting theory to examine a few representative problems. First, we
considered the uniform sedimentation of spheres. We found that the dominant coupling
between the spheres comes from an integral over the zeroth-order Green’s function and
the pair-distribution function for the spheres. We made the simplest assumption that the
hard-sphere pair distribution is representative of the actual distribution of spheres in the
suspension. Using the analytic and computed density expansion for g, we obtained an
expression relating the sedimentation speed to a power-series expansion in the volume
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fraction up to seventh order that agrees surprisingly well with previous experiments and
also with the empirically determined Richardson—Zaki equation (6.1) up to 30 %. In
addition, we propose a simple approximate expression for the hindered settling function
(6.5) that agrees well with experimental observations and our theoretical analysis and also
vanishes at a physically meaningful volume fraction. Finally, we examined the case of a
non-isotropic pair-distribution function in the context of dilute shear flow. We find that the
shear pair-distribution function leads to negligible changes to the effective viscosity, but
does produce non-zero first and second normal stress differences.

Theoretical determination of the sedimentation speed and effective viscosity of
suspensions has been a long-sought grail in fluid mechanics. In most cases, researchers
have sought to address either one of these questions or the other. However, both are the
consequence of the same physical system, which suggests that they should be explainable
by the same theory. Our approach unifies the computation of these behaviours within the
context of the averaged two-phase dynamics of a suspension.

Our averaged equations of motion are fourth order in the overall average velocity,
thereby requiring two boundary conditions per dimension at each boundary. This
result is convenient, as these equations determine the dynamics of both the fluid and
particle velocities; hence, one boundary condition for each component of the velocity.
Unfortunately, it remains unclear how to set appropriate boundary conditions within the
context of the averaging approach that we are using. While it is possible that the fluid phase
maintains a no-slip condition at the boundary, careful consideration of how the averaging
should be done near the boundary and the consequences of this for the boundary conditions
remains an open question. Even so, the framework that is developed here provides a
foundation for exploring a large range of problems in the dynamics of suspensions.
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Appendix A. Calculating the relationship between (v_,,) and v

We begin with the definition of the average of v_,, given in (4.2) and note that the first
term on the right-hand side of the equation is the local average of the value of vy at the
sphere centres. If the spheres are randomly distributed within the averaging volume, then
this point average of vg is the same as the volume average, and we can write

4
(v} () = (v0) (¥) + o— ( - )ZZ > FL 08 (on, xa) K (1x — x]) .

m n#£Em

(AL)

Now we consider the fluid phase-averaged velocity, (4.3). We begin by writing the
integral over the fluid volume as an integral over the total volume V minus an integral
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over the individual particle volumes V), ;,:

vr (x)

1
= - Fk Sk x| K d3
(1—¢>Uv<°(y) ZZ © <H>) (e =)
— Z/me (Uo(xm +x’)+ &l‘[lm)z;ﬁﬁ O‘S'k(x,n_*_x/’Xn)) K(|x—xm —x/|):| dx/3’

m k
(A2)

where the integrals with respect to x’ are over the individual particle volumes. The
integrals of vy combine to give its spatial average. Separating the sum over n in the
second line into the piece with n = m and another that includes all other terms, this can
be rewritten as

1
by () = {v0) () + g [Z/Fk@sk<y,xn>1(<|x yhdy

-2 / P 0 8K DK (Ix = xm — X/ dx
m V[’,m

-2 f F* 0 8 (i + ', x)K (1% — xm—x|)} a3, (A3)

m n#Em

In the second line, the Green’s functions have a single argument because they refer to
relative distances measured from the sphere centres. From here, in the integral in the
second line, we relabel m — n and use X' = y — x;, in order to combine the first and second
integrals, giving

1 Al
= +—1> FroS" (y,x) K (Ix —y) d°
vy (x) = (vo) (x) S0 (1= 9) 2 [ d /MM n OS" (¥, x0) K (Ix —y)) &y

_dna’ T 2B <1+ VZ) Sk(xm+x’,xn)K(|x—xm—x/|):|, (A4)

m n#Em

where the first integral is only over regions where |y| > a, and we have also used that

f S* e 4 2, XK (1% — X — X' 3%
me

4JTa3

K (Ix — Xpl) (1 + IOVZ) S* s Xn) (A5)

when m # n, which assumes that the kernel varies slowly over the size of the particles.
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Comparing (A1) and (A4), we find

1 N n
(V) (x) = o7 (x) — o ; [Z /lyFk O 8% (y, %) K (1x — yI) d®y

3 2
>y (4““ )K(|x—xm|)ﬁ’,;o (1 +ﬂv2) S (o x) |-
A" 10
(A6)

We can now transition to the continuum limit. The above equation includes two types of
sums. The first type is over all particles included in the averaging domain. If the particles
are uniformly distributed, then these sums can be converted to integrals as

Zﬁﬁ O K (i, xn) ~ / ( 3¢ )I:"k (x) o Sk (xm. x) &3y, (A7)
~ v

4mtad

where F¥(x') is the spatial average of F ﬁ evaluated at x’, and we have dropped the bracket
notation that was used in (2.14). The second type of sum is over all particles inside
the averaging domain except for n = m. To convert these sums to integrals, we use the
pair-distribution function, g(x” — x), which gives the probability of finding a particle with
centre located at position x’ when there is another particle with centre at x (Kirkwood
1935; Guazzelli & Morris 2011). These sums then become

Z ﬁ'ﬁ o Sk (X, xp) ~ /

n#Em 4

A

(43:;3) g (X' —x) F* (') © 8" (. &) X (A8)

With these substitutions, (A6) becomes

3¢
32n2ngad (1 —

(Vo) () = v () + ) > @ ) + B* (x)). (A9)
k

where

A" (x) = / f K(lx—yl) (g — 1) F*x') 0 Sy, x)d3y d*Y,
VJyl>a (A10)

2
B (x) = % /V /V K(lx — yDg (n F*') 0 V285 (y, x)d>y d*x,

where r = y — x’. Note that the integral that defines Ak only has contributions in the region
where g(r) — 1 is non-zero, which is typically within a few diameters of the particles.
Therefore, if we assume that the averaging radius R is large compared with a, then we can
treat the averaging kernel in this integral as being approximately equal to 3/47R>. We,
therefore, choose to use the previously mentioned step function kernel with radius R as the
kernel in these integrals. To further simplify the calculation, we assume that F* are slowly
varying, so that we can treat them as constant over the averaging region (or really just
over the distance for which g(r) is significantly different from one). In addition, because
the Green’s functions are only functions of the difference between their two arguments,
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Sk i, x) = Sk (y — x’), we can convert to relative and centre of mass coordinates using
and X = (X' + y)/2, and use the identity

3 r=2R
[ [ro-oevey=Z5 [ Tronoen (A1)
vJ/v 3 J=o
where r = |r| and h(r) = 1 — (3r/4R) + (r*/24R>), in order to write
r=2R
A4 =F 00 / (1 — DA S ) dr.
= (A12)
Sk a’P oy r=2k 2ek o 13
B (x):WF (x)@/ g h(r)vV-S (r)d'r.

Including the second and third terms in A(r) contribute terms of order (a/R) to the results.
Therefore, for the continuum limit, we take a/R — 0 and set h(r) = 1.
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