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Abstract
We introduce a conjecture on Virasoro constraints for the moduli space of stable sheaves on a smooth projective
surface. These generalise the Virasoro constraints on the Hilbert scheme of a surface found by Moreira and
Moreira, Oblomkov, Okounkov and Pandharipande. We verify the conjecture in many nontrivial cases by using a
combinatorial description of equivariant sheaves found by Klyachko.
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1. Introduction

The Virasoro constraints are a conjecture in Gromov–Witten theory, proposed by Eguchi, Hori and
Xiong [5] for any smooth projective complex variety Y with only (𝑝, 𝑝)-cohomology. S. Katz helped
to establish a general conjecture. We review the conjecture below. The Virasoro constraints have been
proven if Y is a toric threefold; see [8]. Recently, Moreira, Oblomkov, Okounkov and Pandharipande
[21] used the Gromov–Witten/Pandharipande–Thomas (GW/PT) correspondence [25, 28, 27, 29] to
obtain constraints on the moduli space of stable pairs of a toric 3-fold. In [21] and [20], the theory was
applied to the case where the toric 3-fold is 𝑋 × P1, for X a toric surface. In the second reference, a
cobordism argument is used to prove constraints for the Hilbert scheme of points of X for any simply
connected surface X. In this paper, we conjecture Virasoro constraints extending this result to moduli
spaces of sheaves of rank 𝑟 ≥ 1. In doing so, we address a question of R. Pandharipande, who asked in
his Hangzhou lecture on Virasoro constraints (April 2020) whether the moduli space of stable sheaves
admits such constraints.

1.1. Virasoro constraints in GW-theory

We review the Virasoro conjecture for GW-theory. For a more complete exposition, we refer to [24,
Sec. 4] or [21]. Let Y be a smooth projective complex variety. Assume for simplicity that Y has only
(𝑝, 𝑝)-cohomology. For any nonnegative numbers n, g and any 𝛽 ∈ 𝐻2(𝑌,Z), we associate to Y the
moduli space of stable maps 𝑀̄𝑔,𝑛 (𝑌, 𝛽). Recall that a stable map is a morphism 𝑓 : 𝐶 → 𝑌 , where C is
a connected genus g curve with at most nodal singularities and n marked smooth points 𝑥1, 𝑥2, . . . , 𝑥𝑛.
Furthermore, f should satisfy 𝑓∗ [𝐶] = 𝛽. Then there are canonical maps ev𝑖 : 𝑀̄𝑔,𝑛 (𝑌, 𝛽) → 𝑌 which
send a stable map (𝐶, 𝑓 ) to 𝑓 (𝑥𝑖), the image of the i-th marked point. Also, 𝑀̄𝑔,𝑛 (𝑌, 𝛽) admits n
canonical line bundles 𝑀𝑖 for 1 ≤ 𝑖 ≤ 𝑛. At the point (𝐶, 𝑓 ), 𝑀𝑖 is the cotangent bundle to C at 𝑥𝑖 . Then
we define the descendant GW-invariants as

〈𝜏𝑘1 (𝛾1)𝜏𝑘2 (𝛾2) . . . 𝜏𝑘𝑛 (𝛾𝑛)〉
𝑌
𝑔,𝛽 =

∫
[𝑀̄𝑔,𝑛 (𝑌 ,𝛽) ]vir

𝑐1 (𝑀1)
𝑘1 ev∗1(𝛾1) · · · 𝑐1 (𝑀𝑛)

𝑘𝑛 ev∗𝑛 (𝛾𝑛).

Now, fix a basis {𝛾𝑖}𝑖=1,...,𝑟 of 𝐻•(𝑌,Q), which is homogeneous with respect to the degree decomposi-
tion. Let 𝜆, q and {𝑡𝑎𝑘 }

𝑎=1,...,𝑟
𝑘=0,1,... be formal variables. Then we define the GW-partition function as

𝐹𝑌 =
∑
𝑔≥0

𝜆2𝑔−2
∑

𝛽∈𝐻2 (𝑌 ,Z)

𝑞𝛽
∑
𝑛≥0

1
𝑛!

∑
𝑎1 ,...,𝑎𝑛
𝑘1 ,...,𝑘𝑛

𝑡𝑎1
𝑘1
· · · 𝑡𝑎𝑛𝑘𝑛 〈𝜏𝑘1 (𝛾𝑎1 ) . . . 𝜏𝑘𝑛 (𝛾𝑎𝑛 )〉

𝑋
𝑔,𝛽.

Let 𝑍𝑌 = exp(𝐹𝑌 ). The Virasoro conjecture states that 𝐿GW
𝑘 (𝑍𝑌 ) = 0, where 𝐿GW

𝑘 are certain formal
differential operators defined for 𝑘 ≥ −1. We will not give the formulae for the 𝐿GW

𝑘 here; see [24, Sec.
4] for those. The operators 𝐿GW

𝑘 are called the Virasoro operators, and they satisfy the Virasoro bracket

[𝐿GW
𝑘 , 𝐿GW

𝑛 ] = (𝑛 − 𝑘)𝐿GW
𝑘+𝑛. (1)

The Virasoro conjecture expresses relations among integrals in 𝑀̄𝑔,𝑛 (𝑌, 𝛽) for various g, n and 𝛽. It
is possible to write these relations rather explicitly. Let D𝑌GW be the commutative Q-algebra generated
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by formal symbols 𝜏𝑘 (𝛾𝑖). Then one can define certain operators LGW
𝑘 on this algebra for 𝑘 ≥ −1 which

satisfy the Virasoro bracket. Then it is possible to formulate the Virasoro constraints as
〈
LGW
𝑘 (𝐷)

〉𝑌 ,•
𝛽

= 0.

This should hold for all 𝑘 ≥ −1 and 𝐷 ∈ D𝑌GW. Here, 〈−〉𝑌 ,•𝛽 denotes a certain generating series defined
for all elements ofD𝑌GW; see [21] for a definition. This formulation of the Virasoro constraints generalises
to other contexts, as we will see below.

1.2. Virasoro constraints for stable pairs

Recall that a stable pair on a smooth projective threefold Y is a map of coherent sheaves 𝑠 : O𝑌 → 𝐹 such
that F is pure of dimension 1 (i.e., every nonzero subsheaf of F has dimension 1) and dim Supp coker 𝑠 =
0. Associated to such a pair are two invariants, 𝑛 = 𝜒(𝑌, 𝐹) and 𝛽 ∈ 𝐻2 (𝑌,Z), the homology class
associated to Supp 𝐹. There is a fine projective moduli space 𝑃 = 𝑃𝑛 (𝑌, 𝛽) parametrising stable pairs
with these invariants. It carries a virtual fundamental class, and its virtual dimension is

∫
𝛽

𝑐1 (𝑋). See
[26] for more details.

The GW/PT correspondence describes a relationship between the GW- and PT-invariants of a smooth
projective threefold. The so-called stationary variant has been proven in the toric case [29]. In [21], this
correspondence has been made more explicit and it is used to derive constraints for the moduli space of
stable pairs on Y.

Define D𝑌 to be the Q-algebra generated by formal symbols ch𝑖 (𝛾), where 𝛾 ∈ 𝐻•(𝑌,Q). We
impose the relations ch𝑖 (𝛾 + 𝛾′) = ch𝑖 (𝛾) + ch𝑖 (𝛾′) and ch𝑖 (𝜆𝛾) = 𝜆 ch𝑖 (𝛾). Again, it is possible to
define operators LPT

𝑘 on this algebra. These satisfy the Virasoro bracket in a slightly weaker sense. Fix
a number n and a class 𝛽 ∈ 𝐻2(𝑌,Z). Let 𝑃 = 𝑃𝑛 (𝑌, 𝛽) be the moduli space of stable pairs. Then there
is an algebra homomorphism D𝑌 → 𝐻•(𝑃,Q) by sending ch𝑖 (𝛾) to

𝜋𝑃,∗(ch𝑖 (F −O𝑌×𝑃) · 𝜋∗
𝑌 (𝛾)).

Here, 𝜋𝑃 and 𝜋𝑌 are the projection from 𝑌 × 𝑃 to P and Y, respectively, and O𝑌×𝑃 → F is the universal
stable pair on 𝑌 × 𝑃. The Virasoro constraints obtained by [21] can now be expressed as

∫
[𝑃𝑛 (𝑌 ,𝛽) ]vir

LPT
𝑘 𝐷 = 0

for all 𝐷 ∈ D𝑌 and all 𝑘 ≥ −1. (Here, the map to the cohomology of P is left implicit.) These constraints
have been proven for Y toric, if D is contained in a certain subalgebra of D𝑌 consisting of the stationary
invariants (see [21, Thm. 4]).

Note that in contrast to the Gromov–Witten case, here we have relations between integrals on a single
moduli space. We did not write out the formula for LPT

𝑘 , but it is very similar to our Definition 1.2, and
the reader is encouraged to compare our definition with Definition 2 in [21].

1.3. Virasoro constraints for the Hilbert scheme

In [21, Sec. 6] they take 𝑌 = 𝑋 × P1, for X a toric surface. If one takes any 𝑥 ∈ 𝑋 , then the moduli space
of pairs 𝑃𝑛 (𝑋 × P1, 𝑛[{𝑥} × P1]) is canonically isomorphic to Hilb𝑛 (𝑋). The Virasoro constraints of
pairs induce constraints on Hilb𝑛 (𝑋). We have the algebra D𝑋 , which is defined in the same way as
before. We have an operator L𝑘 , which is the same as the one from Definition 1.2. We also have a ring
homomorphism D𝑋 → 𝐻•(Hilb𝑛 (𝑋),Q), which is defined by sending ch𝑖 (𝛾) to

𝜋Hilb𝑛 (𝑋 ) ,∗(− ch𝑘 (I) · 𝜋∗
𝑋 (𝛾)),
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where 𝜋Hilb𝑛 (𝑋 ) and 𝜋𝑋 are the projections from 𝑋 × Hilb𝑛 (𝑋) to Hilb𝑛 (𝑋) and X respectively, and I
is the universal ideal sheaf. Then the Virasoro constraints are∫

Hilb𝑛 (𝑋 )

L𝑘𝐷 = 0

for all 𝐷 ∈ D𝑋 and all 𝑘 ≥ −1. This was proven for all smooth projective toric surfaces X in [21,
Sec. 6]. In [20], a similar formula is proven for all simply connected smooth projective surfaces X,
using a cobordism argument. This required a modification of the operator L𝑘 because the formula of
Definition 1.2 is only correct if X has only (𝑝, 𝑝)-cohomology.

1.4. Formulation of the conjecture

We will now formulate the main conjecture of this paper. Let X be a surface1 which only has (𝑝, 𝑝)-
cohomology and fixed polarisation H. Then 𝐻•(𝑋,Q) =

⊕2
𝑖=0 𝐻2𝑖 (𝑋,Q) and we refer to the elements

of 𝐻2𝑖 (𝑋,Q) as the cohomology classes of (complex) degree i. We fix in advance integers 𝑟 > 0 and
𝑐2 and a line bundle Δ on X, and we let 𝑀 = 𝑀𝐻

𝑋 (𝑟,Δ , 𝑐2) be the moduli space of Gieseker semistable
sheaves (with respect to H) with rank r, determinant Δ and second Chern class 𝑐2.

Definition 1.1. We define D𝑋 as the commutative Q-algebra generated by symbols of the form ch𝑖 (𝛾),
where i is a nonnegative integer and 𝛾 ∈ 𝐻•(𝑋,Q). We impose the relations ch𝑖 (𝛾1 + 𝛾2) = ch𝑖 (𝛾1) +
ch𝑖 (𝛾2) and ch𝑖 (𝜆 · 𝛾) = 𝜆 · ch𝑖 (𝛾). We define a grading on D𝑋 by declaring that the degree of ch𝑖 (𝛾)
is 𝑖 + deg 𝛾 − 2.

Later, we will interpret the ch𝑖 (𝛾)’s as elements of the cohomology on M. The degree of ch𝑖 (𝛾) is
chosen so that it matches the degree of the cohomology class we will associate to it. We introduce D𝑋
because the operator L𝑘 defined below does not descend to the level of cohomology. The next definition
extends the one given in [21] and [20].2

Definition 1.2. For each 𝑘 ≥ −1, we define an operator L𝑘 on D𝑋 as 𝑅𝑘 + 𝑇𝑘 + 𝑆𝑘 , where the latter
three operators are:

◦ 𝑅𝑘 is defined by 𝑅𝑘 ch𝑖 (𝛾) =
∏𝑘

𝑗=0 (𝑖 + 𝑗 + 𝑑 − 2) ch𝑖+𝑘 (𝛾) for 𝛾 ∈ 𝐻•(𝑋,Q) of degree d. We then
define it on all of D𝑋 by requiring it to be a derivation. In particular, 𝑅−1 ch𝑖 (𝛾) = ch𝑖−1(𝛾), where
we agree that ch−1(𝛾) = 0.

◦ 𝑇𝑘 is multiplication by a fixed element of D𝑋 , namely

𝑇𝑘 = −
∑

𝑎+𝑏=𝑘+2
(−1) (𝑑

𝐿+1) (𝑑𝑅+1) (𝑎 + 𝑑𝐿 − 2)!(𝑏 + 𝑑𝑅 − 2)! ch𝑎 ch𝑏 (1) (2)

+
∑

𝑎+𝑏=𝑘

𝑎!𝑏! ch𝑎 ch𝑏
(
𝑐1 (𝑋)

2 + 𝑐2 (𝑋)

12

)
.

Here, we are using

(−1) (𝑑
𝐿+1) (𝑑𝑅+1) (𝑎 + 𝑑𝐿 − 2)!(𝑏 + 𝑑𝑅 − 2)! ch𝑎 ch𝑏 (1)

as an abbreviation for∑
𝑖

(−1) (deg(𝛾𝐿
𝑖 )+1) (deg(𝛾𝑅

𝑖 )+1) (𝑎 + deg(𝛾𝐿
𝑖 ) − 2)!(𝑏 + deg(𝛾𝑅𝑖 ) − 2)! ch𝑎 (𝛾𝐿

𝑖 ) ch𝑏 (𝛾𝑅𝑖 ),

1In this paper, this will mean a smooth projective complex variety of dimension two.
2Up to a typo in the second reference.
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where
∑
𝑖 𝛾𝐿

𝑖 ⊗ 𝛾𝑅𝑖 is the Künneth decomposition of Δ∗1 ∈ 𝐻4 (𝑋 × 𝑋,Q). In the second sum,
ch𝑎 ch𝑏

(
𝑐1 (𝑋 )2+𝑐2 (𝑋 )

12

)
is a similar abbreviation. Note that on X we have an equality

𝑐1 (𝑋 )2+𝑐2 (𝑋 )
12 = 𝜒(𝑋,O𝑋 ) · p by Hirzebruch–Riemann–Roch, where p is the point class. Finally, we

adopt the convention that factorials of negative numbers are zero.
◦ 𝑆𝑘 is defined by setting 𝑆𝑘𝐷 = (𝑘+1)!

𝑟 𝑅−1(ch𝑘+1(p)𝐷). Here, p ∈ 𝐻4(𝑋,Q) again corresponds to
the class of a point.

Note that the definition of 𝑆𝑘 depends on the rank r, but the definition of 𝑅𝑘 and 𝑇𝑘 do not. A first
thing to notice is that L𝑘 is of degree k. This is easily verified as this is true for 𝑅𝑘 , 𝑇𝑘 and 𝑆𝑘 separately.
Next, one might wonder whether some part of the operator satisfies the Virasoro bracket. This is almost
true. In section 2, we prove that 𝑅𝑘 +𝑇𝑘 satisfies the Virasoro bracket after a natural modification of the
above definition.

Next, we explain how to interpret these as cohomology classes on 𝑀 = 𝑀𝐻
𝑋 (𝑟,Δ , 𝑐2). Assume that

M is fine, that is, that there is a universal sheaf E on 𝑋 × 𝑀 . Now, consider the following cohomology
classes on 𝑋 × 𝑀:

ch𝑖
(
− E ⊗

(
det E

)−1/𝑟
)
. (3)

Of course, (det E)−1/𝑟 might not exist as a line bundle. Then the above cohomology class is still
defined as the degree i part of − ch(E) · ch(det(E))−1/𝑟 , a formal power series in the cohomology ring.
In general, the universal sheaf is not unique. It is determined up to tensoring with a line bundle pulled
back from M. However, this does not change the above classes, so these are canonically associated to M.
Lastly, the existence of a universal family is not needed to construct the above class, as we will explain
in Section 2.

This construction allows us to interpret the ch𝑖 (𝛾) as cohomology classes on M by means of a slant
product. Consider the projections 𝜋𝑋 : 𝑋 × 𝑀 → 𝑋 and 𝜋𝑀 : 𝑋 × 𝑀 → 𝑀 .

Definition 1.3. We define the geometric realisation of a formal symbol ch𝑖 (𝛾) as

ch𝑖 (𝛾) = 𝜋𝑀,∗
(
𝜋∗
𝑋𝛾 · ch𝑖 (−E ⊗ det(E)−1/𝑟 )

)
.

This gives an algebra homomorphism D𝑋 → 𝐻•(𝑀,Q).

We use the same notation for the elements ofD𝑋 and their geometric realisations. This will not cause
confusion as long as one remembers that the operators L𝑘 operate only on the formal algebra D𝑋 and
not on the cohomology of M. Also note that the geometric realisation is degree preserving.

Now, we formulate the conjecture in a fairly general setting. Recall that a virtual fundamental class
for M was constructed by T. Mochizuki [19] for the moduli space of stable sheaves.

Conjecture 1.4. Let X be a surface with only (𝑝, 𝑝)-cohomology and fixed polarisation H. Choose
numbers 𝑟 > 0 and 𝑐2 and a line bundle Δ . Let 𝑀 = 𝑀𝐻

𝑋 (𝑟,Δ , 𝑐2) be the moduli space of Gieseker
semistable sheaves of rank r, with determinant Δ and second Chern class 𝑐2. Assume that all semistable
sheaves with these invariants are stable. Then for all integers 𝑘 ≥ −1 and all 𝐷 ∈ D𝑋 we have

∫
[𝑀 ]vir

L𝑘𝐷 = 0.

In most of the evidence presented in this paper, M is smooth of the expected dimension. (However,
we have some general statements in virtual setting in Section 2.) Hence, the virtual integral simplifies to
an ordinary integral in those cases. The case where 𝑟 = 1, Δ = O𝑋 (so M is a Hilbert scheme of points)
has already been proven [20, Thm. 5] under the additional assumption that X is simply connected.

We will provide plenty additional evidence for the conjecture. For 𝑘 = −1 and 𝑘 = 0, one can verify
the conjecture directly; see Proposition 2.5. The fact that L𝑘 is of degree k will imply that the conjecture
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holds for 𝑘 > vdim 𝑀 . The remaining evidence is a collection of explicit calculations of certain moduli
spaces of sheaves on toric surfaces.

We explain what evidence we have. In the calculations, we assume that gcd(𝑟,Δ .𝐻) = 1. This implies
that the moduli space is fine and that Gieseker stability coincides with 𝜇-stability. Recall also that by the
Bogomolov inequality, for any fixed X, r and Δ , there is a minimal 𝑐2 such that M is nonempty (see [10,
Thm. 3.4.1]). In all the cases in this paper, this minimal 𝑐2 coincides with the smallest number 𝑐2 such
that the Bogomolov inequality is satisfied. From the proof, one can infer that, for this minimal 𝑐2, M
consists only of vector bundles. With this in mind, we have verified the conjecture in the following cases:

◦ 𝑋 = P2, 𝑐1 = 1, for 𝑟 = 2, 3 and 4 with the minimal 𝑐2 (which is respectively 1, 2 and 3). Note that
the choice of polarisation on X is irrelevant.3

◦ 𝑋 = P2, 𝑟 = 2, 𝑐1 = 1 and 𝑐2 = 2, 3. These calculations involve sheaves that are not locally free.
◦ 𝑋 = F𝑎, the Hirzebruch surface, with 𝑟 = 2, for any polarisation H such that 𝐻.Δ is odd, and 𝑐2

minimal.
◦ 𝑋 = F0 = P1 × P1, with 𝑟 = 2, Δ = {∗} × P1 and 𝑐2 = 2. Here, the minimal 𝑐2 is 1. Here, we have

taken H to be an arbitrary polarisation such that 𝐻.Δ is odd.

In these cases, the dimension of the moduli space ranges from 0 to 8. We verify the conjecture by
verifying it for monomials in the ch𝑖 (𝛾)’s. Thus, the number of independent checks is equal to the
number of such monomials.

Example 1.5. The innocent-looking Ldim 𝑀1 is already nontrivial. Note that 𝑅dim 𝑀1 = 0 in all cases.
Consider the case 𝑋 = P2 and 𝑟 = 4 mentioned above. In this case, dim 𝑀 = 6. Then∫

𝑀
𝑇61 = −

49, 511
4, 096

and
∫
𝑀

𝑆61 =
49, 511
4, 096

.

Hence, the conjecture holds in this case.

Example 1.6. We construct a more complicated example. Consider again 𝑋 = P2 and 𝑟 = 4, just as
before. Let 𝑘 = 2 and 𝐷 = ch2(p) · ch3(1)2. Then

∫
𝑀

𝑅2𝐷 = −
29, 715
16, 384

,

∫
𝑀

𝑇2𝐷 =
18, 825
32, 768

and
∫
𝑀

𝑆2𝐷 =
40, 605
32, 768

.

Again, these sum up to zero, as required.

See Appendix A for more explicit numbers obtained from the calculations. In total, we did 3,149
independent checks. The number of checks grows quickly with the dimension of the moduli space. The
largest dimension of M we encountered was in the case 𝑋 = P2, 𝑟 = 2 and 𝑐2 = 3. Then dim 𝑀 = 8, and
in this case we also had the most independent checks, namely 1,654.

The strategy to verify the conjecture in these explicit cases comes from toric geometry. Since X
admits a toric action, so does the moduli space M. The fixed-point locus admits an explicit combinatorial
description due to Klyachko [12], Perling [30] and Kool [15]. We review this description in Section 3.
Then we apply Atiyah–Bott localisation to evaluate the integral. In the cases we consider, the fixed-point
locus is always isolated, but the results are still interesting and nontrivial.

1.5. Possible variations of the conjecture

In Conjecture 1.4, we required that X only has (𝑝, 𝑝)-cohomology. In the Hilbert scheme case, Moreira
[20] has been able to remove this assumption at the cost of the operators 𝑅𝑘 , 𝑇𝑘 and 𝑆𝑘 becoming more
complicated. We expect that a similar modification can be made in the sheaf case, but it is unclear to
the author if exactly the same modification works.

3In the case 𝑟 = 4, there is a technical difficulty; see section 4.
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We have also assumed that all semistable sheaves with our invariants are stable. This assumption is
needed to have a virtual fundamental class on M and is thus indispensable. It is worth investigating if
there is a version of Conjecture 1.4 on a different space, such as the space of Bradlow pairs or Joyce–
Song pairs [19] [11].

2. First remarks

2.1. Eliminating fineness

The cohomology classes of (3) were constructed using a universal family of semistable sheaves on
𝑋 × 𝑀 . This universal family is not needed since we have always access to a twisted universal family
E [2]. Denote its Brauer class by 𝛼. Then E ⊗𝑟 and det E both have Brauer class 𝑟𝛼, where r is the
rank of E . In particular, E ⊗𝑟 ⊗ (det E)−1 has Brauer class 0, that is, it is an ordinary sheaf. Therefore,
we might compute the cohomology classes above by taking the Chern classes of this sheaf and then
taking the r-th root on the level of cohomology. Finally, we note that this is independent of the twisted
family chosen. Indeed, if E ′ = E ⊗ 𝐿 is another family, for L a line bundle, then E ′⊗𝑟 = 𝐿⊗𝑟 ⊗ E ⊗𝑟 and
det E ′ = 𝐿⊗𝑟 ⊗ det E , hence E ′⊗𝑟 ⊗ det(E ′)−1 � E ⊗𝑟 ⊗ (det E)−1.

2.2. The conjecture for small k

For small k, it is actually possible to verify the conjecture by providing identities for ch0(𝛾) and ch1(𝛾).
These equations are similar to Proposition 1 of Moreira [20].

Lemma 2.1. For any smooth surface X, 𝑟 > 0 and Chern classes c, we have the following identities in
the cohomology of M:

1. ch0 (𝛾) = −𝑟 ·
∫
𝑋

𝛾 ∈ 𝐻0 (𝑀,Q).
2. ch1 (𝛾) = 0.

Proof. Let 𝐼 = 𝐻≥4(𝑋 × 𝑀,Q). We can write ch(E) as 𝑟 + 𝑐1 (E) mod 𝐼. Similarly, we can write
ch(det(E)−1/𝑟 ) as 𝑒−𝑐1 (E)/𝑟 = 1 − 𝑐1 (E)/𝑟 mod 𝐼. Their product is 𝑟 mod 𝐼. We obtain that ch𝑘 (−E ⊗

det E−1/𝑟 ) is −𝑟 for 𝑘 = 0 and 0 for 𝑘 = 1. This second identity implies ch1(𝛾) = 0. The first identity
can be used to rewrite ch0(𝛾) as an integral:

ch0(𝛾) = 𝜋𝑀,∗(𝜋
∗
𝑋𝛾 · −𝑟) = −𝑟𝜋𝑀,∗𝜋

∗
𝑋𝛾 = −𝑟 ·

∫
𝑋

𝛾 ∈ 𝐻0(𝑀,Q).

�

One minor annoyance is that the algebra D𝑋 contains elements of negative degree, for example,
ch0(1) has degree −2. We will deal with these elements in the next lemma, telling us that we can
essentially ignore these.

Lemma 2.2. Let 𝛾 ∈ 𝐻•(𝑋,Q) be an element of pure degree. If deg ch𝑖 (𝛾) ≤ 0, then for all 𝐷 ∈ D𝑋

we have L𝑘 (ch𝑖 (𝛾)𝐷) = ch𝑖 (𝛾)L𝑘𝐷 in 𝐻•(𝑀,Q).

Proof. We verify this for 𝑅𝑘 , 𝑇𝑘 and 𝑆𝑘 separately. For 𝑇𝑘 it is immediate. For 𝑅𝑘 , we note that
𝑅𝑘 (ch𝑖 (𝛾)𝐷) = 𝑅𝑘 (ch𝑖 (𝛾))𝐷 + ch𝑖 (𝛾)𝑅𝑘𝐷. But note that 𝑅𝑘 (ch𝑖 (𝛾)) = 0 because either this has
negative degree or there is a zero in the product in the definition of 𝑅𝑘 . For 𝑆𝑘 , we use again that 𝑅−1 is
a derivation to see that

𝑆𝑘 (ch𝑖 (𝛾)𝐷) =
(𝑘 + 1)!

𝑟
(ch𝑘+1(p)𝐷𝑅−1 ch𝑖 (𝛾) + ch𝑖 (𝛾)𝑅−1(ch𝑘+1(p)𝐷)).

But 𝑅−1(ch𝑖 (𝛾)) has strictly negative degree, so it vanishes in the cohomology of M. �

Corollary 2.3. Conjecture 1.4 holds when 𝑘 > vdim 𝑀 .
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Proof. It suffices to check the conjectures when 𝐷 =
∏

𝑗 ch𝑖 𝑗 (𝛾 𝑗 ) where the 𝛾 𝑗 are of pure degree.
Then the degree of D is

∑
𝑗 deg ch𝑖 𝑗 (𝛾 𝑗 ). If deg 𝐷 ≥ 0, then degL𝑘𝐷 > dim 𝑀 , so the integral is zero.

If deg 𝐷 < 0, assume deg ch𝑖0 (𝛾0) < 0. By Lemma 2.2, we find that L𝑘𝐷 is a multiple of ch𝑖0 (𝛾0) = 0,
so it is zero as well. �

Corollary 2.4. We have that L𝑘 (ch1(p)𝐷) = 0 in 𝐻•(𝑀,Q) for any 𝐷 ∈ D𝑋 .

Proof. Lemma 2.1 tells us that ch1(p) = 0 in 𝐻•(𝑀,Q), hence 𝑇𝑘 (ch1 (p)) = 0. By the same lemma,

𝑅𝑘 (ch1 (p)𝐷) = 𝑅𝑘 (ch1(p))𝐷 = (𝑘 + 1)! ch𝑘+1(p)𝐷

and

𝑆𝑘 (ch1(p)𝐷) =
(𝑘 + 1)!

𝑟
𝑅−1 (ch𝑘+1(p) ch1(p)𝐷) =

(𝑘 + 1)!
𝑟

ch𝑘+1(p) ch0 (p)𝐷.

Now, ch0 (p) = −𝑟 by the other identity from Lemma 2.1. So we are done. �

Proposition 2.5. Conjecture 1.4 holds when 𝑘 = −1 or 𝑘 = 0.

Proof. For 𝑘 = −1, note that

𝑆−1𝐷 =
1
𝑟

𝑅−1 (ch0 (p)𝐷) =
1
𝑟

ch−1 (p)𝐷 +
1
𝑟

ch0 (p)𝑅−1𝐷.

In 𝐻•(𝑀,Q), we have that ch−1 (p) = 0 for degree reasons and ch0 (p) = −𝑟 by Lemma 2.1. Hence, we
get 𝑆−1 = −𝑅−1. Next, we show 𝑇−1 = 0. The second sum in equation (2) is empty. In the first sum, to
have both 𝑎 + 𝑑𝐿 − 2 and 𝑏 + 𝑑𝑅 − 2 nonnegative, we must have 𝑎 + 𝑏 − 2 = 𝑎 + 𝑏 + 𝑑𝐿 − 2+ 𝑑𝑅 − 2 ≥ 0,
but 𝑎 + 𝑏 = 1.

For 𝑘 = 0, again we assume that 𝐷 =
∏

𝑗 ch𝑖 𝑗 (𝛾 𝑗 ) with 𝛾 𝑗 of pure degree. By induction, we see that
𝑅0𝐷 = (deg 𝐷)𝐷. By using that ch0 (p) = −𝑟 and ch1 (p) = 0, we compute that 𝑆0𝐷 = −𝐷. Finally,
consider 𝑇0. In the second sum, we need to consider the Künneth decomposition of p, which is p ⊗ p.
Also, since X only has (𝑝, 𝑝)-cohomology, 𝜒(𝑋,O𝑋 ) = 1. Since 𝑎 + 𝑏 = 0 in this sum, 𝑎 = 𝑏 = 0, and
the second sum becomes ch0(p) ch0(p) = 𝑟2.

In the first sum, we have that 𝑎 + 𝑏 = 2. Since ch1 (𝛾) = 0 by Lemma 2.1, we do not need to consider
𝑎 = 𝑏 = 1. If 𝑎 = 0 and 𝑏 = 2, we must have 𝑑𝐿 = 2 and 𝑑𝑅 = 0; otherwise the factorials become
negative. So we only have to deal with the Künneth component in 𝐻4 (𝑋,Q) ⊗𝐻0 (𝑋,Q), which is p⊗ 1.
So for 𝑎 = 0 and 𝑏 = 2, we get − ch0(p) ch2(1) = 𝑟 ch2 (1). For 𝑎 = 2 and 𝑏 = 0, we get the same
result, so taking everything together we find that 𝑇0 = −2𝑟 ch2(1) + 𝑟2. Since ch2(1) is of degree zero,
we can compute it by picking a point [𝐸] ∈ 𝑀 and noticing that ch2 (1) |[𝐸 ] = ch2(−𝐸 ⊗ det 𝐸−1/𝑟 ) by
the push-pull formula. We have fixed r, det 𝐸 and 𝑐2, so we can calculate this in a similar manner to
Lemma 2.1 and obtain that

2𝑟 ch2(1) = 2𝑟 ch2 (−𝐸 ⊗ det 𝐸−1/𝑟 ) = 2𝑟
2𝑟𝑐2 − 𝑐1 (Δ)2(𝑟 − 1)

2𝑟
= vdim 𝑀 + (𝑟2 − 1)𝜒(𝑋,O𝑋 ).

Keeping in mind that 𝜒(𝑋,O𝑋 ) = 1, we find that 𝑇0 = − vdim 𝑀 − 𝑟2 + 1 + 𝑟2 = − vdim 𝑀 + 1. Finally,
𝑇0 + 𝑆0 = − vdim 𝑀 . Then we obtain

∫
[𝑀 ]vir

L0𝐷 = (deg 𝐷 − vdim 𝑀)

∫
[𝑀 ]vir

𝐷.

If the integral is nonzero, then deg 𝐷 = vdim 𝑀 , in which case the first factor vanishes. �
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2.3. The Virasoro bracket

The operators 𝐿GW
𝑘 from Gromov–Witten theory satisfy the Virasoro bracket. In our situation, there is

a Virasoro bracket as well, but it requires new notation. This notation is much more convenient than the
notation we employed before, which we only use because of its history and because the new notation
was only discovered after the rest of the paper was already written.

Definition 2.6. For 𝑖 ≥ 0 and 𝛾 ∈ 𝐻•(𝑋,Q) of pure degree, define ℎ𝑖 (𝛾) as 𝑖! ch𝑖+2−deg 𝛾 (𝛾) ∈ D𝑋.
Extend the definition to all 𝛾 by linearity. Let D𝑋+ be the subalgebra of D𝑋 generated by the ℎ𝑖 (𝛾).

Note that ℎ𝑖 (𝛾) always has degree i. The next proposition is immediate.

Proposition 2.7. The subalgebra D𝑋+ is the algebra of elements of nonnegative degree.

Definition 2.8. Fix integers r and k with 𝑘 ≥ −1. Define the operator 𝑅+
𝑘 on D𝑋+ as a derivation, which

acts as 𝑅+
𝑘 (ℎ𝑖 (𝛾)) = 𝑖ℎ𝑖+𝑘 (𝛾) on generators. For 𝛾1 and 𝛾2 of pure degree, define

𝑡𝑘 (𝛾1, 𝛾2) =
∑

𝑎+𝑏=𝑘

(−1)2−deg 𝛾1 ℎ𝑎 (𝛾1)ℎ𝑏 (𝛾2).

Extend the definition by bilinearity. Then define the operator 𝑇+
𝑘 as multiplication by the constant element

𝑇+
𝑘 =

∑
𝑖

𝑡𝑘 (𝛾
𝐿
𝑖 , 𝛾𝑅𝑖 ),

where
∑
𝑖 𝛾𝐿

𝑖 ⊗ 𝛾𝑅𝑖 = Δ∗ td𝑋 , the Künneth decomposition of the Todd class of X. Finally, let 𝑆+
𝑘 be

defined by 𝑆+
𝑘𝐷 = 1

𝑟 𝑅−1(ℎ𝑘+1(p)𝐷). Let 𝐿+
𝑘 = 𝑅+

𝑘 + 𝑇+
𝑘 and L+

𝑘 = 𝐿+
𝑘 + 𝑆𝑘 .

Note the strange sign convention in the definition of 𝑡𝑘 . One should read 2 = dim 𝑋 here so that we
have a natural candidate for a generalisation for curves or higher-dimensional X. These signs agree with
the description of the Virasoro constraints in PT-theory for threefolds; see [20].

The operators 𝑅+
𝑘 , 𝑇+

𝑘 and 𝑆+
𝑘 almost agree with their counterparts of Definition 1.2. In fact for 𝑘 ≥ 0

they agree on all elements of D𝑋+ ; see below. For 𝑘 = −1, we have 𝑇+
𝑘 = 𝑇𝑘 = 0, so they are the same

as well. Finally, 𝑅+
−1 and 𝑅−1 agree on elements of positive degree but not on elements of degree zero.

Indeed, 𝑅−1 sends elements of degree zero to elements of degree −1, while 𝑅+
−1 simply sends those to

zero.

Proposition 2.9. For 𝑘 ≥ 0, we have 𝑅+
𝑘 = 𝑅𝑘 , 𝑇+

𝑘 = 𝑇𝑘 and 𝑆+
𝑘 = 𝑆𝑘 . Furthermore, Conjecture 1.4

holds if and only if for every 𝑘 ≥ −1, 𝑟 ≥ 1, Δ a line bundle on X, 𝑐2 an integer and H a polarisation
on X such that 𝑀 = 𝑀𝐻

𝑋 (𝑟,Δ , 𝑐2) contains only stable sheaves, and D any element of D𝑋+ , we have
∫
[𝑀 ]vir

L+
𝑘𝐷 = 0. (4)

Proof. For 𝑅𝑘 = 𝑅+
𝑘 , one just has to verify it for the ℎ𝑖 (𝛾), which is immediate. We noted before that

𝑅+
−1 = 𝑅−1 for elements of positive degree, and since ℎ𝑘+1(p)𝐷 has positive degree for 𝑘 ≥ 0 and

𝐷 ∈ D𝑋+ , 𝑆𝑘 = 𝑆+
𝑘 for 𝑘 ≥ 0. The equality 𝑇𝑘 = 𝑇+

𝑘 means that these elements simply coincide. Recall
that td𝑋 = 1 +

𝑐1 (𝑋 )
2 +

𝑐1 (𝑋 )2+𝑐2 (𝑋 )
12 . The Künneth decomposition of Δ∗

𝑐1 (𝑋 )
2 is 𝑐1 (𝑋 )

2 ⊗ p + p ⊗
𝑐1 (𝑋 )

2 ,
but 𝑡𝑘

(
p, 𝑐1 (𝑋 )

2

)
= −𝑡𝑘

(
𝑐1 (𝑋 )

2 , p
)

because of the sign in the definition, so this part does not contribute.

The Künneth decompositions of Δ∗1 and Δ∗
𝑐1 (𝑋 )2+𝑐2 (𝑋 )

12 correspond to the two sums in Definition 1.2.
The only thing there is to check is that the signs in both definitions are the same, which is not difficult.

The second claim follows because we can use Lemma 2.2 to see that the conjecture is automatic if
𝐷 ∉ D𝑋+ . Thus, the second claim for 𝑘 ≥ 0 follows immediately. For 𝑘 = −1, the statement of Conjecture
1.4 is equivalent to the statement of the proposition because they are both true: For the conjecture, it
follows from Proposition 2.5, and for the proposition, it follows because L+

−1 = 0. �
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Another advantage of using the new notation is that 𝐿+
𝑘 = 𝑅+

𝑘 + 𝑇+
𝑘 satisfies the Virasoro bracket in

full generality. This is not true if we consider only 𝑅𝑘 + 𝑇𝑘 on D𝑋 . It is also not true in the stable pair
setting [21], where the bracket is only satisfied after introducing a new formal symbol and using a weaker
notion of equality of operators. Finally, note that 𝐿+

𝑘 does not depend on the rank r, only L+
𝑘 does so.

Proposition 2.10. The operator 𝐿+
𝑘 satisfies the Virasoro bracket as operators on D𝑋+ , that is,

[𝐿+
𝑘 , 𝐿+

𝑚] = (𝑚 − 𝑘)𝐿+
𝑚+𝑘 (5)

for all 𝑚, 𝑘 ≥ −1.

For the proof, we first prove two lemmas.

Lemma 2.11. The operators 𝑅+
𝑘 satisfy the Virasoro bracket: [𝑅+

𝑘 , 𝑅+
𝑚] = (𝑚−𝑘)𝑅+

𝑚+𝑘 for all 𝑘, 𝑚 ≥ −1.

Proof. The commutator [𝑅+
𝑘 , 𝑅+

𝑚] is again a derivation, and we have

𝑅+
𝑘𝑅+

𝑚ℎ𝑖 (𝛾) − 𝑅+
𝑚𝑅+

𝑘ℎ𝑖 (𝛾) = 𝑖(𝑖 + 𝑚)ℎ𝑖+𝑚+𝑘 (𝛾) − 𝑖(𝑖 + 𝑘)ℎ𝑖+𝑚+𝑘 (𝛾) = (𝑚 − 𝑘)𝑅+
𝑚+𝑘ℎ𝑖 (𝛾).

So they also agree on generators. �

Lemma 2.12. For all 𝑚, 𝑘 ≥ −1, equation (5) is equivalent to

𝑅+
𝑘 (𝑇

+
𝑚) − 𝑅+

𝑚(𝑇
+
𝑘 ) = (𝑚 − 𝑘)𝑇+

𝑚+𝑘 . (6)

Proof. Expanding 𝐿+
𝑘 = 𝑅+

𝑘 + 𝑇+
𝑘 in equation (5) gives the equation

[𝑅+
𝑘 , 𝑅+

𝑚] + [𝑅+
𝑘 , 𝑇+

𝑚] + [𝑇+
𝑘 , 𝑅+

𝑚] + [𝑇+
𝑘 , 𝑇+

𝑚] = (𝑚 − 𝑘)𝑅+
𝑚+𝑘 + (𝑚 − 𝑘)𝑇+

𝑚+𝑘 .

By Lemma 2.11 and by noting that [𝑇+
𝑘 , 𝑇+

𝑚] = 0, we get

[𝑅+
𝑘 , 𝑇+

𝑚] + [𝑇+
𝑘 , 𝑅+

𝑚] = (𝑚 − 𝑘)𝑇+
𝑚+𝑘 . (7)

Finally, note that [𝑅+
𝑘 , 𝑇+

𝑚] = 𝑅+
𝑘 (𝑇

+
𝑚) since 𝑅+

𝑘 is a derivation and 𝑇+
𝑚 is a constant as

𝑅+
𝑘 (𝑇

+
𝑚𝐷) − 𝑇+

𝑚𝑅+
𝑘 (𝐷) = 𝑅+

𝑘 (𝑇
+
𝑚)𝐷 + 𝑇+

𝑚𝑅+
𝑘 (𝐷) − 𝑇+

𝑚𝑅+
𝑘 (𝐷) = 𝑅+

𝑘 (𝑇
+
𝑚)𝐷

holds for all D. �

Proof of Proposition 2.10. We will show that the following analog of equation (6) holds for 𝛾1 and 𝛾2
of pure degree:

𝑅+
𝑘 (𝑡𝑚(𝛾1, 𝛾2)) − 𝑅+

𝑚(𝑡𝑘 (𝛾1, 𝛾2)) = (𝑚 − 𝑘)𝑡𝑚+𝑘 (𝛾1, 𝛾2).

Given the above expression of 𝑇+
𝑘 , this immediately implies equation (6) and hence completes the

proof of the proposition. Assume for simplicity that (−1)2−deg 𝛾 = 1, this does not affect the proof in
an essential way. Note that both sides of the equation are a linear combination of ℎ𝑎 (𝛾1)ℎ𝑏 (𝛾2) with
𝑎 + 𝑏 = 𝑚 + 𝑘 . We count how often each ℎ𝑎 (𝛾1)ℎ𝑏 (𝛾2) occurs on the left-hand side.

We can get terms ℎ𝑎 (𝛾1)ℎ𝑏 (𝛾2) by either applying 𝑅𝑘 to ℎ𝑎−𝑘 (𝛾1)ℎ𝑏 (𝛾2) or ℎ𝑎 (𝛾1)ℎ𝑏−𝑘 (𝛾2) or
by applying 𝑅𝑚 to ℎ𝑎−𝑚 (𝛾1)ℎ𝑏 (𝛾2) or ℎ𝑎 (𝛾1)ℎ𝑏−𝑚(𝛾2). But if 𝑏 − 𝑚 < 0, for example, we get zero
automatically for 𝑅𝑚(ℎ𝑎 (𝛾1)ℎ𝑏−𝑚(𝛾2)). Therefore, it is useful to distinguish whether a is less than,
equal to or more than k and similarly for b. For example, if 𝑎 > 𝑘 and 𝑏 > 𝑘 , then we also have 𝑎 < 𝑚
and 𝑏 < 𝑚. So in this case, only 𝑅𝑘 (ℎ𝑎−𝑘 (𝛾1)ℎ𝑏 (𝛾2)) and 𝑅𝑘 (ℎ𝑎 (𝛾1)ℎ𝑏−𝑘 (𝛾2)) will contribute. The
first contributes (𝑎 − 𝑘)ℎ𝑎 (𝛾1)ℎ𝑏 (𝛾2), and the second contributes (𝑏 − 𝑘)ℎ𝑎 (𝛾1)ℎ𝑏 (𝛾2). So the total
contribution is 𝑎 − 𝑘 + 𝑏 − 𝑘 = 𝑚 + 𝑘 − 2𝑘 = 𝑚 − 𝑘 , which is exactly the same as the coefficient on the
right-hand side. The other cases are similar. �
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Remark 2.13. There is an alternative approach to equation (6) (or rather, equation (7)). If one knows
this equation for 𝑘 = 1 and all m, one can perform an inductive argument to show that, if the equation
holds for some 𝑘 ≠ 1, then it also holds for 𝑘 + 1. Only Lemma 2.11 and the Jacobi identity are needed
for this argument. Thus, it suffices to check 𝑘 = 1, 𝑘 = −1 and 𝑘 = 2 to complete the proof.

Finally, we list some more bracket relations. First, we have

[𝐿+
𝑛, ℎ𝑘 (p)] = 𝑘ℎ𝑛+𝑘 (p).

This relation also appears in [21]. We also have the relation

[𝐿+
−1, 𝑆+

𝑘 ] = (𝑘 + 1)𝑆+
𝑘−1.

This implies that [𝐿+
−1,L+

𝑘 ] = (𝑘 + 1)L𝑘−1. In view of the above remark, one might hope that a similar
inductive argument might be used to shed light on some parts of Conjecture 1.4, but the author has not
succeeded in this.

2.4. Deformation invariance

Let S be a smooth C-scheme and consider a smooth family of surfaces X → 𝑆. Let r be a number, Δ a
line bundle on X and 𝑐2 be a cohomology class in 𝐻4(X ,Z). Then for each 𝑠 ∈ 𝑆, we can construct the
moduli space 𝑀𝑠 of stable sheaves on X𝑠 of rank r, determinant Δ |X𝑠 and second Chern class 𝑐2 |X𝑠 .

Proposition 2.14. Assume that X𝑠 has only (𝑝, 𝑝)-cohomology for each 𝑠 ∈ 𝑆. Then the set of points
𝑠 ∈ 𝑆 such that 𝑀𝑠 satisfies the Conjecture 1.4 is open and closed.

Proof. The 𝑀𝑠 are fibres of the relative moduli space of stable sheaves M → 𝑆; see [10, Sec. 4.3].
A familiy of universal sheaves exists étale locally, so again the sheaf E ⊗𝑟 ⊗ det E−1 exists on the
relative moduli space. Hence, we can also construct the classes (3). Let s be a closed point in S. By the
Ehresmann fibration theorem, analytically locally around s, the family X is diffeomorphic to a trivial
family X𝑠 × 𝑆 → 𝑆. Notably, the cohomology of the fibres is the same. So on an analytic neighbourhood
around s, we can consider the ch𝑖 (𝛾) as a family of cohomology classes on M. There exists a relative
perfect obstruction theory on M over S, which restricts to the usual obstruction theory over the fibres.
Thus, the virtual fundamental class is deformation-invariant [1, Prop. 7.2]. Hence, an integral over a
polynomial in the ch𝑖 (𝛾) is locally constant around s. This implies our result. �

3. Invariant sheaves

We introduce a combinatorial description of equivariant sheaves on toric surfaces. This description was
first found by Klyachko [12] and was later elaborated by Perling [30], who also introduced new notation.
Kool [15] proved that one can use the theory to describe the fixed point locus of the moduli space of
stable sheaves of toric varieties. Our presentation follows [14].

3.1. Generalities on smooth projective toric surfaces

We briefly recall the basic theory of toric varieties that we need. This material can be found in [7].
Assume that X is a toric surface. Associated to X is a fan Δ in N, a free abelian group of rank two. Let
𝑀 = 𝑁∨. We then have the natural pairing 〈−,−〉 : 𝑀 ⊗ 𝑁 → Z. Associated to each cone 𝜎 ∈ Δ is the
set 𝑆𝜎 = {𝑚 ∈ 𝑀 | 〈𝑚, 𝑠〉 ≥ 0 for all 𝑠 ∈ 𝜎}. Denote by C[𝑆𝜎] the ring generated by formal symbols
𝑧𝑚 for 𝑚 ∈ 𝑆𝜎 with multiplication 𝑧𝑚1 · 𝑧𝑚2 = 𝑧𝑚1+𝑚2 , and let 𝑈𝜎 be SpecC[𝑆𝜎]. If 𝜎1 ⊆ 𝜎2 is an
inclusion of cones, then we have a canonical open embedding 𝑈𝜎1 ⊆ 𝑈𝜎2 . If we glue the 𝑈𝜎 along all
possible inclusions, we recover X. Recall that the fact that X is proper is equivalent to the union of the
cones in Δ being equal to N. If this is the case, note the following: Each two-dimensional cone 𝜎 is
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bordered by two rays 𝜌1 and 𝜌2. Then X is smooth if and only if the primitive generators 𝑣1 and 𝑣2 of
𝜌1 resp. 𝜌2 form a basis of N, and this holds for each two-dimensional cone 𝜎. Finally, recall that any
smooth proper surface is projective [18, Sec. 9.3.1].

The Chow ring of a smooth toric variety can be computed as follows. Enumerate the rays in Δ as
𝜌1, 𝜌2, . . . , 𝜌𝑑 with primitive generators 𝑣1, 𝑣2, . . . , 𝑣𝑑 . For each 1 ≤ 𝑖 ≤ 𝑑, we have a generator 𝐷𝑖 .
These are subject to the following relations:

1. For each 𝑚 ∈ 𝑀 , add the relation
∑𝑑
𝑖=1〈𝑚, 𝑣𝑖〉𝐷𝑖 = 0.

2. For each subset A of {1, . . . , 𝑑} such that the 𝑣𝑖 for 𝑖 ∈ 𝐴 do not generate a cone of Δ add the relation∏
𝑖∈𝐴 𝐷𝑖 = 0.

For the first type of relation, one can restrict to a basis of M. In this language, the class of the canonical
sheaf 𝜔𝑋 is −

∑𝑑
𝑖=1 𝐷𝑖 . In particular, −𝜔𝑋 is effective.

Example 3.1. There is a natural action of G2
𝑚 on P2 given by (𝑠, 𝑡) · (𝑥 : 𝑦 : 𝑧) = (𝑠−1𝑥 : 𝑡−1𝑦 : 𝑧).

This makes P2 into a smooth toric variety. The associated fan is 𝑀 = Z2 with rays generated by (1, 0),
(0, 1) and (−1,−1). The three two–dimensional cones are generated by two of these vectors. Write
SpecC

[
𝑋
𝑍 , 𝑌𝑍

]
and so on for the usual charts; the induced action on these rings is given by the relations

(𝑠, 𝑡) · 𝑋 = 𝑠𝑋 , (𝑠, 𝑡) · 𝑌 = 𝑡𝑌 and (𝑠, 𝑡) · 𝑍 = 𝑍 .

3.2. Equivariant sheaves

The trivial cone {0} in Δ corresponds to a two-dimensional torus 𝑇 = SpecC[𝑈{0}] = SpecC[𝑀].
Then T acts on itself via left multiplication, and this action can always be uniquely extended to X. The
𝑈𝜎 are preserved under the action. We are interested in coherent sheaves which are equivariant under
this action. We recall the definition.

Definition 3.2. Let G be a group scheme and X a G-scheme (e.g., X is toric and G is the corresponding
torus). Denote by 𝜇 : 𝐺 ×𝐺 → 𝐺 the multiplication and by 𝜎 : 𝐺 × 𝑋 → 𝑋 the action. An equivariant
structure on a sheaf F is an isomorphism

𝜙 : 𝜎∗𝐹 → 𝜋∗
𝑋𝐹

of sheaves on 𝐺×𝑋 such that the cocycle condition holds on 𝐺×𝐺×𝑋: 𝜋∗
23𝜙◦(id𝐺 ×𝜎)∗𝜙 = (𝜇×id𝑋 )∗𝜙,

where 𝜋23 is the projection to the second and third factor.

If X and G are affine, then an equivariant sheaf F is just a module over Γ(𝑋,O𝑋 ) together with a
coaction of the coalgebra Γ(𝐺,O𝐺). In particular, if X is a toric variety and 𝐺 = 𝑇 , the corresponding
torus, we can describe an equivariant sheaf by specifying for each 𝜎 a module over Γ(𝑈𝜎 ,O𝑋 ) with a
Γ(𝑇,O𝑇 )-action such that for 𝜎1 and 𝜎2, the modules and their actions agree on the overlap 𝑈𝜎1∩𝜎2 .
Clearly, if a sheaf has an equivariant structure, then it has several by multiplying with a character of T.

We can exploit the affine cover 𝑈𝜎 of X to find a combinatorial description of equivariant sheaves. We
will use this description to find all equivariant sheaves with certain numerical invariants. We introduce
the following combinatorial data due to Perling [30]:

Definition 3.3. Let 𝜎 ⊆ Δ be a maximal cone. A 𝜎-family is an M-graded vector space {𝐹𝑚}𝑚∈𝑀

together with a morphism 𝜒𝑠 : 𝐹• → 𝐹•+𝑠 for each 𝑠 ∈ 𝑆𝜎 such that 𝜒𝑠1+𝑠2 = 𝜒𝑠1 ◦ 𝜒𝑠2 and 𝜒0 = id.
A 𝜎-family is called finite if there are a finite number of homogeneous generators, that is, there are
finitely many 𝑓𝑖 ∈ 𝐹𝑚𝑖 such that F contains no proper sub-𝜎-family containing all 𝑓𝑖 .

An equivariant sheaf F on an affine toric variety 𝑈𝜎 gives rise to a 𝜎-family 𝐹̂ as follows. First,
we identify F with the C[𝑆𝜎]-module 𝐻0(𝑈𝜎 , 𝐹). Then the affine group 𝑇 = SpecC[𝑀] acts on F,
and since every action of a torus is diagonisable, F decomposes into weight spaces as 𝐹 =

⊕
𝑚∈𝑀 𝐹̂𝑚.

Multiplication by 𝑧𝑠 ∈ C[𝑆𝜎] induces a map 𝐹̂𝑚 → 𝐹̂𝑚+𝑠 . It is not difficult to see that this assign-
ment extends to an equivalence of categories between equivariant coherent sheaves on 𝑈𝜎 and finite
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𝜎-families. In the following, the notation 𝐹̂ will always mean the 𝜎-family associated to a coherent
sheaf F.

Let 𝜎 be a two-dimensional cone. For the smooth affine 𝑈𝜎; there is a more concrete description of
𝑆𝜎 , and hence of the 𝜎-families. Let 𝑣1 and 𝑣2 generate the two boundary rays of 𝜎, then by smoothness
this is a basis of N. Hence, we obtain a dual basis 𝑤1, 𝑤2 for M and 𝑆𝜎 is exactly the set of positive
linear combinations of the 𝑤𝑖 . This implies that C[𝑆𝜎] � C[𝑧𝑤1 , 𝑧𝑤2], the usual polynomial ring in two
variables. Let 𝐹̂ be a 𝜎-family. Define 𝐹̂ (𝑛1, 𝑛2) as 𝐹̂𝑛1𝑤1+𝑛2𝑤2 for integers 𝑛1, 𝑛2. Note we have maps

𝐹̂ (𝑛1, 𝑛2) → 𝐹̂ (𝑛1 + 1, 𝑛2) and 𝐹̂ (𝑛1, 𝑛2) → 𝐹̂ (𝑛1, 𝑛2 + 1) (8)

by multiplication with 𝑧𝑤1 and 𝑧𝑤2 , respectively. The 𝐹̂ (𝑛1, 𝑛2) together with these two maps completely
determine 𝐹̂. In fact, we obtain again an equivalence of categories between 𝜎-families 𝐹̂ and families
𝐹̂ (𝑛1, 𝑛2) with maps as in equation (8) which make all the squares commute. It is convenient to picture
a lattice Z2 with 𝐹̂ (𝑛1, 𝑛2) sitting at the point (𝑛1, 𝑛2), with horizontal maps going to the right and
vertical maps going upwards.

We will now explain how these 𝜎-families glue to produce equivariant coherent sheaves on X. This is
easier to describe in the case of a torsion-free sheaf. Since this is the only case we will need, we assume
that all our equivariant sheaves are torsion-free from now on. We have the following characterisation in
terms of 𝜎-families.

Lemma 3.4 [30, Prop. 5.13]. Let F be an equivariant coherent sheaf on 𝑈𝜎 . Then F is torsion-free if
and only if all 𝜒𝑠 are injective, if and only if all the maps of equation (8) are injective. As a consequence,
the category of torsion-free equivariant sheaves on 𝑈𝜎 is equivalent to the category of finite 𝜎-families
with the additional assumption that the maps 𝐹̂𝑚 → 𝐹̂𝑚+𝑠 are inclusions.

The 𝜎-family 𝐹̂ of an equivariant coherent sheaf F on 𝑈𝜎 is finitely generated. Hence, for large 𝑛1,
𝑛2, the inclusions of equation (8) are actually identities. Assume without loss of generality that this
limiting space is C𝑟 . Then r is the rank of F. Furthermore, for each fixed 𝑛1, we can produce a filtration
of C𝑛. Indeed, since the 𝜎-family is finite, the space 𝐹̂ (𝑛1, 𝑛2) is constant for sufficiently large 𝑛2.
Denote this space by 𝐹̂ (𝑛1,∞). Varying 𝑛1 gives us sequence of inclusions

. . . ⊆ 𝐹̂ (𝑛 − 1,∞) ⊆ 𝐹̂ (𝑛,∞), ⊆ 𝐹̂ + 1,∞) ⊆ . . . (9)

This sequence is easily seen to be a finite full flag, defined below.

Definition 3.5. A finite full flag of a vector space V is a sequence of vector spaces 𝑉𝜆, with 𝜆 ∈ Z such
that 𝑉𝜆 ⊆ 𝑉𝜆+1, and 𝑉𝜆 = 𝑉 for sufficiently large 𝜆 and 𝑉𝜆 = 0 for sufficiently small 𝜆. We call 𝑉𝜆 the
space of weight𝜆 of the flag.

The next theorem is Klyachko’s description of equivariant torsion-free sheaves. See also [30, Sec.
5.4] for this and a more general theorem.

Theorem 3.6. Let X be a smooth projective toric surface with fan Δ . Suppose that we have a finite
𝜎-family 𝐹̂𝜎 for each two-dimensional 𝜎 ∈ Δ where all maps are inclusions and with limiting space
C𝑟 . Then the 𝐹𝜎 glue to an equivariant coherent sheaf on X if and only if condition (★) holds for each
two-dimensional 𝜎1 and 𝜎2 that share a boundary ray with primitive generator v.

(★) Let (𝑣1, 𝑤1) and (𝑣2, 𝑤2) be the (ordered) bases of M associated to 𝜎1 and 𝜎2 as above, where
𝑣1(𝑣) = 𝑣2 (𝑣) = 1 and 𝑤1 (𝑣) = 𝑤2 (𝑣) = 0. Then the full finite flags of C𝑟 given by 𝐹𝜎1 (𝑛,∞) and
𝐹𝜎2 (𝑛,∞) are equal.

Furthermore, this gives an equivalence of categories between equivariant torsion-free coherent
sheaves on X and collections of finite 𝜎-families 𝐹̂𝜎 with all 𝜒𝑠 injective satisfying (★).

Now, we can translate properties of ordinary sheaves into the language of these 𝜎-families. Recall that
a sheaf F is reflexive if the canonical map 𝐹 → 𝐹∨∨ of F into its double dual is an isomorphism. Every
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reflexive sheaf is torsion-free. On the other hand, using results from [10, Sec. 1.1], if F is torsion-free,
then the map 𝐹 → 𝐹∨∨ is injective and the quotient is zero-dimensional. Furthermore, it follows from
[10, Sec. 1.1] that a coherent sheaf on a surface is reflexive if and only if it is locally free. Therefore,
we state the following characterisation of equivariant reflexive sheaves on surfaces, which generalises
to higher-dimensional smooth toric varieties.

Proposition 3.7 ([30, Sec. 5.5]). Let X be a smooth projective toric surface, and let F be a torsion-free
equivariant sheaf on X. Then F is reflexive if and only if for each two-dimensional cone 𝜎 we have
𝐹̂𝜎 (𝑛1, 𝑛2) = 𝐹̂𝜎 (𝑛1,∞) ∩ 𝐹̂𝜎 (∞, 𝑛2), where 𝐹̂𝜎 is the 𝜎-family on 𝑈𝜎 associated to F.

In general, we only have the inclusion 𝐹̂𝜎 (𝑛1, 𝑛2) ⊆ 𝐹̂𝜎 (𝑛1,∞) ∩ 𝐹̂𝜎 (∞, 𝑛2). Since we are dealing
with finite 𝜎-families, we also know that equality fails only in a finite number of cases. This gives an
easy description of 𝐹∨∨: We simply define 𝐹̂∨∨(𝑛1, 𝑛2) to be 𝐹̂ (𝑛1,∞) ∩ 𝐹̂ (∞, 𝑛2). Then indeed 𝐹∨∨

is reflexive by Proposition 3.7, and there is a natural inclusion 𝐹 → 𝐹∨∨ with a cokernel that is finite-
dimensional as a vector space (implying that it is supported in dimension zero (see [15, Prop. 2.8])).

As a corollary of the proposition, an equivariant vector bundle on X of rank n is completely determined
by a finite complete flag for each ray of the fan Δ associated to X. An equivariant line bundle has an
even easier description as a finite complete flag of C can be described by giving a number m: The flag
is then given by 𝑉𝜆 = 0 if 𝜆 < 𝑚 and 𝑉𝜆 = C if 𝜆 ≥ 𝑚. Thus, to describe an equivariant line bundle, one
needs to give an integer for each ray.

Example 3.8. The tangent bundle on P2 has a canonical equivariant structure. On the affine chart
SpecC[ 𝑋𝑍 , 𝑌𝑍 ], the tangent sheaf is generated by 𝜕

𝜕𝑋/𝑍 and 𝜕
𝜕𝑌 /𝑍 . The action of (𝑠, 𝑡) on these generators

is given by 𝑠−1 and 𝑡−1 respectively. Hence, the 𝜎-family on this cart can be pictured as follows. We
have the Z2-grid. The point with coordinates (𝑚, 𝑛) corresponds to the eigenspace of 𝑠𝑚𝑡𝑛. The vectors

𝜕
𝜕𝑋/𝑍 and 𝜕

𝜕𝑌 /𝑍 generate the weight spaces of weight 𝑠−1 and 𝑡−1 respectively. There are no nontrivial
relations, so if 𝑚, 𝑛 are nonnegative we get the space C 𝜕

𝜕𝑋/𝑍 ⊕ C 𝜕
𝜕𝑌 /𝑍 � C

2, and on the nodes (−1, 𝑛)

and (𝑚,−1) with m and n nonnegative we get C 𝜕
𝜕𝑋/𝑍 and C 𝜕

𝜕𝑌 /𝑍 respectively. One of the limiting flags
is . . . ⊆ 0 ⊆ C 𝜕

𝜕𝑋/𝑍 ⊆ C2 ⊆ . . .. One can similarly calculate the other flag and also do this for the other
charts. The result is always the same: a flag . . . ⊆ 0 ⊆ C ⊆ C2 ⊆ . . ., where C has weight −1.

We view the entire tangent bundle as a picture of a triangle with three ‘strips’; see Figure 1. The
corners of the triangle represent the three charts of P2. The center triangle corresponds to the part where
the weight spaces have dimension 2. The strips correspond to the part where they have dimension 1.
The case described above looked exactly like such a corner: There is an area, bounded on two sides,
where the weight space has dimension 2. Furthermore, there were two strips where they have dimension
1. One can also see that they satisfy condition (★), which is represented by the dotted lines.

3.3. Chern classes of equivariant sheaves

Using the simple description of equivariant line bundles above it is easy to describe their classes in
the Chow ring. This will allow us to compute the Chern characters of arbitrary equivariant torsion-free
sheaves.

Lemma 3.9. Let X be a smooth projective toric variety. Suppose there are d rays on X, with associated
divisor 𝐷𝑖 ∈ 𝐴1(𝑋), for 1 ≤ 𝑖 ≤ 𝑑. Let the equivariant line bundle be given by the integer 𝑚𝑖 on the
i-th ray, as above. Then 𝑐1 (𝐿) = −

∑
𝑚𝑖𝐷𝑖 .

Proof. In case one, 𝑚𝑖 equals one and the rest is zero, then it is easy to convince oneself that the line
bundle described by these data is exactly the ideal sheaf O(𝐷); hence, the equality is immediate. For
general 𝑚𝑖 , the result can be deduced by tensoring (duals of) such line bundles. �

This lemma will allow us to compute all Chern characters of all equivariant sheaves encountered
in this paper as it is generally very easy to find a resolution of an equivariant sheaf. The pictorial
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Figure 1. The tangent bundle on P2.

representation of the 𝜎-families is very helpful here. Below, we only work out a specific example, but
it is easy to see how to construct more general resolutions in a similar manner. The abstract theory also
ensures resolutions always exist; see [3]. Sometimes, it is also possible to construct such resolutions
explicitly; see [30, Thm. 6.1].

Example 3.10. Consider again the tangent bundle on P2 with its charts 𝑈𝜎1 , 𝑈𝜎2 and 𝑈𝜎3 . With Figure 1
in mind, it is easy to construct a resolution. Let 𝐿1, 𝐿2 and 𝐿3 be the line bundles which are defined
as taking the centre triangle in Figure 1 plus one of the strips. Furthermore, let 𝐿0 be the line bundle
defined by taking the centre triangle. There is a map 𝐿1 ⊕ 𝐿2 ⊕ 𝐿3 → 𝑇P2 given by the inclusions. Its
kernel is 𝐿0. It is easy to convince oneself of this by ‘cutting and pasting’ parts of the triangle diagram.
If we forget the equivariant structure, 𝐿1 � 𝐿2 � 𝐿3 � O(1) and 𝐿0 � OP2 , and the resolution we
just constructed is the familiar Euler sequence. In fact, 𝐿0 is OP2 with the trivial equivariant structure.
Consider the three equivariant subsets 𝑍 (𝑥𝑖) ⊆ P

2. Then the 𝐿𝑖 are isomorphic to the duals of the ideal
sheaves defining these (in an equivariant way).

3.4. Stability of equivariant bundles

Let X be a smooth toric variety with fixed polarisation H. We will give a criterion for an equivariant
vector bundle E to be 𝜇-stable on X. Note that, in general, one is interested in Gieseker semistable
sheaves since this notion of stability gives the correct moduli space. We will only apply this criterion
in situations where 𝜇-stability and Gieseker stability coincide so that the criterion below is actually a
criterion for Gieseker stability. We first introduce some notation.

Fix a toric variety X with polarisation H, and let E be an equivariant vector bundle of rank r over X.
For each ray of Δ , the fan of X, we have a finite full flag (9). Recall that d is the number of rays of Δ , and
let us denote for each 1 ≤ 𝑖 ≤ 𝑑 the flag associated to the i-th ray by 𝐸̂ 𝑖 (𝜆). For 1 ≤ 𝑗 ≤ 𝑟 − 1, we let
𝛿𝑖𝑗 be the number of spaces of dimension j in the flag 𝐸̂ 𝑖 (which is always a finite number). If 𝑊 ⊆ C𝑟

is any subspace, denote by 𝑤𝑖
𝑗 the dimension of the intersection of W with some 𝐸̂ 𝑖 (𝜆) of dimension j.

This does not depend on the choice of 𝜆, and if no such 𝜆 exists, the number 𝑤𝑖
𝑗 will not be important

and can have arbitrary value. Finally, to each ray i corresponds a divisor 𝐷𝑖 . We define deg 𝐷𝑖 as 𝐻.𝐷𝑖 .
The next criterion is established in the course of the proof of Theorem 3.20 (for 𝜇-semistability) and

in Proposition 4.13 (for 𝜇-stability) in [15].
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Proposition 3.11. An equivariant vector bundle E of rank r is 𝜇-stable if and only if for each nontrivial
subspace 0 � 𝑊 � C𝑟 the following inequality holds:

1
dim 𝑊

𝑑∑
𝑖=1

𝑟−1∑
𝑗=1

𝛿𝑖𝑗 · deg 𝐷𝑖 · 𝑤𝑖
𝑗 <

1
𝑟

𝑑∑
𝑖=1

𝑟−1∑
𝑗=1

𝛿𝑖𝑗 · deg 𝐷𝑖 · 𝑗 .

For 𝜇-semistability, replace < by ≤ in the above inequality.

Remark 3.12. If X is a surface, the criterion holds for arbitrary equivariant torsion-free sheaves, instead
of just vector bundles. This can be seen as follows. A sheaf E is 𝜇-stable if and only if 𝐸∨∨ is. The latter
sheaf is locally free, so the above criterion applies. But the criterion only depends on the limiting flags
of 𝐸∨∨, which are the same as the limiting flags of E.

Example 3.13. The tangent bundle on projective space P2 is stable. For a sheaf of rank 2, we only
have to deal with 𝛿1 = 𝛿1

1, 𝛿2 = 𝛿2
1 and 𝛿3 = 𝛿3

1. We see from the example above that in this case all
three numbers are equal to one. The stability inequalities from Proposition 3.11 translate to the triangle
inequalities: 𝛿1 < 𝛿2 + 𝛿3, 𝛿2 < 𝛿3 + 𝛿1 and 𝛿3 < 𝛿1 + 𝛿2. These are satisfied, so the bundle is stable.

3.5. Equivariant K-theory

In this paragraph, we describe a localisation formula for K-theory. Let X be a smooth projective variety
on which a torus T acts. Let 𝑋𝑇 be the fixed point locus with inclusion 𝜄 : 𝑋𝑇 → 𝑋 . Then 𝑋𝑇 is smooth
as well. Let N be the normal bundle of 𝑋𝑇 in X. Denote by 𝐾0

𝑇 (𝑋) and 𝐾0
𝑇 (𝑋

𝑇 ) their equivariant K-
theories. Then there is a localisation theorem, which was first proven in [33]. The following formulation
can be found in [23, Sec. 2.3].

Theorem 3.14. There exists finitely many characters 𝜇𝑖 of T such that the pushforward map 𝜄∗ :
𝐾0
𝑇 (𝑋

𝑇 ) → 𝐾0
𝑇 (𝑋) becomes an isomorphism after localising at 1 − 𝜇𝑖 for all i. Furthermore, in this

case the class
∧• 𝑁∨ ∈ 𝐾0

𝑇 (𝑋
𝑇 ) becomes invertible and we have that

𝐹 = 𝜄∗

(
𝜄∗𝐹∧• 𝑁∨

)

for all F in the localised equivariant K-theory of X.

If X is a toric variety, then 𝑋𝑇 is a disjoint union of reduced points, one for each two-dimensional
cone in the fan of X. The K-theory of a point is the ring of representations. When X is two-dimensional
and 𝑇 = G2

𝑚, this ring is Z[𝑠, 𝑡]. Hence, 𝐾0
𝑇 (𝑋

𝑇 ) =
∏

𝑝∈𝑋𝑇 Z[𝑠, 𝑡].
In this case, Theorem 3.14 takes the following form. Since 𝑋𝑇 is zero-dimensional, 𝑁 = 𝑇𝑋 |𝑋𝑇 . For

each point 𝑝 ∈ 𝑋𝑇 , we have that
∧• 𝑁∨|{𝑝} =

∧• Ω𝑋 |{𝑝}. If we write Ω𝑋 |{𝑝} = 𝜒𝑝,1 + 𝜒𝑝,2 in the
representation ring, then

∧• Ω𝑋 |{𝑝} = (1 − 𝜒𝑝,1) (1 − 𝜒𝑝,2).
We will be interested in computing the Euler characteristic of a sheaf using localisation. For this, we

push the equality of Theorem 3.14 to a point, which gives us:

𝜒(𝑋, 𝐹) =
∑
𝑝∈𝑋𝑇

𝐹 |{𝑝}

(1 − 𝜒𝑝,1) (1 − 𝜒𝑝,2)
. (10)

3.6. Equivariant cohomology

Here, we recall Atiyah–Bott localisation, which we use to evaluate integrals on the moduli space M.
The theory is similar to the equivariant K-theory described above. Let X be a smooth projective variety
on which a torus T acts. Again, this implies that the fixed point locus 𝑋𝑇 is smooth. Let 𝜄 : 𝑋𝑇 → 𝑋
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be the inclusion and N be the normal bundle. We have equivariant cohomology groups 𝐻•
𝑇 (𝑋,Q) and

𝐻•
𝑇 (𝑋

𝑇 ,Q). Then we have the following theorem:

Theorem 3.15 [4, Thm. 2]. For any equivariant cohomology class 𝛼 ∈ 𝐻•
𝑇 (𝑋,Q), we have the equality

∫
𝑋

𝛼 =
∫
𝑋𝑇

𝜄∗𝛼

𝑒(𝑁)
.

Here, 𝑒(𝑁) denotes the Euler class of the normal sheaf N. This equality holds after inverting all
characters of positive degree.

In the cases where we apply this theorem, 𝑋𝑇 is isolated. Then we have that 𝑁 = 𝑇𝑋 |𝑋𝑇 . Then the
integral to the right becomes a finite sum, which is easier to evaluate.

This theorem can also be used to compute nonequivariant integrals. For this, we use that there is a
forgetful map 𝐻•

𝑇 (𝑋,Q) → 𝐻•(𝑋,Q). To compute the integral of a cohomology class 𝛼 in 𝐻•(𝑋,Q), if
we have a lift 𝛼′ ∈ 𝐻•

𝑇 (𝑋,Q), then we can use Theorem 3.15 to evaluate the integral
∫
𝑋

𝛼′ ∈ 𝐻•
𝑇 ({∗},Q).

One can then apply the forgetful map to obtain the integral of 𝛼.

4. Verification of the conjecture in special cases

Here, we describe how to check Conjecture 1.4 on a specific smooth projective toric surface X with
a polarisation H in special cases. Fix a rank r and a Chern class 𝑐 = 1 + 𝑐1 + 𝑐2. For X toric, this
determines the determinant. Let 𝑀 = 𝑀𝐻

𝑋 (𝑟, 𝑐1, 𝑐2) be the moduli space, as before. We assume that
gcd(𝑟, ch1 ·𝐻) = 1. This ensures that M is fine and that Gieseker semistability, Gieseker stability and
𝜇-stability all coincide.

Lemma 4.1. With these assumptions, Ext2 (𝐸, 𝐸) = 0 for any stable sheaf. Hence, M is smooth of the
expected dimension.

Proof. By Serre duality, Ext2(𝐸, 𝐸) = Hom(𝐸, 𝐸 ⊗ 𝜔𝑋 )
∨. Since 𝜔𝑋 is antieffective for X toric,

deg(𝜔𝑋 ) = 𝐻.𝜔𝑋 < 0. Then 𝜇(𝜔𝑋 ) = deg(𝜔𝑋 ) < 0, so 𝜇(𝐸 ⊗ 𝜔𝑋 ) = 𝜇(𝐸) + 𝜇(𝜔𝑋 ) < 𝜇(𝐸). Also,
𝐸 ⊗ 𝜔𝑋 is still 𝜇-stable. By Schur’s lemma for 𝜇-stable sheaves, the only morphism 𝐸 → 𝐸 ⊗ 𝜔𝑋 is
the zero morphism. �

Denote the torus of X by T. The action of T lifts to M; see [15]. On the level of points, the action
of 𝑡 ∈ 𝑇 sends [𝐸] ∈ 𝑀 to [𝜆∗

𝑡 𝐸], where 𝜆𝑡 : 𝑋 → 𝑋 is the multiplication by t. In order to evaluate
the integral of the conjecture, we use localisation, Theorem 3.15. Therefore, we need to know the fixed
point locus 𝑀𝑇 . This locus consists of the stable sheaves in M admitting an equivariant structure; see
[15]. In the cases we consider, 𝑀𝑇 is isolated, so the formula of Theorem 3.15 becomes much easier.
For now, we assume that we have an explicit description of all the sheaves in 𝑀𝑇 ; later we will address
the problem of finding all such sheaves, which is a difficult problem in general.

The (twisted) universal sheaf E on M becomes equivariant for the action of T described above.
This ensures that the classes (3) admit lifts in equivariant cohomology. Also, for any toric variety X,
𝐻•(𝑋,Q) � 𝐴•(𝑋,Q) by [7, Sec. 5.2], and the latter is generated by classes of invariant subschemes
(see the description in Section 3). Therefore, all cohomology classes of X also admit equivariant lifts.
We conclude that all the classes ch𝑖 (𝛾) admit equivariant lifts. Thus, we can indeed apply Theorem 3.15
(see the remarks after the theorem).

4.1. The computation

We will explain how to evaluate the equivariant integral
∫
𝑀

𝑃, where P is any polynomial in the ch𝑖 (𝛾),
for 𝛾 an equivariant cohomology class on X. One can set 𝑃 = L𝑘𝐷 to verify the conjecture. In particular,
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we will see that the only input we need is 𝑇𝑋,𝑝 for 𝑝 ∈ 𝑋𝑇 as two-dimensional representation of T and
E𝑝,𝑞 , the equivariant K-theory class of the equivariant4 sheaf E𝑞 corresponding to 𝑞 ∈ 𝑀𝑇 at 𝑝 ∈ 𝑋𝑇 .
This is a finite amount of discrete data. The author has used the freely available computer algebra system
SageMath [32] to run the computation. The code is available on his website.

First, we compute ch𝑖 (𝛾) for any i and 𝛾 as elements of 𝐻•
𝑇 (𝑀

𝑇 ,Q). Since 𝑋𝑇 × 𝑀𝑇 is zero-
dimensional, the map ch : 𝐾𝑇 (𝑋

𝑇 × 𝑀𝑇 ) → 𝐻•
𝑇 (𝑋

𝑇 × 𝑀𝑇 ,Q) is an isomorphism, so the component
of ch(E) at the point (𝑝, 𝑞) ∈ 𝑋𝑇 × 𝑀𝑇 is simply E𝑝,𝑞 . We can then compute the classes (3) by using
a formal power series as mentioned in the introduction. Since M is smooth of the expected dimension
𝑑 = 2𝑟𝑐2 − (𝑟 − 1)𝑐2

1 − (𝑟2 − 1)𝜒(𝑋,O𝑋 ), we can safely ignore the terms in the power series of degree
higher than 2𝑑, so this becomes a finite sum. Now, given 𝛾 with component 𝛾𝑝 at 𝑝 ∈ 𝑋𝑇 , localisation
allows us to compute:

ch𝑖 (𝛾)𝑞 =
∑
𝑝∈𝑋𝑇

𝛾𝑝 · ch𝑖
(
− E𝑝,𝑞 ⊗ det(E𝑝,𝑞)−1/𝑟

)

e(𝑇𝑋,𝑝)
.

This allows us to compute any polynomial in the ch𝑖 (𝛾), simply by addition and multiplication. If
such a polynomial has component 𝑃𝑞 at 𝑞 ∈ 𝑀𝑇 , localisation tells us that we want to consider

∫
𝑀

𝑃 =
∑

𝑞∈𝑀𝑇

𝑃𝑞

e(𝑇𝑀,𝑞)
.

This reduces the problem to computing 𝑇𝑀,𝑞 as representation of T. It is well known that 𝑇𝑀,𝑞 �
Ext1(𝐸𝑞 , 𝐸𝑞)0, the trace-free Ext-group, and this isomorphism respects the T-structure. The codomain
of the trace map is 𝐻1(𝑋,O𝑋 ), which is zero for a toric surface. Hence, we find Ext1(𝐸𝑞 , 𝐸𝑞)0 =
Ext1(𝐸𝑞 , 𝐸𝑞). Since Ext0(𝐸𝑞 , 𝐸𝑞) = 1 (as representation) and Ext2(𝐸𝑞 , 𝐸𝑞) = 0 by Lemma 4.1,
Ext1(𝐸𝑞 , 𝐸𝑞) = 1 − 𝜒(𝐸𝑞 , 𝐸𝑞) as elements of the representation ring. The Euler class is a K-theoretic
invariant, which can be computed by the K-theoretic localisation formula (10). This gives us

𝜒(𝐸𝑞 , 𝐸𝑞) =
∑
𝑝∈𝑋𝑇

E𝑝,𝑞 ⊗ E∨
𝑝,𝑞

(1 − 𝜒𝑝,1) (1 − 𝜒𝑝,2)
,

where 𝜒1
𝑝 and 𝜒2

𝑝 are as in equation (10). This completes the calculation. It is evident from the
computation that this can be done by a computer, given the data specified before.

Example 4.2. Recall that on 𝑋 = F0 = P1 × P1, we have that 𝐻2 (𝑋,Q) is generated by F, Z, where F
is a fibre of the projection 𝜋2 : P1 × P1 → P1 and Z is the image of a section of 𝜋2. The fan of X has
four cones of dimension two, which are each given by a quadrant of Z2. We number the associated fixed
points by letting 𝑋1 be the fixed point corresponding to the upper-right quadrant and then proceeding
clockwise to define 𝑋2, 𝑋3 and 𝑋4. Then the tangent spaces at these points have representations 𝑠−1+ 𝑡−1,
𝑠−1+ 𝑡, 𝑠+ 𝑡 and 𝑠+ 𝑡−1 respectively, where Z[𝑠, 𝑡] is the representation ring of the two-dimensional torus.

Consider the case where 𝑟 = 2, Δ = 𝐹 + 𝑍 , 𝑐2 = 2 and with polarisation 𝐻 = 2𝐹 + 5𝑍 . Then the
fixed point locus consists of four equivariant sheaves. In Table 1, we put what the representation of such
a sheaf F is when restricted to a fixed point 𝑋𝑖 .

Of course, one has to make a choice of equivariant structure. We explain a way of doing so when
explaining how to find all vector bundles.

As the reader can see, all the elements in the table are honest representations, no minuses occur. This
is a sign that all of the sheaves are vector bundles, which is indeed the case. Using K-theoretic localisation

4The choice of equivariant structure does not matter for the computation.
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Table 1. Equivariant data of some sheaves on F0..

𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3 𝐹 |𝑋4

1 + 𝑠−1𝑡 𝑡2 + 𝑠−1 𝑡2 + 1 𝑡 + 1
𝑡 + 𝑡−1 𝑡 + 1 𝑠 + 𝑡 𝑠𝑡 + 𝑡−1

𝑡 + 1 𝑡2 + 1 𝑡2 + 𝑠 𝑠𝑡 + 1
𝑠−1𝑡 + 𝑡−1 𝑡 + 𝑠−1 𝑡 + 1 𝑡 + 𝑡−1

(10), we can compute that the tangent spaces to M at these sheaves are respectively 𝑡−1 + 𝑠−1 + 𝑠−1𝑡−1,
𝑠𝑡 + 𝑠+ 𝑡, 𝑠+ 𝑠𝑡−1 + 𝑡−1 and 𝑡 + 𝑡𝑠−1 + 𝑠−1. Their Euler classes are therefore −𝑠2𝑡 − 𝑠𝑡2, 𝑠2𝑡 + 𝑠𝑡2, −𝑠2𝑡 + 𝑠𝑡2

and 𝑠2𝑡 − 𝑠𝑡2.

4.2. Verifying the conjecture

Next, we explain how to verify the conjecture given the algorithm above and the data E𝑝,𝑞 and 𝑇𝑋,𝑝 .
Fix a basis 𝛾𝑘 of 𝐻•(𝑋,Q), where each 𝛾𝑘 is of pure degree. It suffices to verify the conjecture for
𝐷 =

∏
𝑗 ch𝑖 𝑗 (𝛾𝑘 𝑗 ) a monomial, where each ch𝑖 𝑗 (𝛾𝑘 𝑗 ) has positive degree. Indeed, if one of the ch𝑖 𝑗 (𝛾𝑘 𝑗 )

has nonnegative degree we can pull them out of L𝑘 by Lemma 2.2. Hence, we can restrict to this case.
But there are essentially a finite amount of such D since the conjecture is also automatic if deg 𝐷 >

dim 𝑀 by Corollary 2.3. But one can generate a list of all D with a fixed degree. Hence, we should, for
each k, generate a list of all D with degree dim 𝑀 − 𝑘 and check the conjecture for L𝑘𝐷.

To perform this check for a given monomial D, choose equivariant lifts 𝛽𝑘 for the 𝛾𝑘 . Then we
perform the computation described above. The result lives in 𝐻•

𝑇 ({∗},Q) = Q[𝑠, 𝑡], but we can plug in
𝑠 = 𝑡 = 0 to obtain a rational number. This is the desired integral

∫
𝑀
L𝑘𝐷.

Remark 4.3. We can in fact restrict to the case where D is a monomial
∏

𝑗 ch𝑖 𝑗 (𝛾𝑘 𝑗 ) with 𝑖 𝑗 ≠ 1 for all
j. Indeed, if 𝑖 𝑗 = 1, then 𝛾𝑘 𝑗 must be a multiple of p; otherwise, the degree of ch𝑖 𝑗 (𝛾𝑘 𝑗 ) is not positive.
But then we can use Corollary 2.4 to verify the conjecture.

Remark 4.4. Without any modification, this algorithm is not very efficient in terms of running time.
It is advisible to fix the 𝛽𝑘 and to compute ch𝑖 (𝛽𝑘 ) in advance, storing the result. Similarly, one might
compute the elements 𝑇𝑘 in advance. This greatly speeds up the computation when one wants to verify
the conjecture for all D.

Example 4.5. We continue with Example 4.2. We first choose equivariant lifts of the cohomology
classes F and Z. It suffices to give these lifts at the fixed points 𝑋𝑖 . For a single point, we have
𝐻•
𝑇 ({∗},Q) � 𝐾0

𝑇 ({∗}) ⊗ Q = Q[𝑠, 𝑡]. It turns out that there is an equivariant class lifting F which
restricts to 𝑠−1 at 𝑋1 and 𝑋2 and zero otherwise, and there is one lifting Z which restricts to 𝑡−1 at 𝑋1
and 𝑋4 and zero otherwise. Then the point class p is simply the product of these classes.

Now, we can compute all classes ch𝑖 (𝛾), but to verify the conjecture, one also needs the operator L𝑘 .
For this, we also need a Künneth decomposition of the diagonal 𝑋 → 𝑋 × 𝑋 . This can be computed to
be p ⊗ 1 + 𝐹 ⊗ 𝑍 + 𝑍 ⊗ 𝐹 + 1 ⊗ p, for example, by the method of [6, Sec. 2.1.6].

For example, to verify that the conjecture holds for L2 ch2(𝑍), one needs to integrate

𝑅2 ch2(𝑍) = 6 ch4(𝑍), 𝑇2 ch2(𝑍) and 𝑆2 ch2(𝑍) = 3(ch2(p) ch2 (𝑍) + ch3 (p) ch1 (𝑍))

We refrain from writing down all intermediate steps and simply give the result: − 1
8 , − 1

4 and 3
8 . These

sum up to zero, as required.
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4.3. Finding all equivariant sheaves

Above, we assumed we already had access to all equivariant stable sheaves with certain fixed invariants.
Now, we explain how to find these. We assume that we have a fixed polarisation H. Later, we will
explain how to find all possible H so that one can apply this procedure to each one. The procedure
can be divided into two steps: First, find all equivariant vector bundles, which we then use to find all
equivariant torsion-free sheaves. We first explain how to reduce to vector bundles.

4.3.1. Reducing to vector bundles
Note that, for any 𝜇-stable sheaf E with fixed invariants r, 𝑐1 and 𝑐2, the canonical map 𝐸 → 𝐸∨∨

is an embedding of E into a 𝜇-stable vector bundle of rank r, 𝑐1 (𝐸
∨∨) = 𝑐1 and 𝑐2 (𝐸

∨∨) ≤ 𝑐2. But
we also have the lower bound 𝑐2 (𝐸

∨∨) ≥
(𝑟−1)𝑐2

1
2𝑟 given by the Bogomolov inequality. Thus, if we

are able to find a list of all stable equivariant vector bundles F satisfying rk 𝐹 = 𝑟 , 𝑐1 (𝐹) = 𝑐1 and
(𝑟−1)𝑐2

1
2𝑟 ≤ 𝑐2 (𝐹) ≤ 𝑐2, then 𝐸∨∨ must be in this list. Furthermore, if we have such an equivariant vector

bundle F and any equivariant torsion-free sheaf E with 𝐸∨∨ = 𝐹, then E is 𝜇-stable. Thus, it suffices to,
given F, find all equivariant torsion-free E with the right invariants such that 𝐸∨∨ = 𝐹.

Consider the following operation on F. We consider a maximal cone 𝜎 and the 𝜎-family 𝐹̂ of F on
𝑈𝜎 . We consider a point (𝑚, 𝑛) such that 𝐹̂ (𝑚 − 1, 𝑛) + 𝐹̂ (𝑚, 𝑛 − 1) is a proper subspace of 𝐹̂ (𝑚, 𝑛).
We then replace 𝐹̂ (𝑚, 𝑛) by a subspace of codimension one, which contains 𝐹̂ (𝑚 − 1, 𝑛) + 𝐹̂ (𝑚, 𝑛 − 1).
This gives a subequivariant sheaf 𝐹 ′ of F which has its 𝑐2 increased by one. Since (𝐹 ′)∨∨ = 𝐹∨∨, 𝐹 ′

is still 𝜇-stable and hence Gieseker stable. We have constructed 𝐹 ′ in such a way that there is a short
exact sequence

0 → 𝐹 ′ → 𝐹 → 𝜒 ·O𝑝 → 0. (11)

Here, p is the fixed points of X corresponding to the maximal cone 𝜎 and 𝜒 is the character of 𝐹 (𝑚, 𝑛).
All equivariant sheaves E with 𝐸∨∨ = 𝐹 are obtained by applying this operation sufficiently many

times so that the resulting sheaf has the desired 𝑐2. If the difference in 𝑐2’s is only one, this can easily
be seen by considering the quotient. Otherwise, one can use induction.

Example 4.6. On P2 there are 1, 3 and 3 equivariant vector bundles of rank 2 with 𝑐1 = 1 and 𝑐2 equal
to respectively 1, 2 and 3. Each stable equivariant bundle with 𝑐2 = 2 degenerates in six ways to a
stable equivariant sheaf with 𝑐2 = 3. Thus, the bundles with 𝑐2 = 2 give a contribution of 3 · 6 = 18
stable equivariant sheaves. The single equivariant bundle with 𝑐1 = 1 degenerates to a total of 27 stable
equivariant sheaves with 𝑐2 = 3. Hence, the moduli space has 3 + 18 + 27 = 48 isolated fixed points, the
highest of the examples in this paper. See Appendix A for a complete list.

We make this more concrete in a specific example. There is a stable equivariant vector bundle E with
𝑐2 = 2 whose K-theory classes at the fixed points of P2 are (𝑠𝑡−1 + 𝑡𝑠−1, 𝑠𝑡−1 + 𝑡, 𝑡𝑠−1 + 𝑠). To perform
the operation described above, we can consider the first chart and the weight space of 𝑠𝑡−1. This space
is one-dimensional, so there is no choice in picking a codimension-one subspace. We then obtain an
equivariant stable torsion-free sheaf 𝐸 ′ which is not locally free.

In this paper, we are mainly interested in the K-theory class of 𝐸 ′. For this, we can use the exact
sequence (11). It is not difficult to see that the K-theory class of 𝜒 · O𝑝 is 𝜒 · (1 − 𝑠 − 𝑡 + 𝑠𝑡). So we
can obtain the K-theory class of 𝐸 ′ by replacing 𝑠𝑡−1 by 𝑠𝑡−1(𝑠 + 𝑡 − 𝑠𝑡) in the K-theory class of E. This
computation also works if we had chosen the weight space 𝑡𝑠−1. It also works if we had chosen one
of the other two charts, except that the K-theory class of 𝜒 · O𝑝 is then 𝜒 · (1 − 𝑠−1 − 𝑡𝑠−1 + 𝑡𝑠−2) or
𝜒 · (1 − 𝑡−1 − 𝑠𝑡−1 + 𝑠𝑡−2) respectively.

Example 4.7. We show how to represent the equivariant torsion-free sheaves pictorially on a Hirzebruch
surface. Recall from Example 3.8 that one can represent a rank 2 vector bundle on P2 by a triangle with
strips attached. For a Hirzebruch surface, the picture is the same, except that we now have a square
instead of a triangle (essentially because on a Hirzebruch surface we have four toric charts). Each of the
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Figure 2. Three equivariant sheaves on a Hirzebruch surface.

corners represents one of the charts and each side represents a ray of the cone (i.e., the gluing condition
(★)). The first picture in Figure 2 represents an equivariant vector bundle on F𝑎. Consider the chart in
the upper-right corner. In this chart, there are two places where we can apply the operation described
above, namely in the upper-right corners of the two strips. Suppose we choose the right strip. Then we
lower the dimension of the weight space in the upper-right corner from one to zero. Hence, we obtain the
second picture in Figure 2. The small square we removed represents the single weight space we removed.

4.4. Finding all equivariant vector bundles

We describe how to find all equivariant stable vector bundles. We focus on the rank 2 case on a Hirzebruch
surface F𝑎, but the other cases are similar. The fan of a Hirzebruch surface has four two-dimensional
cones and four rays and can be found in [7, Sec. 1.1]. We number the rays in clockwise order, starting
with the rightmost ray. In this case, an equivariant vector bundle E is described by four finite full flags
of C2, one for each ray. Thus, for each ray 𝜌𝑖 we have a sequence which looks like the following:

. . . ⊆ 0 ⊆ . . . ⊆ 𝑉 𝑖 ⊆ . . . ⊆ 𝑉 𝑖 ⊆ . . . ⊆ C2 ⊆ . . .

Such a flag depends on three choices: the one-dimensional subspace 𝑉 𝑖 , a number 𝛿𝑖 which is the
number of occurences of 𝑉 𝑖 and a number 𝐴𝑖 which is the weight where C2 first occurs. However,
different choices may lead to the same vector bundle since we have the freedom of tensoring with a
character from 𝑇 = G2

𝑚 and we can apply a linear automorphism of C2 to obtain different 𝑉 𝑖 . The action
of a character of T only changes the 𝐴𝑖 . To be precise, the action of 𝑠𝑛𝑡𝑚 changes (𝐴1, 𝐴2, 𝐴3, 𝐴4) to
(𝐴1 + 𝑛, 𝐴2 −𝑚, 𝐴3 − 𝑛, 𝐴4 +𝑚). So we can eliminate the ambiguity of the choice of character by fixing
(for example) 𝐴2 = 𝐴3 = 0. The ambiguity in the choice of 𝑉 𝑖 is more subtle. For the moment, let us
assume that all the 𝑉 𝑖 are distinct. The computation does not depend on the specific choice of 𝑉 𝑖 . Later,
we will deal with the other cases. Pictorially, this means we are in the situation corresponding to the
first picture in Figure 2.

We will determine all possible numerical invariants. These are the solutions to a certain set of
equalities and inequalities, determined by fixing 𝑐1 and 𝑐2, and the inequalities coming from stability
(Proposition 3.11). By considering a resolution, we can find explicit formulas for the first and second
Chern character of E. The formulas also depends on a (recall we work on F𝑎).

ch1(𝐸) = (𝛿1 + 𝛿3 + 𝑎𝛿2 − 2𝐴1)𝐹 + (𝛿2 + 𝛿4 − 2𝐴4)𝑍.

Hence, if we have fixed Δ = 𝑓 𝐹 + 𝑧𝑍 , then we get the equations 𝑓 = 𝛿1 + 𝛿3 + 𝑎𝛿2 − 2𝐴1 and
𝑧 = 𝛿2 + 𝛿4 − 2𝐴4. The formula for the second Chern character is

ch2 (𝐸) =
1
4
(
𝑎((𝛿2)2 − (𝛿4)2 − 𝑧2) − 2(𝛿1𝛿2 + 𝛿2 + 𝛿3 + 𝛿3𝛿4 + 𝛿4𝛿1) + 2 𝑓 𝑧

)
. (12)

This formula requires the 𝑉𝑖 to be distinct.
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Next, we need to consider the stability inequalities from Proposition 3.11. To compute the degrees,
we need the intersection numbers deg1 = deg3 = 𝐻.𝐹, deg2 = 𝐻.(𝑎𝐹 + 𝑍) and deg4 = 𝐻.𝑍 . The
proposition tells us that we need to consider all possible one-dimensional subspaces W, but in fact it
suffices to consider 𝑊 = 𝑉 𝑖 for some 𝑉 𝑖 . Indeed, otherwise the inequality is trivial as 𝑤𝑖

𝑗 is always zero
in that case. Then the stability inequalities become

2𝛿𝑖 deg𝑖 <
4∑
𝑗=1

𝛿 𝑗 deg 𝑗 (13)

for each i. Here, we also use that the 𝑉 𝑖 are distinct. Finally, we need the trivial inequalities 𝛿𝑖 ≥ 0.
We then find all solutions for this system. This is elementary, but still difficult. We made use of the
automated theorem prover Z3 [22] to find all solutions.

Now, we deal with the problem of choice of the vector spaces 𝑉 𝑖 . It turns out that, in the numbers
we obtained above, at least one 𝛿𝑖 was always zero. Thus, we only had to choose three distinct vector
spaces. But then there is no choice at all: If we choose different subspaces 𝑊 𝑖 , then there is a linear
automorphism of C2 mapping 𝑉 𝑖 to 𝑊 𝑖 . So the resulting equivariant stable vector bundle does not
depend on the choice of 𝑉 𝑖 . This also implies that the fixed point locus 𝑀𝑇 is isolated since it only
depends on discrete numerical data. If all 𝛿𝑖 are positive, we would have had a higher-dimensional
component of 𝑀𝑇 . However, in this paper, it turns out that this behaviour does not occur and we only
have to deal with cases where dim 𝑀𝑇 = 0.

4.5. Degenerate cases

In the previous computation, we assumed that the 𝑉 𝑖 were all distinct. Here, we explain how to find
the vector bundles if that were not true. The stability inequality Proposition 3.11 implies the following:
There must always exist at least three i for which 𝛿𝑖 > 0 and for which the 𝑉 𝑖 are distinct. Then there
are the following cases to consider: Two adjacent 𝑉 𝑖 are equal (e.g. 𝑉1 = 𝑉4) or two opposing 𝑉 𝑖 are
equal (e.g., 𝑉1 = 𝑉3). We explain the changes.

The formula (12) for the second Chern character changes if two adjacent 𝑉 𝑖 are equal. Explicitly, if
𝑉1 = 𝑉4, one should add a term 𝛿1𝛿4 to the formula and similarly if other adjacent 𝑉𝑖 are equal. This is
similar for the other cases. The other thing that changes is the stability conditions, both in the case of
adjacent and opposing coincidence of the 𝑉 𝑖 . Indeed, suppose 𝑉1 = 𝑉3, then taking 𝑊 = 𝑉1 = 𝑉3 in
Proposition 3.11 gives the more restrictive inequality

2(deg1 𝛿1 + deg3 𝛿3) <
4∑
𝑗=1

deg 𝑗 𝛿 𝑗 . (14)

One needs to add this inequality to the system we already had in equation (13). We can solve this system
in a similar way to the other case. Because there are only three different vector spaces 𝑉 𝑖 from the start,
we can argue in the same way as before to ensure that 𝑀𝑇 is isolated.

Pictorially, the condition that 𝑉1 = 𝑉4 corresponds to the third picture in Figure 2 where we have
filled in the corner. Indeed, if we consider this chart, then recall that for a vector bundle E we should
have 𝐸̂ (𝑚, 𝑛) = 𝐸̂ (𝑚,∞) ∩ 𝐸̂ (∞, 𝑛). If (𝑚, 𝑛) lies in this corner, this intersection is 𝑉1 ∩ 𝑉4. In a
generic situation, 𝑉1 ≠ 𝑉4 so that the intersection is zero. But in this special case, the intersection equals
𝑉1 = 𝑉4, so it is one-dimensional.

The picture also explains why the second Chern character changes. The little square we added by
setting 𝑉1 = 𝑉4 has size 𝛿1 × 𝛿4. It turns out that the Chern character only depends on the dimension of
the weight spaces; see [14, Prop. 3.6]. Changing a single weight space by one dimension changes the
second Chern character by one, and the other Chern characters stay the same. Therefore, a square of
dimension 𝛿1 × 𝛿4 represents a change of 𝛿1𝛿4 in the second Chern character. Note that, in the situation
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Figure 3. Possible coincidences.

𝑉1 = 𝑉3, we do not add such a small square, and consequently, the second Chern character does not
change.

4.6. Finding bundles on P2

Finding stable equivariant vector bundles for P2 is similar to what we have just described. Recall that
the fan for P2 has three rays. Thus, the rank 2 case becomes even easier since there are only three
vector spaces 𝑉 𝑖 from the start, which makes it easier to argue that 𝑀𝑇 is isolated. However, the
rank 3 and 4 cases are much more involved. We briefly discuss the rank 3 case. Now, our flags look
like

. . . ⊆ 0 ⊆ 𝑉 𝑖 ⊆ . . . ⊆ 𝑉 𝑖 ⊆ 𝑊 𝑖 ⊆ . . . ⊆ 𝑊 𝑖 ⊆ C3 ⊆ . . .

where 𝑉 𝑖 is one-dimensional and 𝑊 𝑖 is two-dimensional. Note that we require three numbers to describe
such a flag, with 𝐴𝑖 as before and 𝛿𝑖 = 𝛿𝑖1 and 𝜖𝑖 = 𝛿𝑖2 for the number of occurrences of 𝑉 𝑖 and 𝑊 𝑖 ,
respectively. Having two spaces in our flag gives a great additional complexity in the ambiguity of
choices of these subspaces. Also, classifying the possible coincidences is more complicated. This was
done by Klyachko in a preprint [13], but see also [14, Sec. 4.2]. Recall that one- and two-dimensional
subspaces of C3 are the points and lines in P2. Thus, we may picture the 𝑉 𝑖 and 𝑊 𝑖 as three lines with
three points on them (indicating that the 𝑉 𝑖 are subspaces of the 𝑊 𝑖). Then stability ensures that the
possible configurations are the ones pictured in Figure 3.

The resulting inequalities are also much harder than in the Hirzebruch case. We applied a mix of
calculations by hand and the solver Z3 to find all solutions. In the end, we can argue as before that,
since a sufficient number of 𝛿𝑖 and 𝜖 𝑖 vanish, the isomorphism class of the obtained vector bundle 𝐸 𝑖

does not depend on the choice of subspaces 𝑉 𝑖 and 𝑊 𝑖 as any two choices can be related by a suitable
automorphism of C3. This implies that 𝑀𝑇 is isolated, as before.

The classification of bundles of rank 4 onP2 is incomplete as we found it already too difficult to classify
the possible coincidences of the subspaces in the flags in this case. We found 13 bundles by looping
over the 𝛿𝑖 in the nondegenerate case where there are no special coincidences. We are nevertheless
confident that there are no more bundles because the Atiyah–Bott calculation gave numbers as a result.
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Usually, when one forgets a bundle, the answer is a not a number but a more complicated expression in
the equivariant parameters.

4.7. Dependence on the polarisation

Both 𝜇-stability and Gieseker stability depend on the choice of a polarisation. We are interested in
verifying the conjecture for all possible choices of polarisation. For P2, this is not an issue since the only
polarisations are O(𝑛) for 𝑛 > 0 and the stability condition does not change if you scale a polarisation
by a positive number.

But for Hirzebruch surfaces this is an issue. Note that Pic(F𝑎) = Num(F𝑎) = Z𝐹 ⊕ Z𝑍 with
intersections 𝐹.𝐹 = 0, 𝐹.𝑍 = 1 and 𝑍.𝑍 = −𝑎. The ample cone is the set of line bundles L such that
𝐿.𝐹 > 0 and 𝐿.𝑍 > 0. Num(F𝑎) contains a finite set of hyperplanes, called walls, which divide the
ample cone into connected components, called chambers. This material can be found in [10, Sec. 4.C]
and was developed by Z. Qin [31]. If F is a rank 2 sheaf F with 𝑐1 (𝐹) not divisible by 2, then F is
𝜇-stable with respect to a polarisation H iff it is 𝜇-stable with respect to any polarisation in the chamber
of H. Hence, the moduli space 𝑀 = 𝑀𝐻

𝑋 (𝑟,Δ , 𝑐2) does not change if we pick another polarisation in
the same chamber. We do not need to consider polarisations H that lie on walls: If the moduli space M
changes if we pick another polarisation 𝐻 ′ that lies close to H and is in a chamber, then this change
happens because of the existence of strictly 𝜇-semistable sheaves with respect to H. But we assumed no
such sheaves existed.

Now, we explain how to find all walls. For a general surface X and fixed r, Δ and 𝑐2, consider all the
𝜉 ∈ Num(𝑋) such that

((𝑟2 − 1)Δ2 − 2𝑟𝑐2)𝑟
2

4
≤ 𝜉2 < 0.

Then the walls are given by the hyperplanes {𝜉}⊥. Furthermore, if X is a Hirzebruch surface, there are
only a finite number of such 𝜉. To verify Conjecture 1.4, it suffices to choose a polarisation from each
of the chambers and apply the algorithm described in the beginning of this section.

Example 4.8. In case 𝑋 = F0, 𝑟 = 2, Δ = 𝐹 and 𝑐2 = 2, the choice of polarisation is relevant. There
there are eight chambers, which we can represent by the following polarisations:

𝐹 + 5𝑍, 2𝐹 + 7𝑍, 2𝐹 + 5𝑍, 3𝐹 + 5𝑍, 6𝐹 + 5𝑍, 11𝐹 + 5𝑍, 16𝐹 + 5𝑍, 21𝐹 + 5𝑍.

For the first polarisation, the moduli space is empty. The next two are in different chambers, yet we
found that they give rise to the same fixed locus. Theoretically, it is possible that the moduli spaces are
different, but this seems unlikely. In this case, there are six vector bundles in the fixed locus. The final
five polarisations also share the same fixed locus. Two of the vector bundles of the previous case are still
stable here. But now there are 24 other sheaves: 20 of which are only torsion-free, not vector bundles,
and four new vector bundles which are degenerate in the sense of Section 4.5. Thus, even the topological
Euler characteristic depends on the choice of polarisation (as is well known). All the sheaves are listed
in Appendix A.

Example 4.9. The polarisation is also relevant if 𝑋 = F0, 𝑟 = 2, Δ = 𝐹 + 𝑍 and 𝑐2 = 2. Now, there are
six polarisations, which we will not list. The first and last give empty fixed loci. The second and third
give rise to the same locus, as do the fourth and fifth. However, these different loci are really the same:
If we interchange F and Z, these loci are also interchanged.5

These two examples are the only cases treated in this paper in which the polarisation is relevant.

5The author thanks the referee for pointing this out.
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4.8. A deformation argument

Using the algorithm above, we have verified Conjecture 1.4 explicitly for the Hirzebruch surfaces F𝑎
with 𝑎 = 0, 1, 2, Δ = 𝐹, Z and 𝐻 + 𝑍 and 𝑐2 the minimal choice such that the Bogomolov inequality
is satisfied. We will now use a deformation argument to deduce Conjecture 1.4 for any a with Δ and H
such that Δ .𝐻 is odd and 𝑐2 again the minimal choice. In fact, the case 𝑎 = 2 is redundant as it also
follows from the deformation argument.

Proposition 4.10. Let n be a natural number. There is a smooth family of surfaces F over A1 with fibre
F2𝑛 above zero and fibre F0 over all other closed points.

Similarly, there is a family F with fibre F2𝑛+1 above zero and fibre F1 over all other points.

Proof. We work on P1. Consider the subsheaf 𝐿1 of O of functions that have a zero at 0 of order at
least n. Similarly, we consider the subsheaf 𝐿2 of functions that have a zero at ∞ of order at least n. The
sum of the inclusions 𝐿1 ⊕ 𝐿2 → O is a surjection whose kernel consists of the functions vanishing at
both zero and ∞ of order at least n. Of course, 𝐿1 � 𝐿2 � O(−𝑛) and the kernel is O(−2𝑛). Hence, this
gives a short exact sequence

0 → O(−2𝑛) → O(−𝑛) ⊕ O(−𝑛) → O → 0.

Let A1 be the line in Ext1 (O,O(−2𝑛)) through zero and the above extension. Then there is a A1-flat
family E on P1 × A1, which is O(−𝑛) ⊕ O(−𝑛) over every nonzero fibre and O(−2𝑛) ⊕ O over zero
[16, Rem. 3.5]. Let F be the projectivisation of E . Then F satisfies the conditions of the lemma. For
the odd case, a similar argument works. �

Lemma 4.11. In the previous proposition, for every line bundle L on F2𝑛 (resp. F2𝑛+1), there is an
A1-flat family of line bundles L on F such that L0 = 𝐿.

Proof. It suffices to show this for the generators F and Z of Pic(F2𝑛). These are defined (as divisors) as
a fibre of 𝜋 : F2𝑛 → P1 and a section of 𝜋 respectively. Thus, F clearly extends to the family because we
can simply take a family of fibres of F → A1 × P1. For the section, note that the family E on P1 × A1

comes with a surjection E → O because E is an extension. This defines a section [9, Prop. 7.12], and
we simply take the image of this section as our extension of Z. Again, the odd case is similar. �

Proposition 4.12. Let 𝑟 = 2. Choose a line bundle Δ on F𝑎. Let 𝑐2 be the smallest number such that the
Bogomolov inequality is satisfied with 𝑟 = 2. Then Conjecture 1.4 holds for any polarisation H on F𝑎
such that 𝐻.Δ is odd.

Proof. The idea is to use Proposition 2.14. We have constructed a smooth family F → A1 in Lemma
4.10. By Lemma 4.11, we can extend the polarisation H and the line bundle Δ to families H and L on F .
We can also extend 𝑐2 by taking a suitable multiple of (the extended version of) 𝐹.𝑍 . The intersection
numbers H𝑡 .L𝑡 are the same for every fibre. This is also true for other intersection numbers. Hence, we
deduce:

1. H𝑡 .L𝑡 is odd for each closed point 𝑡 ∈ A1.
2. H𝑡 is ample for each closed point 𝑡 ∈ A1, hence is relatively ample for F → A1 [17, Sec. 1.7].
3. 𝑐2 is the minimal 𝑐2 such that the Bogomolov inequality holds with 𝑟 = 2 and 𝑐1 = L𝑡 .

We wish to verify the Virasoro constraints for the central fibre, so by Proposition 2.14 we can also
do so for another fibre, which is always F0 or F1. We treat the first case as the second is similar. For
concreteness, we pick the fibre over 1 ∈ A1 and verify Conjecture 1.4 there. Since H1.L1 is odd, L1 is
not a multiple of 2. Hence, there is a line bundle 𝐿 ′ on F0 such that L1 + 2𝐿 ′ is either F, Z or 𝐹 + 𝑍 .
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Now, we use that, when 𝜇-stability and Giesker stability coincide, there is an isomorphism

𝑀H1
F0

(2,L1, 𝑐2) → 𝑀H1
F0

(2,L1 + 2𝐿 ′, 𝑐2 + 𝐿 ′.(L1 + 𝐿 ′)),

which is given by [𝐸] ↦→ [𝐸 ⊗ 𝐿 ′] on closed points. On this second space, 𝑐2 is still the minimal
number such that the Bogomolov inequality holds. Hence, we already know the Virasoro constraints for
this case by our explicit computation. �

Remark 4.13. One might wonder if the moduli space for F𝑎 is actually nonempty in the above proposi-
tion. This is true. The relative moduli space M → A1 is projective over A1, so its image is closed. For
𝑡 ≠ 0, we know that the moduli space is not empty because we have found explicit sheaves in the fixed
point locus. But then the image of M must be all of A1, so the fibre above 𝑡 = 0 cannot be empty.

A. Data obtained from computations

In this section, we will give the explicit results from the computations. We fix some notation. We work
over a toric surface X. We denote the moduli space of stable sheaves on X with rank r, determinant Δ
and second Chern class 𝑐2 by M. We denote the representation ring of 𝑇 = G2

𝑚 by Z[𝑠, 𝑡]. For projective
space, we let 𝑋1 = (1 : 0 : 0), 𝑋2 = (0 : 1 : 0) and 𝑋3 = (0 : 0 : 1). We let H be the hyperplane class.
For the Hirzebruch surface F𝑎, we let 𝑋1, 𝑋2, 𝑋3 and 𝑋4 be the fixed points where the tangent space is
given by 𝑠−1 + 𝑡−1, 𝑠−1 + 𝑡, 𝑠 + 𝑡𝑠𝑎 and 𝑠 + 𝑡−1𝑠−𝑎 respectively (in standard coordinates). Furthermore,
recall that PicF𝑎 = Z𝐹 + Z𝑍 where F is a fibre of the projection F𝑎 → P1 and Z is a section of this
projection. In examples 4.8 and 4.9 the polarisation H is relevant. We write which choice we made in
such cases. If several polarisations give rise to the same fixed locus (as is the case in these examples),
we only listed one of these. In other cases, the polarisation is not mentioned.

For each of the cases we have considered, we write down the explicit K-theoretic representations
of all equivariant sheaves at the fixed points. We also write down

∫
𝑀

𝑅𝑘𝐷,
∫
𝑀

𝑇𝑘𝐷 and
∫
𝑀

𝑆𝑘𝐷 for
𝑘 = dim 𝑀 , dim 𝑀−1 and dim 𝑀−2 and all D of the correct degree. Even though we have checked it for
all k and D but we do not give all the data for reason of space, we did 1,677 independent checks in total.

𝑋 = P2 𝑟 = 2 Δ = O (1) 𝑐2 = 1 dim 𝑀 = 0

The moduli space is zero-dimensional, and there is only one equivariant sheaf. Therefore, the Virasoro
constraints are automatic. We give the (K-theory class of) this sheaf below.

𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3

𝑡−1 + 𝑠−1 1 + 𝑡−1 1 + 𝑠−1

𝑋 = P2 𝑟 = 3 Δ = O (1) 𝑐2 = 2 dim 𝑀 = 2

𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3

𝑠𝑡−1 + 1 + 𝑡𝑠−1 1 + 𝑠𝑡−1 + 𝑡 1 + 𝑡𝑠−1 + 𝑠
1 + 𝑡−1 + 𝑡𝑠−1 1 + 𝑡−1 + 𝑡 1 + 𝑡 + 𝑠−1

1 + 𝑠−1 + 𝑠𝑡−1 1 + 𝑠 + 𝑡−1 1 + 𝑠−1 + 𝑠
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D
∫
𝑀
𝑅𝑘𝐷

∫
𝑀
𝑇𝑘𝐷

∫
𝑀
𝑆𝑘𝐷

1 0 −10/3 10/3
ch2 (𝐻 ) 7/9 −7/9 0
ch3 (1) −17/18 −49/54 50/27

ch2 (𝐻 ) ch2 (𝐻 ) 2/9 −1/9 −1/9
ch3 (1) ch2 (𝐻 ) 7/27 −7/54 −7/54
ch2 (𝐻 ) ch3 (1) 7/27 −7/54 −7/54
ch3 (1) ch3 (1) 49/162 −49/324 −49/324

ch2 (p) 10/3 −5/3 −5/3
ch3 (𝐻 ) 7/9 −7/18 −7/18
ch4 (1) −17/18 17/36 17/36

𝑋 = P2 𝑟 = 4 Δ = O (1) 𝑐2 = 3 dim 𝑀 = 6

𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3

1 + 𝑠 + 𝑡𝑠−1 + 𝑠𝑡−1 2 + 𝑡−1 + 𝑡 1 + 𝑠𝑡−1 + 𝑠 + 𝑠−1

2 + 𝑡𝑠−1 + 𝑠𝑡−1 1 + 𝑠−1 + 𝑡−1 + 𝑡 1 + 𝑠 + 𝑠−1 + 𝑡−1

1 + 𝑡 + 𝑡𝑠−1 + 𝑠𝑡−1 1 + 𝑡𝑠−1 + 𝑡−1 + 𝑡 2 + 𝑠 + 𝑠−1

𝑠 + 𝑡 + 𝑠2𝑡−1 + 𝑡2𝑠−1 𝑠𝑡−1 + 𝑠 + 𝑡 + 𝑡2𝑠−1 𝑡𝑠−1 + 𝑡 + 𝑠 + 𝑠2𝑡−1

𝑠−1 + 𝑡−1 + 𝑠𝑡−1 + 𝑠2𝑡−1 𝑠 + 𝑠𝑡−1 + 𝑡−1 + 𝑠−1𝑡−1 𝑡−1 + 𝑠𝑡−1 + 𝑠−1𝑡−1 + 𝑠2𝑡−1

𝑡−1 + 𝑠−1 + 𝑡𝑠−1 + 𝑡2𝑠−1 𝑠−1 + 𝑠−1𝑡−1 + 𝑡𝑠−1 + 𝑡2𝑠−1 𝑡 + 𝑡𝑠−1 + 𝑠−1 + 𝑠−1𝑡−1

𝑠 + 𝑡 + 𝑡2 + 𝑠2 1 + 𝑠 + 𝑡𝑠 + 𝑡2 1 + 𝑡 + 𝑡𝑠 + 𝑠2

𝑠 + 𝑡 + 𝑡2 + 𝑡𝑠2 1 + 𝑡 + 𝑠𝑡 + 𝑠𝑡2 1 + 𝑡 + 𝑠𝑡 + 𝑡𝑠2

1 + 𝑠𝑡−1 + 𝑠𝑡−2 + 𝑠2𝑡−3 1 + 𝑠𝑡−1 + 𝑠𝑡−2 + 𝑠𝑡−3 𝑡−1 + 𝑠𝑡−1 + 𝑠2𝑡−2 + 𝑠𝑡−3

1 + 𝑠−1 + 𝑡𝑠−2 + 𝑡2𝑠−3 𝑠−1 + 𝑠−2 + 𝑡𝑠−1 + 𝑡2𝑠−3 1 + 𝑠−1 + 𝑡𝑠−2 + 𝑡𝑠−3

𝑠 + 𝑠2 + 𝑡 + 𝑠𝑡2 1 + 𝑠 + 𝑡𝑠 + 𝑡2𝑠 1 + 𝑠 + 𝑠𝑡 + 𝑠2𝑡
1 + 𝑡−1 + 𝑠𝑡−2 + 𝑠2𝑡−3 1 + 𝑡−1 + 𝑠𝑡−2 + 𝑠𝑡−3 𝑡−1 + 𝑡−2 + 𝑠𝑡−1 + 𝑠2𝑡−3

1 + 𝑡𝑠−1 + 𝑡𝑠−2 + 𝑡2𝑠−3 𝑠−1 + 𝑡𝑠−1 + 𝑡𝑠−3 + 𝑡2𝑠−2 1 + 𝑡𝑠−1 + 𝑡𝑠−2 + 𝑡𝑠−3

For this case, we added a few extra pieces of data in the end, to show how large the numbers become.
Notice that the last example has a denominator of 224. It looks very complicated, but in this case, 𝑘 = 0,
so it follows from Proposition 2.5!

D
∫
𝑀
𝑅𝑘𝐷

∫
𝑀
𝑇𝑘𝐷

∫
𝑀
𝑆𝑘𝐷

1 0 −49, 511/4, 096 49, 511/4, 096
ch2 (𝐻 ) −4, 227/2, 048 3, 567/2, 048 165/512
ch3 (1) −63, 993/32, 768 −17, 835/8, 192 135, 333/32, 768

ch2 (𝐻 ) ch2 (𝐻 ) −43/2, 048 3, 191/4, 096 −3, 105/4, 096
ch3 (1) ch2 (𝐻 ) −235/2, 048 −15, 955/16, 384 17, 835/16, 384
ch2 (𝐻 ) ch3 (1) −235/2, 048 −15, 955/16, 384 17, 835/16, 384
ch3 (1) ch3 (1) 10, 475/32, 768 79, 775/65, 536 −100, 725/65, 536

ch2 (p) 7, 073/1, 024 23, 419/2, 048 −37, 565/2, 048
ch3 (𝐻 ) −4, 227/2, 048 −5, 751/4, 096 14, 205/4, 096
ch4 (1) −63, 993/32, 768 −376, 779/65, 536 504, 765/65, 536
ch3 (1)4 −52, 875/131, 072 −16, 875/1, 048, 576 439, 875/1, 048, 576

ch4 (1) ch4 (1) ch3 (1) −9, 632, 397/8, 388, 608 −2, 039, 225/2, 097, 152 17, 789, 297/8, 388, 608
ch7 (1) −21, 331/262, 144 −2, 095/196, 608 72, 373/786, 432

ch4 (1) ch4 (1) ch4 (1) −34, 071, 111/8, 388, 608 56, 785, 185/16, 777, 216 11, 357, 037/16, 777, 216

𝑋 = P2 𝑟 = 2 Δ = O (1) 𝑐2 = 2 dim 𝑀 = 4
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𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3

𝑡−1 + 1 + 𝑡𝑠−1 − 𝑡 1 + 𝑡−1 1 + 𝑠−1

𝑠−1 + 1 + 𝑠𝑡−1 − 𝑠 1 + 𝑡−1 1 + 𝑠−1

𝑡−1 + 𝑠−1 1 + 𝑠−1 + 𝑠−1𝑡−1 − 𝑠−2 1 + 𝑠−1

𝑡−1 + 𝑠−1 𝑡−1 + 𝑠−1 + 𝑡𝑠−1 − 𝑡𝑠−2 1 + 𝑠−1

𝑡−1 + 𝑠−1 1 + 𝑡−1 1 + 𝑡−1 + 𝑠−1𝑡−1 − 𝑡−2

𝑡−1 + 𝑠−1 1 + 𝑡−1 𝑠−1 + 𝑠𝑡−1 + 𝑡−1 − 𝑠𝑡−2

𝑠𝑡−1 + 𝑡𝑠−1 𝑠𝑡−1 + 𝑡 𝑡𝑠−1 + 𝑠
𝑠−1 + 𝑠𝑡−1 𝑡−1 + 𝑠 𝑠−1 + 𝑠
𝑡−1 + 𝑡𝑠−1 𝑡 + 𝑡−1 𝑡 + 𝑠−1

D
∫
𝑀
𝑅𝑘𝐷

∫
𝑀
𝑇𝑘𝐷

∫
𝑀
𝑆𝑘𝐷

1 0 255/16 −255/16
ch2 (𝐻 ) 6 −6 0
ch3 (1) −219/64 15 −741/64

ch2 (𝐻 ) ch2 (𝐻 ) −21/8 27/16 15/16
ch3 (1) ch2 (𝐻 ) 6 −6 0
ch2 (𝐻 ) ch3 (1) 6 −6 0
ch3 (1) ch3 (1) −27/4 27/2 −27/4

ch2 (p) −51/8 45/16 57/16
ch3 (𝐻 ) 6 −6 0
ch4 (1) −219/64 837/128 −399/128

𝑋 = P2 𝑟 = 2 Δ = O (1) 𝑐2 = 3 dim 𝑀 = 8

𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3

𝑠𝑡−1 + 1 − 𝑠 + 𝑡𝑠−1 + 1 − 𝑡 1 + 𝑡−1 1 + 𝑠−1

𝑡−1 + 𝑡2𝑠−1 − 𝑡2 + 1 1 + 𝑡−1 1 + 𝑠−1

𝑠2𝑡−1 − 𝑠2 + 1 + 𝑠−1 1 + 𝑡−1 1 + 𝑠−1

𝑡−1 + 𝑡𝑠−1 + 𝑠 − 𝑠𝑡 1 + 𝑡−1 1 + 𝑠−1

𝑠−1 + 𝑠𝑡−1 + 𝑡 − 𝑠𝑡 1 + 𝑡−1 1 + 𝑠−1

𝑡−1 + 𝑠−1 𝑠−1 + 𝑡𝑠−1 − 𝑡𝑠−2 + 𝑠−1𝑡−1 + 𝑠−1 − 𝑠−2 1 + 𝑠−1

𝑡−1 + 𝑠−1 𝑠−1 + 𝑡2𝑠−2 − 𝑡2𝑠−3 + 𝑡−1 1 + 𝑠−1

𝑡−1 + 𝑠−1 1 + 𝑡−1𝑠−2 + 𝑠−1 − 𝑠−3 1 + 𝑠−1

𝑡−1 + 𝑠−1 1 + 𝑡𝑠−2 − 𝑡𝑠−3 + 𝑠−1𝑡−1 1 + 𝑠−1

𝑡−1 + 𝑠−1 𝑡−1 + 𝑡𝑠−1 + 𝑠−2 − 𝑡𝑠−3 1 + 𝑠−1

𝑡−1 + 𝑠−1 1 + 𝑡−1 𝑠2𝑡−2 + 𝑡−1 − 𝑠2𝑡−3 + 𝑠−1

𝑡−1 + 𝑠−1 1 + 𝑡−1 𝑠𝑡−1 + 𝑡−1 − 𝑠𝑡−2 + 𝑠−1𝑡−1 + 𝑡−1 − 𝑡−2

𝑡−1 + 𝑠−1 1 + 𝑡−1 1 + 𝑠−1𝑡−2 + 𝑡−1 − 𝑡−3

𝑡−1 + 𝑠−1 1 + 𝑡−1 1 + 𝑠−1𝑡−1 + 𝑠𝑡−2 − 𝑠𝑡−3

𝑡−1 + 𝑠−1 1 + 𝑡−1 𝑠−1 + 𝑡−2 + 𝑠𝑡−1 − 𝑠𝑡−3

1 + 𝑠𝑡−1 − 𝑠 + 𝑠−1 𝑠−1 + 𝑡𝑠−1 − 𝑡𝑠−2 + 𝑡−1 1 + 𝑠−1

1 + 𝑠𝑡−1 − 𝑠 + 𝑠−1 1 + 𝑠−1𝑡−1 + 𝑠−1 − 𝑠−2 1 + 𝑠−1

1 + 𝑠𝑡−1 − 𝑠 + 𝑠−1 1 + 𝑡−1 𝑡−1 + 𝑠𝑡−1 − 𝑠𝑡−2 + 𝑠−1

1 + 𝑠𝑡−1 − 𝑠 + 𝑠−1 1 + 𝑡−1 1 + 𝑠−1𝑡−1 + 𝑡−1 − 𝑡−2

𝑡−1 + 1 + 𝑡𝑠−1 − 𝑡 𝑠−1 + 𝑡𝑠−1 − 𝑡𝑠−2 + 𝑡−1 1 + 𝑠−1

𝑡−1 + 1 + 𝑡𝑠−1 − 𝑡 1 + 𝑠−1𝑡−1 + 𝑠−1 − 𝑠−2 1 + 𝑠−1

𝑡−1 + 1 + 𝑡𝑠−1 − 𝑡 1 + 𝑡−1 𝑡−1 + 𝑠𝑡−1 − 𝑠𝑡−2 + 𝑠−1

𝑡−1 + 1 + 𝑡𝑠−1 − 𝑡 1 + 𝑡−1 1 + 𝑠−1𝑡−1 + 𝑡−1 − 𝑡−2

𝑡−1 + 𝑠−1 𝑠−1 + 𝑡𝑠−1 − 𝑡𝑠−2 + 𝑡−1 𝑡−1 + 𝑠𝑡−1 − 𝑠𝑡−2 + 𝑠−1

𝑡−1 + 𝑠−1 𝑠−1 + 𝑡𝑠−1 − 𝑡𝑠−2 + 𝑡−1 1 + 𝑠−1𝑡−1 + 𝑡−1 − 𝑡−2

𝑡−1 + 𝑠−1 1 + 𝑠−1𝑡−1 + 𝑠−1 − 𝑠−2 𝑡−1 + 𝑠𝑡−1 − 𝑠𝑡−2 + 𝑠−1
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𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3

𝑡−1 + 𝑠−1 1 + 𝑠−1𝑡−1 + 𝑠−1 − 𝑠−2 1 + 𝑠−1𝑡−1 + 𝑡−1 − 𝑡−2

𝑠2𝑡−1 + 𝑠 − 𝑠2 + 𝑡𝑠−1 𝑠𝑡−1 + 𝑡 𝑡𝑠−1 + 𝑠
𝑠𝑡−1 + 𝑡2𝑠−1 + 𝑡 − 𝑡2 𝑠𝑡−1 + 𝑡 𝑡𝑠−1 + 𝑠

𝑠𝑡−1 + 𝑡𝑠−1 𝑡−1 + 1 − 𝑠−1 + 𝑡 𝑡𝑠−1 + 𝑠
𝑠𝑡−1 + 𝑡𝑠−1 𝑠𝑡−1 + 𝑡𝑠−1 + 𝑡2𝑠−1 − 𝑡2𝑠−2 𝑡𝑠−1 + 𝑠
𝑠𝑡−1 + 𝑡𝑠−1 𝑠𝑡−1 + 𝑡 1 − 𝑡−1 + 𝑠−1 + 𝑠
𝑠𝑡−1 + 𝑡𝑠−1 𝑠𝑡−1 + 𝑡 𝑡𝑠−1 + 𝑠2𝑡−1 − 𝑠2𝑡−2 + 𝑠𝑡−1

𝑡𝑠−1 + 1 − 𝑡 + 𝑠𝑡−1 𝑡−1 + 𝑠 𝑠−1 + 𝑠
𝑠−1 + 𝑠2𝑡−1 + 𝑠 − 𝑠2 𝑡−1 + 𝑠 𝑠−1 + 𝑠

𝑠−1 + 𝑠𝑡−1 𝑠−1 + 𝑠−1𝑡−1 − 𝑠−2 + 𝑠 𝑠−1 + 𝑠
𝑠−1 + 𝑠𝑡−1 𝑡−1 + 𝑡 + 1 − 𝑡𝑠−1 𝑠−1 + 𝑠
𝑠−1 + 𝑠𝑡−1 𝑡−1 + 𝑠 𝑡−1 + 𝑠−1𝑡−1 − 𝑡−2 + 𝑠
𝑠−1 + 𝑠𝑡−1 𝑡−1 + 𝑠 𝑠−1 + 𝑠2𝑡−1 + 𝑠𝑡−1 − 𝑠2𝑡−2

1 + 𝑠𝑡−1 − 𝑠 + 𝑡𝑠−1 𝑡 + 𝑡−1 𝑡 + 𝑠−1

𝑡−1 + 𝑡 + 𝑡2𝑠−1 − 𝑡2 𝑡 + 𝑡−1 𝑡 + 𝑠−1

𝑡−1 + 𝑡𝑠−1 𝑡2𝑠−1 + 𝑡𝑠−1 − 𝑡2𝑠−2 + 𝑡−1 𝑡 + 𝑠−1

𝑡−1 + 𝑡𝑠−1 𝑡 + 𝑠−1 + 𝑠−1𝑡−1 − 𝑠−2 𝑡 + 𝑠−1

𝑡−1 + 𝑡𝑠−1 𝑡 + 𝑡−1 𝑠 + 1 − 𝑠𝑡−1 + 𝑠−1

𝑡−1 + 𝑡𝑠−1 𝑡 + 𝑡−1 𝑡 + 𝑡−1 + 𝑠−1𝑡−1 − 𝑡−2

𝑠𝑡−2 + 𝑡𝑠−2 𝑠𝑡−2 + 𝑡𝑠−1 𝑡𝑠−2 + 𝑠𝑡−1

𝑡𝑠−2 + 𝑠 𝑠−1 + 𝑡𝑠 𝑡𝑠 + 𝑡𝑠−2

𝑡 + 𝑠𝑡−2 𝑠𝑡−2 + 𝑠𝑡 𝑠𝑡 + 𝑡−1

In this case we have added some extra computations for your interest.

D
∫
𝑀
𝑅𝑘𝐷

∫
𝑀
𝑇𝑘𝐷

∫
𝑀
𝑆𝑘𝐷

1 0 6, 597/32 −6, 597/32
ch2 (𝐻 ) 291/4 −291/4 0
ch3 (1) −8, 209/128 2, 487/8 −31, 583/128

ch2 (𝐻 ) ch2 (𝐻 ) −293/16 5/32 581/32
ch3 (1) ch2 (𝐻 ) 1, 689/16 −1, 689/16 0
ch2 (𝐻 ) ch3 (1) 1, 689/16 −1, 689/16 0
ch3 (1) ch3 (1) −11, 739/64 15, 267/32 −18, 795/64

ch2 (p) −733/16 −725/32 2, 191/32
ch3 (𝐻 ) 291/4 −291/4 0
ch4 (1) −8, 209/128 40, 519/256 −24, 101/256

ch6 (1) ch3 (1) −214, 651/12, 288 8, 453/512 11, 779/12, 288
ch6 (p) −733/1, 920 1, 153/3, 840 313/3, 840
ch8 (1) −8, 209/15, 360 15, 757/30, 720 661/30, 720

𝑋 = F0 𝑟 = 2 Δ = 𝐹 𝑐2 = 1 dim 𝑀 = 1

𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3 𝐹 |𝑋4

1 + 𝑠𝑡 1 + 𝑠𝑡 𝑠 + 𝑠𝑡 1 + 𝑠2𝑡
𝑠 + 𝑡 1 + 𝑠𝑡 𝑠 + 𝑠𝑡 𝑠 + 𝑠𝑡
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D
∫
𝑀
𝑅𝑘𝐷

∫
𝑀
𝑇𝑘𝐷

∫
𝑀
𝑆𝑘𝐷

ch2 (𝑍 ) −1/2 0 1/2
ch2 (𝐹 ) 1 0 −1
ch3 (1) 0 0 0

𝑋 = F0 𝑟 = 2 Δ = 𝐹 + 𝑍 𝑐2 = 2 dim 𝑀 = 3 𝐻 = 2𝐹 + 5𝑍

𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3 𝐹 |𝑋4

1 + 𝑠−1𝑡 𝑡2 + 𝑠−1 𝑡2 + 1 𝑡 + 1
𝑡 + 𝑡−1 𝑡 + 1 𝑠 + 𝑡 𝑠𝑡 + 𝑡−1

𝑡 + 1 𝑡2 + 1 𝑡2 + 𝑠 𝑠𝑡 + 1
𝑠−1𝑡 + 𝑡−1 𝑡 + 𝑠−1 𝑡 + 1 𝑡 + 𝑡−1

D
∫
𝑀
𝑅𝑘𝐷

∫
𝑀
𝑇𝑘𝐷

∫
𝑀
𝑆𝑘𝐷

1 0 0 0
ch2 (𝑍 ) −1/8 −1/4 3/8
ch2 (𝐹 ) 3/8 3/4 −9/8
ch3 (1) 0 0 0

ch2 (𝑍 ) ch2 (𝑍 ) 0 0 0
ch2 (𝐹 ) ch2 (𝑍 ) 0 0 0
ch3 (1) ch2 (𝑍 ) −3/16 0 3/16
ch2 (𝑍 ) ch2 (𝐹 ) 0 0 0
ch2 (𝐹 ) ch2 (𝐹 ) 0 0 0
ch3 (1) ch2 (𝐹 ) 9/16 0 −9/16
ch2 (𝑍 ) ch3 (1) −3/16 0 3/16
ch2 (𝐹 ) ch3 (1) 9/16 0 −9/16
ch3 (1) ch3 (1) 0 0 0

ch2 (p) 0 0 0
ch3 (𝑍 ) −1/8 0 1/8
ch3 (𝐹 ) 3/8 0 −3/8
ch4 (1) 0 0 0

Note the symmetry between this case and the previous, which is obtained by interchanging F and Z.

𝑋 = F0 𝑟 = 2 Δ = 𝐹 + 𝑍 𝑐2 = 2 dim 𝑀 = 3 𝐻 = 5𝐹 + 2𝑍

𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3 𝐹 |𝑋4

𝑠 + 𝑠−1 𝑠𝑡 + 𝑠−1 𝑠 + 𝑡 𝑠 + 1
𝑠𝑡−1 + 𝑠−1 𝑠 + 𝑠−1 𝑠 + 1 𝑠 + 𝑡−1

𝑠𝑡−1 + 1 𝑠 + 1 𝑠2 + 1 𝑠2 + 𝑡−1

𝑠 + 1 𝑠𝑡 + 1 𝑠2 + 𝑡 𝑠2 + 1
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D
∫
𝑀
𝑅𝑘𝐷

∫
𝑀
𝑇𝑘𝐷

∫
𝑀
𝑆𝑘𝐷

1 0 0 0
ch2 (𝑍 ) 3/8 3/4 −9/8
ch2 (𝐹 ) −1/8 −1/4 3/8
ch3 (1) 0 0 0

ch2 (𝑍 ) ch2 (𝑍 ) 0 0 0
ch2 (𝐹 ) ch2 (𝑍 ) 0 0 0
ch3 (1) ch2 (𝑍 ) 9/16 0 −9/16
ch2 (𝑍 ) ch2 (𝐹 ) 0 0 0
ch2 (𝐹 ) ch2 (𝐹 ) 0 0 0
ch3 (1) ch2 (𝐹 ) −3/16 0 3/16
ch2 (𝑍 ) ch3 (1) 9/16 0 −9/16
ch2 (𝐹 ) ch3 (1) −3/16 0 3/16
ch3 (1) ch3 (1) 0 0 0

ch2 (p) 0 0 0
ch3 (𝑍 ) 3/8 0 −3/8
ch3 (𝐹 ) −1/8 0 1/8
ch4 (1) 0 0 0

𝑋 = F0 𝑟 = 2 Δ = 𝐹 𝑐2 = 2 dim 𝑀 = 5 𝐻 = 2𝐹 + 7𝑍

𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3 𝐹 |𝑋4

𝑠−1𝑡2 + 1 𝑡2 + 𝑠−1 𝑡2 + 1 𝑡2 + 1
𝑡2 + 1 𝑡2 + 1 𝑡2 + 𝑠 𝑠𝑡2 + 1

𝑡 + 𝑠−1𝑡2 𝑡3 + 𝑠−1 𝑡3 + 1 𝑡2 + 𝑡
𝑡2 + 𝑡 𝑡3 + 1 𝑡3 + 𝑠 𝑠𝑡2 + 𝑡

𝑠−1𝑡2 + 𝑡−1 𝑡 + 𝑠−1 𝑡 + 1 𝑡2 + 𝑡−1

𝑡2 + 𝑡−1 𝑡 + 1 𝑠 + 𝑡 𝑠𝑡2 + 𝑡−1

D
∫
𝑀
𝑅𝑘𝐷

∫
𝑀
𝑇𝑘𝐷

∫
𝑀
𝑆𝑘𝐷

1 0 0 0
ch2 (𝑍 ) −1/32 −1/8 5/32
ch2 (𝐹 ) 1/8 1/2 −5/8
ch3 (1) 0 0 0

ch2 (𝑍 ) ch2 (𝑍 ) 0 0 0
ch2 (𝐹 ) ch2 (𝑍 ) 0 0 0
ch3 (1) ch2 (𝑍 ) −1/16 0 1/16
ch2 (𝑍 ) ch2 (𝐹 ) 0 0 0
ch2 (𝐹 ) ch2 (𝐹 ) 0 0 0
ch3 (1) ch2 (𝐹 ) 1/4 0 −1/4
ch2 (𝑍 ) ch3 (1) −1/16 0 1/16
ch2 (𝐹 ) ch3 (1) 1/4 0 −1/4
ch3 (1) ch3 (1) 0 0 0

ch2 (p) 0 0 0
ch3 (𝑍 ) −1/32 0 1/32
ch3 (𝐹 ) 1/8 0 −1/8
ch4 (1) 0 0 0

𝑋 = F0 𝑟 = 2 Δ = 𝐹 𝑐2 = 2 dim 𝑀 = 5 𝐻 = 3𝐹 + 5𝑍
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𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3 𝐹 |𝑋4

𝑠−1𝑡2 + 1 𝑡2 + 𝑠−1 𝑡2 + 1 𝑡2 + 1
𝑡2 + 1 𝑡2 + 1 𝑡2 + 𝑠 𝑠𝑡2 + 1

−𝑠𝑡 + 𝑠 + 𝑡 + 𝑠−1𝑡 𝑡 + 𝑠−1 𝑡 + 1 𝑡 + 1
−𝑡2 + 𝑡 + 𝑠−1𝑡2 + 1 𝑡 + 𝑠−1 𝑡 + 1 𝑡 + 1

1 + 𝑠−1𝑡 𝑠𝑡 − 𝑠 + 1 + 𝑠−1 𝑡 + 1 𝑡 + 1
1 + 𝑠−1𝑡 𝑡 + 1 − 𝑡−1 + 𝑠−1𝑡−1 𝑡 + 1 𝑡 + 1
1 + 𝑠−1𝑡 𝑡 + 𝑠−1 𝑡 + 𝑡−1 + 𝑠−1 − 𝑠−1𝑡−1 𝑡 + 1
1 + 𝑠−1𝑡 𝑡 + 𝑠−1 1 + 1 + 𝑠−1𝑡 − 𝑠−1 𝑡 + 1
1 + 𝑠−1𝑡 𝑡 + 𝑠−1 𝑡 + 1 𝑡 + 𝑡 − 𝑠−1𝑡 + 𝑠−1

1 + 𝑠−1𝑡 𝑡 + 𝑠−1 𝑡 + 1 𝑡2 − 𝑠−1𝑡2 + 1 + 𝑠−1𝑡
−𝑠𝑡 + 𝑠 + 𝑡 + 𝑡 𝑡 + 1 𝑠 + 𝑡 𝑠𝑡 + 1

−𝑠𝑡2 + 𝑠𝑡 + 𝑡2 + 1 𝑡 + 1 𝑠 + 𝑡 𝑠𝑡 + 1
𝑡 + 1 𝑠 + 𝑡 − 𝑠𝑡−1 + 𝑡−1 𝑠 + 𝑡 𝑠𝑡 + 1
𝑡 + 1 𝑠𝑡 − 𝑠 + 1 + 1 𝑠 + 𝑡 𝑠𝑡 + 1
𝑡 + 1 𝑡 + 1 𝑡 + 𝑠𝑡−1 + 1 − 𝑡−1 𝑠𝑡 + 1
𝑡 + 1 𝑡 + 1 𝑠 + 1 + 𝑠−1𝑡 − 𝑠−1 𝑠𝑡 + 1
𝑡 + 1 𝑡 + 1 𝑠 + 𝑡 𝑠𝑡 + 𝑡 − 𝑠−1𝑡 + 𝑠−1

𝑡 + 1 𝑡 + 1 𝑠 + 𝑡 𝑠𝑡2 − 𝑡2 + 𝑡 + 1
𝑠 + 𝑡 𝑠 + 𝑡 𝑠2 + 𝑡 𝑠2𝑡 + 1

𝑠 + 𝑠−1𝑡 𝑠𝑡 + 𝑠−1 𝑠𝑡 + 1 𝑠𝑡 + 1
𝑠 + 𝑠−1𝑡 𝑠𝑡 + 𝑠−1 𝑠 + 𝑡 𝑠 + 𝑡
𝑠𝑡 + 1 𝑠𝑡 + 1 𝑠2 + 𝑡 𝑠2𝑡 + 1

D
∫
𝑀
𝑅𝑘𝐷

∫
𝑀
𝑇𝑘𝐷

∫
𝑀
𝑆𝑘𝐷

1 0 0 0
ch2 (𝑍 ) −49/32 −49/8 245/32
ch2 (𝐹 ) 25/8 25/2 −125/8
ch3 (1) −1 1 0

ch2 (𝑍 ) ch2 (𝑍 ) −4 4 0
ch2 (𝐹 ) ch2 (𝑍 ) 2 −2 0
ch3 (1) ch2 (𝑍 ) −1/16 −6 97/16
ch2 (𝑍 ) ch2 (𝐹 ) 2 −2 0
ch2 (𝐹 ) ch2 (𝐹 ) 8 −8 0
ch3 (1) ch2 (𝐹 ) 1/4 12 −49/4
ch2 (𝑍 ) ch3 (1) −1/16 −6 97/16
ch2 (𝐹 ) ch3 (1) 1/4 12 −49/4
ch3 (1) ch3 (1) −2 2 0

ch2 (p) 0 0 0
ch3 (𝑍 ) −49/32 0 49/32
ch3 (𝐹 ) 25/8 0 −25/8
ch4 (1) −1 1 0

𝑋 = F1 𝑟 = 2 Δ = 𝐹 𝑐2 = 1 dim 𝑀 = 1

𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3 𝐹 |𝑋4

𝑠𝑡 + 1 𝑠𝑡 + 1 𝑠𝑡 + 𝑠 𝑠2𝑡 + 1
𝑠 + 𝑡 𝑠𝑡 + 1 𝑠𝑡 + 𝑠 𝑠𝑡 + 𝑠
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D
∫
𝑀
𝑅𝑘𝐷

∫
𝑀
𝑇𝑘𝐷

∫
𝑀
𝑆𝑘𝐷

1 0 0 0
ch2 (𝑍 ) −1 0 1
ch2 (𝐹 ) 1 0 −1
ch3 (1) 0 0 0

𝑋 = F1 𝑟 = 2 Δ = 𝑍 𝑐2 = 1 dim 𝑀 = 2

𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3 𝐹 |𝑋4

𝑠2 + 𝑠 𝑠2𝑡 + 𝑠 𝑠2 + 𝑠𝑡 𝑠2 + 1
𝑠𝑡−1 + 1 𝑠 + 1 𝑠 + 1 𝑠 + 𝑠−1𝑡−1

𝑠2 + 1 𝑠2𝑡 + 1 𝑠𝑡 + 𝑠 𝑠 + 1

D
∫
𝑀
𝑅𝑘𝐷

∫
𝑀
𝑇𝑘𝐷

∫
𝑀
𝑆𝑘𝐷

1 0 3/4 −3/4
ch2 (𝑍 ) 0 0 0
ch2 (𝐹 ) 0 0 0
ch3 (1) 5/16 0 −5/16

ch2 (𝑍 ) ch2 (𝑍 ) 9/2 −9/4 −9/4
ch2 (𝐹 ) ch2 (𝑍 ) −3/2 3/4 3/4
ch3 (1) ch2 (𝑍 ) 0 0 0
ch2 (𝑍 ) ch2 (𝐹 ) −3/2 3/4 3/4
ch2 (𝐹 ) ch2 (𝐹 ) 1/2 −1/4 −1/4
ch3 (1) ch2 (𝐹 ) 0 0 0
ch2 (𝑍 ) ch3 (1) 0 0 0
ch2 (𝐹 ) ch3 (1) 0 0 0
ch3 (1) ch3 (1) 0 0 0

ch2 (p) −1/2 1/4 1/4
ch3 (𝑍 ) 0 0 0
ch3 (𝐹 ) 0 0 0
ch4 (1) 5/16 −5/32 −5/32

𝑋 = F1 𝑟 = 2 Δ = 𝐹 + 𝑍 𝑐2 = 1 dim 𝑀 = 0

In this case, Conjecture 1.4 is again automatic for dimension reasons.

𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3 𝐹 |𝑋4

𝑠 + 1 𝑠𝑡 + 1 𝑠𝑡 + 𝑠 𝑠 + 1

We listed only one table for 𝑋 = F2 because the conjecture follows from the 𝑋 = F0 case. We kept
this table so that the reader can note that this table does not exactly match the table for the corresponding
𝑋 = F0 case, which is 𝑟 = 2, Δ = 𝐹 and 𝑐2 = 1 (see above). The reason is that the deformation does not
preserve Z.

𝑋 = F2 𝑟 = 2 Δ = 𝐹 + 𝑍 𝑐2 = 1 dim 𝑀 = 1
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𝐹 |𝑋1 𝐹 |𝑋2 𝐹 |𝑋3 𝐹 |𝑋4

𝑠2 + 𝑠 𝑠2𝑡 + 𝑠 𝑠2𝑡 + 𝑠2 𝑠2 + 1
𝑠2 + 1 𝑠2𝑡 + 1 𝑠2𝑡 + 𝑠 𝑠 + 1

D
∫
𝑀
𝑅𝑘𝐷

∫
𝑀
𝑇𝑘𝐷

∫
𝑀
𝑆𝑘𝐷

1 0 0 0
ch2 (𝑍 ) 3/2 0 −3/2
ch2 (𝐹 ) −1/2 0 1/2
ch3 (1) 0 0 0
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