ABOUT THE ZEROS OF SOME ENTIRE FUNCTIONS AND THEIR DERIVATIVES

TODOR STOYANOV

(Received 15 August 1998; revised 14 April 1999)

Communicated by P. G. Fenton

Abstract

In this article we localize the zeros of some polynomials and the derivatives of some entire functions of finite genus. If we put $m=1$ in the condition of Theorem 1 we obtain the famous Obreshkoff Theorem which can be regarded as a 'complex version' of a well-known theorem due to Laguerre. The nonreat zeros of the derivative of the real entire function of Theorem 3 must belong to circles V_{k} which are similar to the Jensen circles for polynomials.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 30D20.

Defintion. By 'real entire function' will be meant an entire function whose Maclaurin-series expansion has only real coefficients.

Further all sequences $\left\{z_{k}\right\}_{k=1}^{\infty}$ will satisfy $\lim _{k \rightarrow \infty}\left|z_{k}\right|=\infty$.
Definition. We will write ${ }_{n} P_{k}=n!/(n-k)!,\binom{n}{k}={ }_{n} P_{k} / k!$.
Theorem 1. Let the zeros $a_{k}, k=1, \ldots, n$, of the polynomial $p(z)$ satisfy $\left|a_{k}\right| \leq 1$. Then the zeros z of the polynomial $q(z)=\gamma p(z)+\sum_{k=1}^{m} z^{k} p^{(k)}(z) /{ }_{n} P_{k}$ satisfy $|z| \leq \theta$, where $\operatorname{Re} \gamma \geq-m / 2,1 \leq m \leq n$, and $\theta=\left(2^{1 / m}-1\right)^{-1}$.

Proof. Let z be such that $q(z)=0$ and $p(z) \neq 0$. Then

$$
\begin{aligned}
A=\frac{q(z)}{p(z)}= & \gamma+\frac{1}{n}\left[\frac{z}{z-a_{1}}+\cdots+\frac{z}{z-a_{n}}\right]+\cdots \\
& +\frac{m!}{{ }_{n} P_{m}}\left[\frac{z^{m}}{\left(z-a_{1}\right) \cdots\left(z-a_{m}\right)}+\cdots\right]=0 .
\end{aligned}
$$

(C) 2000 Australian Mathematical Society $0263-6115 / 2000 \$$ A2.00 +0.00

Let us consider the last term s_{m} in this sum. The estimates for the other terms are analogous. Define

$$
\begin{aligned}
A & =\gamma+s_{1}+\cdots+s_{m}=0 \\
B & =\binom{n}{m} s_{m}=\frac{z^{m}}{\left(z-a_{1}\right) \cdots\left(z-a_{m}\right)}+\cdots+\frac{z^{m}}{\left(z-a_{n-m+1}\right) \cdots\left(z-a_{n}\right)} \\
a & =z^{m}-\left(z-a_{1}\right) \cdots\left(z-a_{m}\right)
\end{aligned}
$$

Then

$$
\begin{gathered}
C=\frac{z^{m}}{\left(z-a_{1}\right) \cdots\left(z-a_{m}\right)}=\frac{z^{m}}{\left(z^{m}-a\right)}=\frac{1}{2}+\frac{z^{m}+a}{2\left(z^{m}-a\right)} \\
D=\operatorname{Re} \frac{z^{m}+a}{z^{m}-a}=\frac{\left|z^{m}\right|^{2}-|a|^{2}}{\left|z^{m}-a\right|^{2}}=\frac{\left(|z|^{m}-|a|\right)\left(|z|^{m}+|a|\right)}{\left|z^{m}-a\right|^{2}}, \\
|a| \leq\left|a_{1}+\cdots+a_{m}\right||z|^{m-1}+\cdots+\left|a_{1} \cdots a_{m}\right| \leq m|z|^{m-1}+\binom{m}{2}|z|^{m-2}+\cdots+1 .
\end{gathered}
$$

Thus

$$
\begin{aligned}
|z|^{m}-|a| & \geq 2|z|^{m}-\left(|z|^{m}+m|z|^{m-1}+\binom{m}{2}|z|^{m-2}+\cdots+1\right) \\
& =2|z|^{m}-(|z|+1)^{m}
\end{aligned}
$$

If $|z|>\theta=\left(2^{1 / m}-1\right)^{-1}$ we obtain $D>0$, that is $\operatorname{Re} s_{m}>1 / 2$. Finally if we note that $\theta_{m}=\left(2^{1 / m}-1\right)^{-1}$, then obviously $1=\theta_{1}<\theta_{2}<\cdots<\theta_{m}$ and therefore $\operatorname{Re} A=\operatorname{Re}\left(\gamma+s_{1}+\cdots+s_{m}\right)>0$ which proves the theorem.

REMARK. We can formulate Theorem 1 in the following form: Let the zeros $a_{k}, k=$ $1, \ldots, n$, of the polynomial $p(z)$ satisfy $\left|a_{k}\right| \leq 1$. Then the zeros z of the polynomial $q(z)=\gamma p(z)+\sum_{k=1}^{m} z^{k} p^{(k)}(z)$ satisfy $|z| \leq \theta$, where $\operatorname{Re} \gamma \geq-1 / 2 \sum_{k=1 n}^{m} P_{k}$, $1 \leq m \leq n$, and $\theta=\left(2^{1 / m}-1\right)^{-1}$.

THEOREM 2. Let $f(z)=\exp \left(d+c z^{m}+b z^{m+1}+a z^{m+2}\right) \prod_{k=1}^{\infty} E_{m}\left(z / z_{k}\right)$ be a real entire function, where m is a positive integer, $a, b, c, d \in \mathbb{R}, a \geq 0, b \leq 0, c \geq 0$, and the Weierstrass factors are

$$
E_{m}(\zeta)=(1-\zeta) \exp \left(\zeta+\zeta^{2} / 2+\cdots+\zeta^{m} / m\right)
$$

Let all zeros z_{k} of $f(z)$ satisfy $\operatorname{Arg}\left(z_{k}\right) \in(-\pi /[2 m+2], \pi /[2 m+2])$. Then all zeros z of $f^{\prime}(z)$ satisfy $\operatorname{Re}(z) \geq 0$.

Proof. Let z be such that $f^{\prime}(z)=0$, and write $z=x+i y$, where $x, y \in \mathbb{R}, x<0$. Then

$$
\begin{aligned}
A= & (\log f(z))^{\prime}=\frac{f^{\prime}(z)}{f(z)} \\
= & m c z^{m-1}+(m+1) b z^{m}+(m+2) a z^{m+1} \\
& +\sum_{k=1}^{\infty}\left[\frac{1}{z-z_{k}}+\frac{1}{z_{k}}+\frac{z}{z_{k}^{2}}+\cdots+\frac{1}{z_{k}}\left(\frac{z}{z_{k}}\right)^{m-1}\right] \\
= & \frac{m c z^{m} \bar{z}}{|z|^{2}}+(m+1) b z^{m}+(m+2) a z^{m} z+\sum_{k=1}^{\infty} \frac{\left(z / z_{k}\right)^{m}}{z-z_{k}} \\
= & z^{m}\left(\frac{m c \bar{z}}{|z|^{2}}+(m+1) b+(m+2) a z+\sum_{k=1}^{\infty} \frac{\left(\overline{z-z_{k}}\right) / z_{k}^{m}}{\left|z-z_{k}\right|^{2}}\right)=0 .
\end{aligned}
$$

Let

$$
B=\frac{m c \bar{z}}{|z|^{2}}+(m+1) b+(m+2) a z+\sum_{k=1}^{\infty} \frac{\left(\overline{z-z_{k}}\right) / z_{k}^{m}}{\left|z-z_{k}\right|^{2}} .
$$

If $f\left(z_{k}\right)=0$ then $f\left(\bar{z}_{k}\right)=0$, since $f(z)$ is real entire function. Let $z_{k}=x_{k}+i y_{k}$, $\bar{z}_{k}=x_{k}-i y_{k}$, where $x_{k}, y_{k} \in \mathbb{R}$. Then

$$
\begin{aligned}
C & =2 B-\left[\frac{2 m c \bar{z}}{|z|^{2}}+2(m+1) b+2(m+2) a z\right] \\
& =\sum_{k=1}^{\infty}\left\{\frac{\left(\overline{z-z_{k}}\right) / z_{k}^{m}}{\left|z-z_{k}\right|^{2}}+\frac{\left(\bar{z}-z_{k}\right) / \bar{z}_{k}^{m}}{\left|z-\bar{z}_{k}\right|^{2}}\right\} \\
& =\sum_{k=1}^{\infty}\left[\bar{z}_{k}^{m}\left(\overline{z-z_{k}}\right)\left|z-\bar{z}_{k}\right|^{2}+z_{k}^{m}\left(\bar{z}-z_{k}\right)\left|z-z_{k}\right|^{2}\right] / D_{k},
\end{aligned}
$$

where $D_{k}=\left|z_{k}^{m}\right|^{2}\left|z-\bar{z}_{k}\right|^{2}\left|z-z_{k}\right|^{2}$.
Let $r=x-x_{k}, q=y-y_{k}, s=y+y_{k}$ and $z_{k}=p_{k}\left(\cos \varphi_{k}+i \sin \varphi_{k}\right)$, and

$$
\begin{aligned}
\Delta_{k}= & {\left[\bar{z}_{k}^{m}\left(\overline{z-z_{k}}\right)\left|z-\bar{z}_{k}\right|^{2}+z_{k}^{m}\left(\bar{z}-z_{k}\right)\left|z-z_{k}\right|^{2}\right] / p_{k}^{m} } \\
= & {\left[\cos \left(m \varphi_{k}\right)-i \sin \left(m \varphi_{k}\right)\right](r-i q)\left(r^{2}+q^{2}\right) } \\
& +\left[\cos \left(m \varphi_{k}\right)+i \sin \left(m \varphi_{k}\right)\right](r-i s)\left(r^{2}+s^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Re} \Delta_{k} & =\left[r \cos \left(m \varphi_{k}\right)-q \sin \left(m \varphi_{k}\right)\right]\left(r^{2}+s^{2}\right)+\left[r \cos \left(m \varphi_{k}\right)+s \sin \left(m \varphi_{k}\right)\right]\left(r^{2}+q^{2}\right) \\
& =r \cos \left(m \varphi_{k}\right)\left(2 r^{2}+s^{2}+q^{2}\right)+\sin \left(m \varphi_{k}\right)\left(r^{2} s+q^{2} s-r^{2} q-s^{2} q\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2 r \cos \left(m \varphi_{k}\right)\left(r^{2}+y^{2}+y_{k}^{2}\right)+2 y_{k} \sin \left(m \varphi_{k}\right)\left(r^{2}-y^{2}+y_{k}^{2}\right) \\
& =2\left(r^{2}+y_{k}^{2}\right)\left[r \cos \left(m \varphi_{k}\right)+y_{k} \sin \left(m \varphi_{k}\right)\right]+2 y^{2}\left[r \cos \left(m \varphi_{k}\right)-y_{k} \sin \left(m \varphi_{k}\right)\right]
\end{aligned}
$$

Since, by hypothesis, $\varphi_{k} \in(-\pi /[2 m+2], \pi /[2 m+2])$, we have $\cos \left(m \varphi_{k}\right)>0$, and if we assume that $\left[r \cos \left(m \varphi_{k}\right)-y_{k} \sin \left(m \varphi_{k}\right)\right] \geq 0$, then $\left(x-x_{k}\right) \cos \left(m \varphi_{k}\right)+$ $y_{k} \sin \left(m \varphi_{k}\right) \leq 0$. Since $x<0, x_{k}=p_{k} \cos \varphi_{k}$ and $y_{k}=p_{k} \sin \varphi_{k}$, we obtain

$$
\begin{aligned}
& x_{k} \cos \left(m \varphi_{k}\right)+y_{k} \sin \left(m \varphi_{k}\right) \leq 0, \quad \text { or } \\
& \cos \varphi_{k} \cos \left(m \varphi_{k}\right)+\sin \varphi_{k} \sin \left(m \varphi_{k}\right) \leq 0,
\end{aligned}
$$

that is $\cos \left[(m-1) \varphi_{k}\right] \leq 0$, which is impossible since $\varphi_{k} \in(-\pi /[2 m+2], \pi /[2 m+$ 2]). Therefore, $\left[r \cos \left(m \varphi_{k}\right)-y_{k} \sin \left(m \varphi_{k}\right)\right]<0$. If we assume that $\left[r \cos \left(m \varphi_{k}\right)+\right.$ $\left.y_{k} \sin \left(m \varphi_{k}\right)\right] \geq 0$, by the same way we obtain $\cos \left[(m+1) \varphi_{k}\right] \leq 0$, which is impossible since $\varphi_{k} \in(-\pi /[2 m+2], \pi /[2 m+2])$. Therefore, $\left[r \cos \left(m \varphi_{k}\right)+y_{k} \sin \left(m \varphi_{k}\right)\right]<0$ and $\operatorname{Re} \Delta_{k}<0$, that is $\operatorname{Re} B<0$, because $a \geq 0, b \leq 0, c \geq 0$. But $A=z^{m} B=0$, that is $B=0$. The contradiction completes the proof.

THEOREM 3. Let $f(z)=\exp \left(d+c z^{m}+b z^{m+1}+a z^{m+2}\right) \prod_{k=1}^{\infty} E_{m}\left(z / z_{k}\right)$ be a real entire function, where m is a positive integer and $a, b, c, d \in \mathbb{R}, a \leq 0, c \geq 0$. Let all zeros z_{k} of $f(z)$ satisfy $\varphi_{k} \in(-\pi /[2 m], \pi /[2 m])$, where $\varphi_{k}=\operatorname{Arg}\left(z_{k}\right)$. Let V_{k} be the disk

$$
V_{k}=\left\{\left|z-\operatorname{Re} z_{k}\right| \leq\left|\operatorname{Im} z_{k}\right| \frac{1+\left|\sin \left(m \varphi_{k}\right)\right|}{\cos \left(m \varphi_{k}\right)}\right\}
$$

and let $M=\bigcup_{k=1}^{\infty} V_{k}$. Then if $f^{\prime}(z)$ has nonreal roots, they must belong to M.
PRoof. Let z be such that $f^{\prime}(z)=0$ and $z \notin \mathbb{R}$, where $z=x+i y, x, y \in \mathbb{R}$, $y>0, z \neq z_{k}$ and $z \notin M$. Let $A=(\log f(z))^{\prime}=f^{\prime}(z) / f(z)$. As in Theorem 2 we obtain:

$$
\begin{aligned}
\Delta_{k}= & {\left[\bar{z}_{k}^{m}\left(\overline{z-z_{k}}\right)\left|z-\bar{z}_{k}\right|^{2}+z_{k}^{m}\left(\bar{z}-z_{k}\right)\left|z-z_{k}\right|^{2}\right] / p_{k}^{m} } \\
= & {\left[\cos \left(m \varphi_{k}\right)-i \sin \left(m \varphi_{k}\right)\right](r-i q)\left(r^{2}+s^{2}\right) } \\
& +\left[\cos \left(m \varphi_{k}\right)+i \sin \left(m \varphi_{k}\right)\right](r-i s)\left(r^{2}+q^{2}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
-\operatorname{Im} \Delta_{k} & =\left[q \cos \left(m \varphi_{k}\right)+r \sin \left(m \varphi_{k}\right)\right]\left(r^{2}+s^{2}\right)+\left[s \cos \left(m \varphi_{k}\right)-r \sin \left(m \varphi_{k}\right)\right]\left(r^{2}+q^{2}\right) \\
& =2 y\left(r^{2}+y^{2}-y_{k}^{2}\right) \cos \left(m \varphi_{k}\right)+4 y y_{k} r \sin \left(m \varphi_{k}\right)
\end{aligned}
$$

Let $C_{k}=\cos \left(m \varphi_{k}\right)\left(r^{2}+y^{2}-y_{k}^{2}\right)+2 \sin \left(m \varphi_{k}\right) y_{k} r$ and $R=\left|z-\operatorname{Re} z_{k}\right|$, so that $r^{2}+y^{2}=R^{2}$, and therefore $r=\varepsilon \sqrt{R^{2}-y^{2}}$, where $\varepsilon= \pm 1$. We have

$$
C_{k} \geq \cos \left(m \varphi_{k}\right)\left(R^{2}-y_{k}^{2}\right)-2\left|\sin \left(m \varphi_{k}\right) \| y_{k}\right| R
$$

$$
\begin{aligned}
& =\cos \left(m \varphi_{k}\right) R^{2}-2\left|\sin \left(m \varphi_{k}\right)\right|\left|y_{k}\right| R-\cos \left(m \varphi_{k}\right) y_{k}^{2} \\
& =\cos \left(m \varphi_{k}\right)\left(R-R_{1}\right)\left(R-R_{2}\right),
\end{aligned}
$$

where

$$
R_{1}=\left|y_{k}\right| \frac{\left|\sin \left(m \varphi_{k}\right)\right|-1}{\cos \left(m \varphi_{k}\right)}, \quad R_{2}=\left|y_{k}\right| \frac{\left|\sin \left(m \varphi_{k}\right)\right|+1}{\cos \left(m \varphi_{k}\right)}
$$

Because $\varphi_{k} \in(-\pi /[2 m], \pi /[2 m])$, we have $\cos \left(m \varphi_{k}\right)>0$. Then if $R>\left|\operatorname{Im} z_{k}\right|[1+$ $\left.\left|\sin \left(m \varphi_{k}\right)\right|\right] / \cos \left(m \varphi_{k}\right)$, we obtain $C_{k}>0$. Hence $\operatorname{Im} \Delta_{k}=-2 y C_{k}<0$, that is $\operatorname{Im} B<0$, because $a \leq 0, c \geq 0$, and from proof of Theorem 2 we know that

$$
\begin{aligned}
C & =2 B-\left[\frac{2 m c \bar{z}}{|z|^{2}}+2(m+1) b+2(m+2) a z\right] \\
& =\sum_{k=1}^{\infty}\left\{\frac{\left(\overline{z-z_{k}}\right) / z_{k}^{m}}{\left|z-z_{k}\right|^{2}}+\frac{\left(\bar{z}-z_{k}\right) / \bar{z}_{k}^{m}}{\left|z-\bar{z}_{k}\right|^{2}}\right\} \\
& =\sum_{k=1}^{\infty}\left[\bar{z}_{k}^{m}\left(\overline{z-z_{k}}\right)\left|z-\bar{z}_{k}\right|^{2}+z_{k}^{m}\left(\bar{z}-z_{k}\right)\left|z-z_{k}\right|^{2}\right] / D_{k}=\sum_{k=1}^{\infty} \Delta_{k} / D_{k},
\end{aligned}
$$

where $D_{k}=\left|z_{k}^{m}\right|^{2}\left|z-\bar{z}_{k}\right|^{2}\left|z-z_{k}\right|^{2}$.
But $A=z^{m} B=0$, that is $B=0$. This contradiction proves the theorem.
REMARK. Theorem 3 remains true if we change the condition $\varphi_{k} \in(-\pi /[2 m]$, $\pi /[2 m])$ to the condition $\cos \left(m \varphi_{k}\right)>0$.

COROLLARY 1. Let $f(z)=\exp \left(d+c z^{m}+b z^{m+1}+a z^{m+2}\right) \prod_{k=1}^{\infty} E_{m}\left(z / z_{k}\right)$ be a real entire function, where m is a positive integer and $a, b, c, d \in \mathbb{R}, a \leq 0, c \geq 0$ and all zeros z_{k} of $f(z)$ are real and positive. Then all zeros of $f^{\prime}(z)$ are real.

References

[1] G. Pólya and G. Szegö, Problems and theorems in analysis I (Springer, Berlin, 1972).
[2] T. Stoyanov, 'Some extensions of Rolle's and Gauss-Lucas theorems', in: Second international workshop transform methods and special functions (Varna, August 23-30, 1996).
[3] E. C. Titchmarsh, The theory of functions (Oxford Univ. Press, London, 1939).
Economic University
Department of Mathematics
bul. Knyaz Boris I 77
Varna 9002
Bulgaria

