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Abstract

In Benth and Vos (2013) we introduced a multivariate spot price model with stochastic
volatility for energy markets which captures characteristic features, such as price spikes,
mean reversion, stochastic volatility, and inverse leverage effect as well as dependencies
between commodities. In this paper we derive the forward price dynamics based on our
multivariate spot price model, providing a very flexible structure for the forward curves,
including contango, backwardation, and hump shape. Moreover, a Fourier transform-
based method to price options on the forward is described.
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1. Introduction

During the last decades the energy markets have been liberalized worldwide, resulting in
market places for commodities such as electricity, gas, and coal. There are several markets
for each of these commodities, geographically spread over the continents. For example, in
Europe we have markets for power in the UK, Germany, France, and the Nordic countries, to
mention a few. There are transmission lines which interconnect these markets for electricity.
Furthermore, since coal and gas are used to a large extent as fuels for power production, the prices
for these commodities naturally impact the power prices. These markets become more and more
integrated, both within one commodity, but also across the commodities. For this reason, there
is an increasing interest in studying multivariate models for energy markets, including cross-
commodity models (such as, for example, gas, coal, and electricity) or multivariate models
for the same commodity traded in different, but integrated markets (such as, for example, the
power markets in the Nordic countries and Germany).

In Benth and Vos [6] we proposed a stochastic dynamic for cross-commodity spot price
modeling, generalizing the univariate dynamics studied by Benth [5]. The model is flexible
enough to capture spikes and mean reversion. Moreover, it includes the possibility to model
inverse leverage and stochastic volatility. The proposed dynamics can model co- and
independent jump behavior (spikes) in cross-commodity markets, and is analytically tractable.
We apply the multivariate extension of the stochastic volatility model of Barndorff-Nielsen and
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Shephard [2], analyzed in detail by Pigorsch and Stelzer [16]. The mean-reverting features of
our spot model require a significant extension of their analysis.

In this paper we derive the forward dynamics using a noarbitrage pricing. Despite the
rather general nature of our spot model, the dynamics of the forward prices are analytically
computable. It turns out that the implied forward curves can be in contango and backwardation,
as well as having humps. As has been pointed out by Geman [11], hump-shaped forward curves
have been observed in, for instance, the oil market. Due to the flexibility of the multivariate
model, even an oscillation of the forward price curve can be achieved. As an implication of
the stationarity properties of the spot model, the forward prices in the long end of the forward
curve (far until maturity) will move deterministically. The Samuelson effect can be identified
in the forward dynamics as well.

By using Fourier methods, options on spreads between different forward contracts can be
represented as integrals which can be computed efficiently. Spread options are traded for
in various energy markets, mostly over-the-counter. However, such options are also used in
valuation of new power plant projects and the construction of interconnecting pipelines between
different markets. In fact, the construction of a new pipeline connecting two markets can be
viewed as a long-term spread option. On the other hand, the value of a gas-fired power plant
can be represented as a spread between electricity and gas (so-called spark spread).

The paper is organized as follows. In Section 2 we recall the spot model proposed in Benth
and Vos [6]. Next, in Section 3, the implied multivariate forward dynamics are derived and
properties of the forward curve are analyzed. Methods based on the Fourier transform are
applied to cross-commodity option pricing in Section 4, with special attention paid to spread
options. Finally, in Section 5 we conclude.

2. A cross-commodity energy spot price model with stochastic volatility

In this section we briefly recall the main aspects of the spot model with stochastic volatility
for cross-commodity energy markets introduced in Benth and Vos [6]. We suppose that we
are given a complete filtered probability space (�,F ,P) equipped with the filtration {Ft }t≥0
satisfying the usual conditions (see, e.g. [17]).

Assume that m ≤ n ∈ N, and, for d ∈ N, consider a d-dimensional spot price dynamic
as a combination of a seasonality function �, stochastic processes {Yi}mi=1 modeling spikes,
and a stochastic process X modeling the ‘normal’ variations of the price evolution. Here, the
seasonality and the stochastic processes X and {Yi}mi=1 are all d-dimensional. More precisely,
we define the spot price dynamics of d energy commodities as follows:

S(t) = �(t) · exp

(
X(t)+

m∑
i=1

Yi(t)

)
. (1)

Here the dot denotes pointwise multiplication, and the seasonality � is supposed to be a
deterministic measurable function. The stochastic processes {Yi}mi=1 are d-dimensional
Ornstein–Uhlenbeck processes driven by vector-valued subordinators {Li}mi=1, that is, Lévy
processes which are increasing in each of their coordinates (see [4]):

dYi(t) = (µi + BiYi(t)) dt + ηi dLi(t).

Here {µi}mi=1 are vectors in Rd . Furthermore, the {Bi}mi=1 are elements of GLd(R), the group
of d × d matrices which are invertible, while the {ηi}mi=1 are elements of Md(R), the space of

https://doi.org/10.1239/aap/1370870130 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870130


574 F. E. BENTH AND L. VOS

real d × d matrices. The entries of ηi do not necessarily have to be positive, so although the
Li are subordinators, the process Yi may exhibit negative jumps. In electricity markets, say,
negative spikes are observed.

The ‘normal variations’processX is an extension of the Barndorff-Nielsen and Shephard [2]
stochastic volatility (BNS SV) model into the multidimensional Ornstein–Uhlenbeck setting.
The stochastic process X is defined by the stochastic differential equation

dX(t) = AX(t) dt +�(t)1/2 dW(t), (2)

where A is a matrix in GLd(R) and W is a standard d-dimensional Brownian motion in Rd .
The square of the volatility �(t) is chosen to be a matrix-valued stochastic process. More
precisely, the stochastic volatility�(t) is a superposition of the positive-definite matrix-valued
Ornstein–Uhlenbeck processes as introduced in [3], i.e.

�(t) =
n∑
j=1

ωjZj (t),

with
dZj (t) = (CjZj (t)+ Zj (t)C

�
j ) dt + dL̃j (t),

where theωj s are positive weights summing up to 1. Moreover, for j = 1, . . . , n,Cj ∈ GLd(R)
and L̃j are independent matrix-valued subordinators, that is, independent increment processes
with values in S+

d , the positive-definite cone of symmetric d × d matrices. Naturally, the L̃j
are independent ofW for j = 1, . . . , n, and we suppose for convenience that the subordinators
are driftless. In order to have the Itô integrals in (2) well defined, we suppose that

P

(∫ T̃

0
tr(�(t)) dt < ∞

)
= 1.

Here, T̃ < ∞ is some finite-horizon time for our energy markets, and tr is the trace operator on
matrices. We assume that the eigenvalues of Cj have negative real parts, a necessary condition
for ensuring stationarity of the Zj s. We denote by νL̃j the Lévy measure of L̃j , j = 1, . . . , n.

The processesX and Yi are Ornstein–Uhlenbeck processes. Applying the multidimensional
Itô formula (see [14]) yields the following explicit dynamics: for 0 ≤ s ≤ t ,

X(t) = eA(t−s)X(s)+
∫ t

s

eA(t−u)�(u)1/2 dW(u), (3)

Yi(t) = eBi(t−s)Yi(s)+ B−1
i (I − eBi(t−s))µi +

∫ t

s

eBi(t−u)ηi dLi(u) (4)

for i = 1, . . . , m. The matrix exponentials are defined as usual as eA := I + ∑∞
i=1A

n/n!.
According to Barndorff-Nielsen and Stelzer [3, Section 4], the solution of Zj (t), j =

1, . . . , n, is given by

Zj (t) = eCj (t−s)Zj (s)eC
�
j (t−s) +

∫ t

s

eCj (t−u) dL̃j (u)e
C�
j (t−u). (5)

The matrix-valued stochastic integral in the second term of Zj (t) is understood as follows. For
two Md(R)-valued bounded and measurable functions E(u) and F(u) on [t, s], the notation
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∫ t
s
E(u) dL̃(u)F (u) means that the matrix G(s, t) ∈ Md(R) with coordinates defined by

Gij (s, t) =
d∑
k=1

d∑
l=1

∫ t

s

Eik(u)Flj (u) dL̃kl(u).

Here, L̃ is the generic notation for some L̃j . We note that, since the L̃j are supposed to be right
continuous with left limits (RCLL), the processes Zj are also RCLL.

In energy markets such as gas and electricity it is often observed that a spike and an increase
in volatility occur at the same time. This is known as the inverse leverage effect. To model this
phenomena, we take the vector-valued subordinatorsLi driving the processesYi, i = 1, . . . , m,
as the diagonal entries of the first m matrix-valued subordinators L̃j , j = 1, . . . , m. If one of
the off-diagonal elements jumps, the diagonal element also has to jump in order to keep the
volatility process �(t) in the positive-definite cone S+

d . Such a modeling choice ensures that
the volatility jumps simultaneously with a spike in the spot price process. Since n ≥ m ∈ N,
and the volatility process is a weighted sum of n different volatility processes, there are still
n−m volatility processes Zj , j = m+ 1, . . . , n, which can be freely chosen.

By turning off the processes Yi we obtain a multivariate extension of the Schwartz model
with stochastic volatility and stock price dynamics:

S(t) = �(t) · exp(X(t)),

where X(t) is defined in (2). The Schwartz model with constant volatility is a mean-reversion
process proposed by Schwartz [18] for spot price dynamics in commodity markets like oil.

We impose the following log-integrability conditions on the subordinators: for j = 1, . . . , n,
it holds that

E[log+ ‖L̃j (1)‖] < ∞,

where log+(x) is defined as max(log(x), 0). We use the Frobenius norm for matrices, ‖A‖ =
tr(A�A)1/2, A ∈ Md(R). This is the basic condition on the spot price model in [6].

For a detailed analysis of this spot price model for cross-commodity energy markets, we
refer the reader to [6].

3. Forward pricing

In commodity markets, forward contracts are commonly traded on exchanges, including
power, gas, oil, coal, etc. In this section we derive the forward price dynamics based on the
multivariate spot price model (1).

Appealing to general arbitrage theory, we define the forward price F(t, τ ) at time t ≥ 0 for
contracts delivering the energy commodity at time τ ≥ t by (see, e.g. [9, Chapter 8B])

F(t, τ ) = EQ[S(τ) | Ft ],
where Q is a risk-neutral probability measure. This definition is valid as long as S(τ) ∈ L1(Q).
Below we give sufficient conditions ensuring integrability of the spot price with respect to a
parametric class of pricing measures Q. Since the spot price is an adapted process, we obtain
the well-known convergence of spot and forward prices at maturity, i.e.

F(τ, τ ) = S(τ).

It is worth noting that in some energy markets the forward contracts deliver the underlying
commodity over a period rather than at a fixed maturity time τ . This includes gas and electricity,
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but also more exotic markets like temperature. In these markets, the forward prices can be
represented as some functional of F(t, τ ), usually the average of F(t, τ ) over τ , taken over
the delivery period of the forward contract. We will not consider this situation here; however,
the calculations can be easily adjusted to take this into account (see, for example, [7] for a
discussion).

The stochastic volatility model we are discussing gives rise to an incomplete market, and,
hence, there exists a continuum of equivalent martingale measures Q that can be used for
pricing. Moreover, in energy markets, the underlying spot is in general not tradeable, due
to, for example, high storage costs, illiquidity, and other frictions such as transportation for
delivery. In the extreme case of electricity, it is impossible to trade the underlying spot by
the very nature of the commodity. Hence, the classical buy-and-hold hedging argument to pin
down a forward price fails. As a result, all equivalent measures Q ∼ P may be chosen as
pricing measures since the underlying spot is not directly tradeable. In our considerations, we
do not require the martingale property under Q for discounted spot prices. We refer the reader
to [7] for more on this.

3.1. A class of equivalent probabilities

A convenient way to define a parametric class of risk-neutral probabilities for Lévy-based
models is the Esscher transform (see [7] for applications of the Esscher transform in energy
markets). Before introducing the measure transform, we need to introduce some notation and
state some conditions: for V ∈ S+

d , we let φL̃j (V ) be the cumulant function of L̃j (1), that is,

φL̃j (V ) = ln E[exp(itr(V L̃j (1)))].
The Esscher transform is defined via the logarithmic moment generating functions of L̃j , and
for this purpose we need to have certain exponential moments existing for L̃j . Let 	j ∈ S+

d ,
and suppose that φL̃j (−i	j) is well defined. We have

φL̃j (−i	j) =
∫

S+
d

{etr(	jU) − 1}νL̃j (dU),

and, therefore, φL̃j (−i	j) is well defined as long as∫
S+
d

{etr(	jU) − 1}νL̃j (dU) < ∞. (6)

Note that, for U,V ∈ S+
d , tr(UV ) = 〈U,V 〉, the inner product associated with the Frobenius

matrix norm ‖A‖ := tr(A�A)1/2. Hence, we have the inequality |tr(UV )| ≤ ‖U‖‖V ‖. Thus,
a sufficient condition for (6) to hold is that∫

S+
d

e|tr(	jU)|νL̃j (dU) ≤
∫

S+
d

e‖	j ‖‖U‖νL̃j (dU) < ∞.

Throughout this paper, we suppose that there exists a constant cj > 0 such that the following
exponential integrability condition holds for νL̃j :∫

S+
d

ecj ‖U‖νL̃j (dU) < ∞ (7)

for j = 1, . . . , n. This condition implies that φL̃j (−i	j) is well defined for all 	j ∈ S+
d such

that ‖	j‖ ≤ cj .
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We move on to define the equivalent probability measure Q. For 	j ∈ S+
d , such that

‖	j‖ ≤ cj , define the processes

Vj (t) = exp
(
tr(	j L̃j (t))− φ

j

L̃
(−i	j)t

)
for j = 1, . . . , n and t ≤ T̃ . Here we recall that T̃ is a finite time horizon of the market
for which all delivery times τ of interest are included. Note that Vj (t) are martingales for
j = 1, . . . , m: in fact, by the exponential moment condition in (7) we find that

E[Vj (t)] = 1

for every j = 1, . . . , n. For a vector θ0 ∈ Rd , introduce the process

V0(t) = exp

(
−

∫ t

0
θ�

0 �
−1/2(s) dW(s)− 1

2
θ�

0

∫ t

0
�−1(s)θ0 ds

)
.

We have the following lemma.

Lemma 1. For all θ0 ∈ Rd , the process V0(t) for t ≤ T̃ is a martingale.

Proof. We show that the Novikov condition holds. From (5) we have, for every j = 1, . . . , n
and any x ∈ Rd ,

x�Zj (t)x = x�eCj tZj (0)e
C�
j t x + x�

∫ t

0
eCj (t−u) dL̃j (u)e

C�
j (t−u)x

≥ x�eCj (t−s)Zj (s)eC
�
j (t−s)x

by positive definiteness of the stochastic integral term. Hence,

�(t) =
n∑
j=1

ωjZj (t) ≥
n∑
j=1

ωj eCj (t−s)Zj (s)eC
�
j (t−s) > 0.

But then, from linear algebra on positive-definite matrices,

�−1(t) ≤
( n∑
j=1

ωj e−Cj tZ−1
j (0)e−C�

j t

)−1

,

which means in particular that

θ�
0 �

−1(t)θ0 ≤ θ�
0

( n∑
j=1

ωj e−Cj tZ−1
j (0)e−C�

j t

)−1

θ0.

As the right-hand side is a continuous function in t on [0, T̃ ], it follows that

E

[
exp

(
1

2

∫ T̃

0
θ�

0 �
−1(t)θ0 dt

)]

≤ E

[
exp

(
1

2

∫ T̃

0
θ�

0

( n∑
j=1

ωj e−Cj tZ−1
j (0)e−C�

j t

)−1

θ0 dt

)]

< ∞.

Hence, by Novikov’s condition, it follows from the Girsanov theorem that V0(t) is a martingale.
This completes the proof.
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Thus, the process
V(t) = V0(t)× V1(t)× · · · × Vn(t)

becomes a martingale for t ≤ T̃ and is the density process of a probability measure Q equivalent
with P, that is,

dQ

dP

∣∣∣∣
Ft

= V(t). (8)

From Girsanov’s theorem we find that

dŴ (t) = dW(t)−�−1/2(t)θ0 dt

is an Rd -valued Brownian motion with respect to Q on t ∈ [0, T̃ ]. Furthermore, L̃j (t) is
a matrix-valued subordinator with respect to Q, with characteristics stated in the following
lemma.

Lemma 2. Assume that 	j ∈ S+
d such that ‖	j‖ ≤ cj for j = 1, . . . , n. Then the L̃j (t) are

subordinators under Q defined in (8) having Lévy measure with respect to Q given by

ν
Q

L̃j
(dU) = exp(tr(	jU))νL̃j (dU)

for j = 1, . . . , n.

Proof. First we prove that L̃j (t) is a matrix-valued subordinator under Q. Consider its
conditional cumulant function with respect to Q, φ̃(s,t)

L̃j
(V ): for 0 ≤ s ≤ t and using Bayes’

formula for conditional expectations (see [15]),

φ̃
(s,t)

L̃j
(V ) = ln EQ[exp(itr(V (L̃j (t)− L̃j (s)))) | Fs]

= ln E

[
exp(itr(V (L̃j (t)− L̃j (s))))

V(t)

V(s)

∣∣∣∣ Fs

]
= ln E[exp(itr((V − i	j)L̃j (1))) | Fs] − φL̃j (−i	j)(t − s)

= ln E[exp(itr((V − i	j)L̃j (1)))] − φL̃j (−i	j)(t − s)

= φL̃j (V − i	j)(t − s)− φL̃j (−i	j)(t − s).

In the second to last equality we used the independent increment property of L̃j (t). This proves
that the increment L̃j (t)− L̃j (s) is stationary and independent of Fs , and, hence, a Lévy
process with respect to the probability Q. Moreover, L̃j (t) has values in S+

d , and, therefore, it
is a subordinator under Q. From the above calculation we find its cumulant under Q to be

φ̃L̃j := ln EQ[exp(itr(V L̃j (1)))]
= φL̃j (V − i	j)− φL̃j (−i	j)

=
∫

S+
d

{eitr((V−i	j )U) − 1}νL̃j (dU)−
∫

S+
d

{eitr((−i	j )U) − 1}νL̃j (dU)

=
∫

S+
d

{eitr(VU) − 1}etr(	jU)νL̃j (dU).

This completes the proof.
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Since a subordinator is a pure jump process, the L̃j for j = 1, . . . , m must be independent
of Ŵ with respect to Q, as a Brownian motion has continuous paths.

The parameters θ0 and 	j, j = 1, . . . , n, may be referred to as the market prices of risk,
extending the similar notion in the univariate case (see [7]). Note that the Esscher transform
gives an exponential tilting of the Lévy measure of the matrix-valued subordinators L̃j . One
effect of this is that the probabilities for large jumps are rescaled, and we may get more or less
pronounced large jumps under Q.

The dynamics of X(t) under Q are given by

dX(t) = AX(t)+�1/2(t)(dŴ (t)+�−1/2(t)θ0 dt)

= (θ0 + AX(t)) dt +�1/2(t) dŴ (t).

Thus, under Q, the mean-reversion level is shifted from 0 to θ0. If e�k θ0 > 0 for a k = 1, . . . , d
and ek being the kth canonical unit vector of Rd , then the base component of the kth commodity
mean reverts towards a higher level under Q than under P, implying that the market assesses
the base component as being more risky under the pricing measure Q. A negative market price
of risk e�k θ0 will imply less risk loading on the kth base component. The dynamics of Yi and
Zj are changed in a similar fashion. We have, for i = 1, . . . , m,

dYi(t) = (µi + BiYi(t)) dt + ηi dLi(t)

= (µi + ηiEQ[L(1)] + BiYi(t)) dt + ηi dLQi (t),

where dLQ
i (t) := dLi(t)− EQ[Li(1)] dt is a Q-martingale. Hence, the process Yi varies

around the levelµi+ηiEQ[Li(1)] under Q, whereas the level isµi+ηiE[Li(1)] under P. Thus,
by appropriately choosing	i we can obtain a higher or lower mean-reversion level, implying a
higher or lower risk loading on the spike processes Yi under Q. Similar considerations hold for
the volatility processes Zj . We remark in passing that the market prices of risk θ0,	1, . . . , 	n
will implicitly model the risk premium in the market, being the difference between the forward
price and the predicted spot at delivery.

3.2. Analysis of forward prices

Before we derive the forward price, we need to introduce some notation and prove an auxiliary
result. To this end, let Jd be the linear operator that maps a vector v ∈ Rd to a symmetric d×d
matrix Jd(v), consisting of 0s except on the diagonal, which is equal to v. On the other hand,
diag is a linear operator mapping a matrix into a vector, where the vector is the diagonal of the
matrix. The family of linear operators Cj (t) for t ∈ [0, T̃ ] are defined as

Cj (t) : X �→ ωj [(Cj − A)−1(eCj tXeC
�
j t − eAtXeA

�t )],
for j = 1, . . . , n. For A being an n× n matrix, we denote the operator A associated with the
matrix A as A : X �→ AX + XA�. This operator can be represented as vec−1 ◦ ((A⊗ In) +
(In⊗A))◦vec, with In being then×n identity matrix and vec meaning the operator which stacks
the columns of a matrix into a vector. Its inverse is denoted by A−1, which exists whenever
In ⊗ A + A ⊗ In is invertible. In this case, we can represent A−1 by vec−1 ◦ ((A ⊗ In) +
(In ⊗ A))−1 ◦ vec. Note that A⊗ In + In ⊗ A is equal to the Kronecker sum of the matrix A
with itself.

The following auxiliary result is useful in deriving the forward prices, and is proved in [6].
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Lemma 3. Define f (s, t) := ∫ t
s

eA(t−u)�(u)eA�(t−u) du. Assume for j = 1, . . . , n thatA and
Cj commute and the A − Cj are invertible. Then it holds that

f (s, t) =
n∑
j=1

Cj (t − s)Zj (s)+
∫ t

s

Cj (t − v) dL̃j (v)

for 0 ≤ s ≤ t .

Proof. The proof of this result is found in [6]. We include it here for the convenience of the
reader. Using (5) and the assumption that A and Cj commute for j = 1, . . . , n, it holds that

f (s, t) =
∫ t

s

eA(t−u)
n∑
j=1

ωj

(
eCj (u−s)Zj (s)eC

�
j (u−s) +

∫ u

s

eCj (u−v) dL̃j (v)e
C�
j (u−v)

)

× eA
�(t−u) du

=
n∑
j=1

ωj

∫ t

s

e(Cj−A)ueAt−Cj s
(
Zj (s)+

∫ u

s

e−Cj v dL̃j (v)e
−C�

j v

)

× eA
�t−C�

j se(Cj−A)�u du

=
n∑
j=1

ωj (Cj − A)−1(eCj (t−s)Zj (s)eC
�
j (t−s) − eA(t−s)Zj (s)eA

�(t−s))

+
∫ t

s

∫ u

s

{e(Cj−A)ueAte−Cj v dL̃j (v)e
−C�

j veA
�te(Cj−A)�u} du.

The last integral is interpreted as first integrating with respect to dL̃j (v), and then integrating the
obtained expression with respect to du. But, by spelling out the integrals in terms of sums, using
the definition of the dL̃j (v) integrals, and invoking the stochastic Fubini theorem (see [17]),
we obtain ∫ t

s

∫ u

s

{e(Cj−A)ueAte−Cj v dL̃j (v)e
−C�

j veA
�te(Cj−A)�u} du

=
∫ t

s

∫ t

v

{e(Cj−A)ueAte−Cj v dL̃j (v)e
−C�

j veA
�te(Cj−A)�u} du.

Here, the right-hand side is interpreted as first integrating with respect to du, treating dL̃j (v)
as a matrix and not a differential, and then integrating with respect to dL̃j (v) the obtained
expression. Hence, we find that

f (s, t) =
n∑
j=1

Cj (t − s)Zj (s)

+ (Cj − A)−1
(∫ t

s

eCj (t−v) dL̃j (v)e
C�
j (t−v) −

∫ t

s

eA(t−v) dL̃j (v)e
A�(t−v)

)
.

This completes the proof.

By C∗
j (u) we mean the adjoint operator of Cj (u). Since Cj (u) is a linear operator on d × d

matrices, we can represent it via a d2 × d2 matrix Kj (u) by Cj (u) = vec−1 ◦ Kj (u) ◦ vec.
Hence, the adjoint C∗

j (u) has the representation C∗
j (u) = vec−1 ◦ KT

j (u) ◦ vec.
We are now in the position to state the forward price.
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Proposition 1. For k = 1, . . . , d, suppose that the 	j are such that

sup
u∈[0,T̃ ]

∥∥ 1
2C∗

j (u)(eke
�
k )

∥∥ + ‖	j‖ ≤ cj

for j = 1, . . . , n, and

sup
u∈[0,T̃ ]

∥∥ 1
2C∗

i (u)(eke
�
k )+ Jd(e

�
k eBiuηi)

∥∥ + ‖	i‖ ≤ ci

for i = 1, . . . , m. Assume for j = 1, . . . , n that A and Cj commute and the A − Cj are
invertible. Then the forward price at time t ≥ 0 of a contract delivering the d spots S(τ) at
time τ ≥ t is

F(t, τ ) = �(τ) · exp

(
eA(τ−t)X(t)+

m∑
i=1

eBi(τ−t)Yi(t)

+ A−1(I − eA(τ−t))θ0 +
m∑
i=1

B−1
i (I − eBi(τ−t))µi

+ 1

2
diag

{ n∑
j=1

Cj (τ − t)Zj (t)

})
·�(τ − t),

where the kth coordinate of �(s) ∈ Rd for 0 ≤ s ≤ T̃ is

ln�k(s) =
n∑
j=1

∫ s

0

{
φL̃j

(
−1

2
iC∗
j (u)(eke

�
k )− i	j

)
− φL̃j (−i	j)

}
du

+
m∑
i=1

∫ s

0

{
φL̃i

(
−1

2
iC∗
i (u)(eke

�
k )− iJd(e

�
k eBiuηi)− i	i

)

− φL̃i

(
−1

2
iC∗
i (u)(eke

�
k )− i	i

)}
du

for k = 1, . . . , d.

Proof. For simplicity, we let m = n = 1 and omit the subscripts i and j . From (3) and (4)
along with the definition of the measure Q, we have

X(τ) = eA(τ−t)X(t)+
∫ τ

t

eA(τ−u)�1/2(u) dW(u)

= eA(τ−t)X(t)+
∫ τ

t

eA(τ−u)θ0 du+
∫ τ

t

eA(τ−u)�1/2(u) dŴ (u)

= eA(τ−t)X(t)+ A−1(I − eA(τ−t))θ0 +
∫ τ

t

eA(τ−u)�1/2(u) dŴ (u)

and

Y (τ) = eB(τ−t)Y (t)+ B−1(I − eB(τ−t))µ+
∫ τ

t

eB(τ−u)η dL(u).
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Hence, using the Ft -adaptedness of X(t) and Y (t), we find that

F(t, τ ) = �(τ) · EQ[exp(X(τ)+ Y (τ)) | Ft ]
= �(τ) · exp(eA(τ−t)X(t)+ eB(τ−t)Y (t)+ A−1(I − eA(τ−t))θ0

+ B−1(I − eB(τ−t))µ)

· EQ

[
exp

(∫ τ

t

eA(τ−u)�1/2(u) dŴ (u)+
∫ τ

t

eB(τ−u)η dL(u)

) ∣∣∣∣ Ft

]
.

We consider the expectation in the last equality, which we denote by F̂ (t, τ ). Let Gt,τ be the
σ -algebra generated by Ft and L̃(u) for t ≤ u ≤ τ . Recalling that, under Q, Ŵ and L̃ are
independent, we find from the tower property of the conditional expectation operator that

F̂ (t, τ ) = EQ

[
EQ

[
exp

(∫ τ

t

eA(τ−s)�1/2(s) dŴ (s)+
∫ τ

t

eB(τ−s)η dL(s)

) ∣∣∣∣ Gt,τ

] ∣∣∣∣ Ft

]

= EQ

[
exp

(∫ τ

t

eB(τ−s)η dL(s)

)

· EQ

[
exp

(∫ τ

t

eA(τ−s)�1/2(s) dŴ (s)

) ∣∣∣∣ Gt,τ

] ∣∣∣∣ Ft

]

= EQ

[
exp

(
1

2
diag

[∫ τ

t

eA(τ−s)�(s)eA�(τ−s) ds

]
+

∫ τ

t

eB(τ−s)η dL(s)

) ∣∣∣∣ Ft

]
.

In the second equality we used the fact thatL is measurable with respect to Gt,τ , while in the last
equality we applied the facts that the Wiener integral of a deterministic function is independent
of Ft and a Gaussian random variable.

From Lemma 3, we find after appealing to the Ft -measurability ofZ(t) and the independent
increment property of Lévy processes that

F̂ (t, τ ) = EQ

[
exp

(
1

2
diag(C(τ − t)Z(t))+ 1

2
diag

(∫ τ

t

C(τ − u) dL̃(u)

)

+
∫ τ

t

eB(τ−u)η dL(u)

) ∣∣∣∣ Ft

]

= exp

(
1

2
diag(C(τ − t)Z(t))

)

· EQ

[
exp

(
1

2
diag

(∫ τ

t

C(τ − u) dL̃(u)

)
+

∫ τ

t

eB(τ−u)η dL(u)

)]
.

Let us focus on the expectation above, and denote it by �(t, τ ). It is a vector in Rd , and
we look at it componentwise. Note that the kth coordinate of diag(

∫ τ
t

C(τ − u) dL̃(u)) can
be expressed as e�k

∫ τ
t

C(τ − u) dL̃(u)ek , while the kth coordinate of
∫ τ
t

eB(τ−u)η dL(u) is
e�k

∫ τ
t

eB(τ−u)η dL(u). Hence, from the fundamental relationwkUw = tr(wwkA) for a vector
w and a matrix U ,

�k(t, τ ) = EQ

[
exp

(
1

2
e�k

∫ τ

t

C(τ − u) dL̃(u)ek + e�k
∫ τ

t

eB(τ−u)η dL(u)

)]

= EQ

[
exp

(
itr

(
−1

2
ieke

�
k

∫ τ

t

C(τ − u) dL̃(u)

)
+

∫ τ

t

eke
B(τ−u)η dL(u)

)]
.
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Note that e�k eB(τ−u)η is a d-dimensional vector. It is simple to see that∫ τ

t

e�k eB(τ−u)η dL(u) = tr

(∫ τ

t

Jd(e
�
k eB(τ−u)η) dL̃(u)

)
.

Hence,

�k(t, τ ) = EQ

[
exp

(
itr

(
−1

2
i
∫ τ

t

eke
�
k C(τ − u) dL̃(u)

)

+ itr

(
−i

∫ τ

t

Jd(e
�
k eB(τ−u)η) dL̃(u)

))]

= E

[
exp

(
itr

(∫ τ

t

{
−1

2
ieke

�
k C(τ − u)− iJd(e

�
k eB(τ−u)η)

}
dL̃(u)

))]
× exp(−φL̃(−i	)).

Next, observe that the stochastic integral can be expressed as∫ τ

t

{
1

2
eke

�
k C(τ − u)+ Jd(e

�
k eB(τ−u)η)

}
dL̃(u)

= lim|i |→0

n−1∑
i=0

{
1

2
eke

�
k C(τ − ui)+ Jd(e

�
k eB(τ−u))η

}
L̃(ui)

for partitions t = u0 < · · · < un = τ with i := L̃(ui+1)− L̃(ui) and i := ui+1 − ui . By
the independence of increments of a Lévy process, and continuity of the exponential function
together with Fubini-Tonelli’s theorem, we obtain

E

[
exp

(
itr

(∫ τ

t

{
−1

2
ieke

�
k C(τ − u)− iJd(e

�
k eB(τ−u)η)

}
dL̃(u)

))]

= lim|i |→0

n−1∏
i=1

E

[
exp

(
itr

({
−1

2
ieke

�
k Cj (τ − ui)− iJd(e

�
k eB(τ−ui)η)

}
L̃(ui)

))]
.

Now, the linear operators C(τ −ui) can be represented as vec−1 ◦K(τ −ui)◦ vec for a matrix
K ∈ Rd

2×d2
. Hence, since for quadratic matrices tr(VX) = vec(V )�vec(X), we find that

tr((eke
�
k )C(τ − ui)L̃(ui)) = vec(eke

�
k )

�vec(C(τ − ui)L̃(ui))

= vec(eke
�
k )

�vec(vec−1K(τ − ui)vec(L̃(ui)))

= vec(eke
�
k )

�K(τ − ui)vec(L̃(ui))

= (K�(τ − ui)vec(eke
�
k ))

�vec(L̃(ui))

= tr(vec−1(K�(τ − ui)vec(eke
�
k ))L̃(ui))

= tr(C∗(τ − ui)(eke
�
k )L̃(ui)).

Thus,

E

[
exp

(
itr

({
−1

2
ieke

�
k Cj (τ − ui)− iJd(e

�
k eB(τ−ui)η)

}
L̃(ui)

))]
= exp

(
φL̃

(− 1
2 iC∗(τ − ui)(eke

�
k )− iJd(eke

B(τ−ui)η)
)
ui

)
.
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Nesting up, we find that

ln�k(t, τ ) =
∫ τ

t

{
φL̃

(
−1

2
iC∗(τ − u)(eke

�
k )− iJd(e

�
k eB(τ−u)η)− i	

)
− φL̃(−i	)

}
du.

By changing variables we see that �k depends on τ − t . This completes the proof.

The forward price F(t, τ ) gives us the joint dynamics of forward prices on each of the
spot commodities. Hence, it is a d-variate process, giving the cross-commodity forward
price dynamics. Recall that ‘·’ denotes the pointwise product, and that we use the notation
for the exponential function interchangeably, in the sense that exp(x) means elementwise
exponentiation as long as x is a vector, and the matrix exponential when x is a matrix.

Note that, since Cj (0) = 0 and �k(0) = 1 for k = 1, . . . , d, it is easily seen that the
expression for F(t, τ ) is equal to S(t)when τ = t . This shows that the forward price converges
to the spot at maturity, which it should by definition of the forward price as the conditional
expectation of the spot at maturity. More interestingly, the forward price dynamics are explicitly
dependent on the stochastic volatility factors Zj (t). This has the interesting effect that even
in the case of no spike components in the spot dynamics (i.e. when m = 0), the forward price
dynamics will have jumps. That is, a continuous spot price dynamic with stochastic volatility
will imply a forward price dynamic which jumps according to the jumps in the stochastic
volatility.

We state the dynamics of the forward price.

Proposition 2. Suppose that the conditions of Proposition 1 hold. Then the dynamics of
Fk(t, τ ) of commodity k with respect to Q are

dFk(t, τ )

Fk(t−, τ ) = e�k eA(τ−t)�1/2(t) dŴ (t)

+
m∑
i=1

∫
S+
d \{0}

{
exp

(
1

2
e�k diag(Ci (τ − t)V )+ e�k eBi(τ−t)ηidiag(V )

)
− 1

}

× Ñ
Q
i (dt, dV )

+
n∑

j=m+1

∫
S+
d \{0}

{
exp

(
1

2
e�k diag(Cj (τ − t)V )

)
− 1

}
Ñ

Q
j (dt, dV ).

Here, ÑQ
j (dt, dV ) = Nj(dt, dV )− exp(tr(V	j ))νL̃j (dV ) dt and Nj is the Poisson random

measure of L̃j for j = 1, . . . , n.

Proof. First, note that, by definition, the process t �→ Fk(t, τ ) is a martingale for t ≤ τ .
From Proposition 1, we have, in a compact form,

Fk(t, τ ) = �k(τ) exp(e�k eA(τ−t)X(t)+ e�k eB(τ−t)Y (t)+ 1
2 diag(C(τ − t)Z(t)))Gk(τ − t),

where we have collected all nonrandom terms into G, being a vector in Rd . Since Fk(t, τ )
depends on X(t), Y (t), and Z(t), the dynamics of Fk will necessarily be expressible in terms
of the Q-Wiener process Ŵ and the compensated Poisson random measures of L̃j under Q.
Hence, when using Itô’s formula for jump processes (see, e.g. [19]), we only need to focus on
terms involving dŴ and ÑQ

j (dt, dV ). To do this, we note that the dynamics of Y (t) can be
written as

dY (t) = (µ+ BY(t)) dt + η d(diag(L̃(u))).

https://doi.org/10.1239/aap/1370870130 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870130


A stochastic volatility model for derivatives pricing in energy markets 585

Moreover, since C(τ − t) and diag are linear operators on matrices, Fk is a function of linear
combinations of Zu,v(t) and Yu(t) for u, v = 1, . . . , d. Hence, the dynamics will consist of
linear combinations of the elements of the L̃(t) matrix. Applying Itô’s formula, taking into
account all these considerations, yields the result.

We see that there is a Samuelson effect in the forward price dynamics. The volatility
appearing in the dŴ -term of the dynamics takes the form e�k exp(A(τ − t))�1/2(t). The
contribution from e�k exp(A(τ − t)) is an ‘exponential scaling’ of the stochastic spot volatility
�1/2(t). Moreover, as the time to maturity goes to 0, we obtain a convergence of the forward
volatility to the spot volatility:

lim
τ↓t e

�
k eA(τ−t)�1/2(t) = �1/2(t).

This yields a generalization of the Samuelson effect known in the one-dimensional case to
cross-commodity forward prices. We note that the one-dimensional Samuelson effect gives a
forward volatility which is exponential dampening (in ‘time to maturity’) of the spot volatility.
However, in the multidimensional case, the shape of e�k exp(A(τ − t))�1/2 will be much richer
than simply exponential decay in time to maturity towards spot volatility. In fact, one may get
situations where the forward volatility is increasing rather than decreasing with the time to
maturity. For example, choosing A to be a matrix of CARMA type (see [7]), we may get this
situation, which is in contrast to the classical Samuelson effect. Observe also that the jump
terms in the dynamics of the forward price contribute to the Samuelson effect; however, this is
much more complex to analyse.

In the next proposition we show that the forward price will behave like the seasonal function
in the long end of the market. To prove this result, we dispense with the restriction that the
forward price is only defined up to maturities T̃ < ∞, but carry out an asymptotic consideration
of F focusing only on the expression in Proposition 1.

Proposition 3. Let F(t, τ ) be given as in Proposition 1, and suppose that limt→∞ ln�(t)
exists. Then

lim
τ→∞(lnF(t, τ )− ln�(τ)) = A−1θ0 +

m∑
i=1

B−1
i µi + lim

τ→∞ ln�(τ).

Here, we understand the operations of the function ln coordinatewise.

Proof. This result follows immediately from the assumption that the real parts of the
eigenvalues of the matrices A, Bi , and Cj are all negative, i = 1, . . . , m and j = 1, . . . , n.

Note that the condition that �(τ) has a limit is equivalent to the existence of a stationary
dynamic of

∫ t
0 Cj (t − s) dL̃j (s) and

∫ t
0 eBi(t−s)ηi dLi(u) under Q. If this is the case then we

can interpret limτ→∞ ln�(τ) as the long-term mean value of the market price of risk.
From Proposition 3, contracts with maturities in the long end of the market will have forward

prices which are basically equal to the seasonality function, adjusted by the stationary mean
values of Yi and Zj and the market prices of risk, that is,

F(t, τ ) ∼ constant ·�(τ).
As a result of mean reversion of the spot prices, the forward prices are not reacting to changes
in the spot in the long end but only following the seasonal mean adjusted by the market prices
of risk.
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3.3. Shapes of the forward curve

Note that we can view the forward price dynamics as a regression on the spot price, leverage
terms, and the volatility processes. Introduce the shorthand notation 	(t, τ ) ∈ Rd given by

ln	(t, τ ) := ln�(τ − t)+ ln�(τ)+ A−1(I − eA(τ−t))θ0 +
m∑
i=1

B−1
i (I − eBi(τ−t))µi. (9)

Then, from Proposition 1,

lnF(t, τ ) = ln	(t, τ )+ eA(τ−t) ln S(t)+
m∑
i=1

(eBi(τ−t) − eA(τ−t))Yi(t)

+ 1

2
diag

{ n∑
j=1

Cj (τ − t)Zj (t)

}
.

Here 	 is a level adjustment function. The impact of the various factors on the forward price
F(t, τ ) goes through the matrix exponentials. In fact, the forward price of one commodity
depends on the normal variation processes X, spike processes Yi , and volatility processes Zj
of all the commodities modeled. Hence, for example, if one of the commodities has a spike
then the forward prices of all the other commodities will be influenced. There is also a direct
influence from the volatility processes between the forwards, both directly and indirectly via
the stochastic volatility �(t) in the dynamics of X.

As noted in Andresen et al. [1], the mean-reverting structure represented by a matrix
exponential has a richer structure than in the one-dimensional case, and we may include hump
structures in the forward curve. We discuss the potential shapes of τ �→ F(t, τ ) in more detail.
Since A ∈ GLd(R), it is diagonalizable. So it holds that eA(τ−t) = UeV (τ−t)U−1, where U
is a basis of eigenvectors and V is a matrix with the eigenvalues of A on the diagonal and 0s
elsewhere (see, e.g. [12]). Hence, an entry of the vector eA(τ−t)X(t) can be represented as

d∑
i=1

a1ie
λi(τ−t)X1(t)+

d∑
i=1

a2ie
λi(τ−t)X2(t)+ · · · +

d∑
i=1

adie
λi(τ−t)Xd(t)

for some constants aij ∈ R and eigenvalues λi, i, j = 1, . . . , d. Consider first the Schwartz
model with constant volatility, i.e. no contribution of the processes Yi and Zj in the forward
price. IfX is positive in all its components, λi is real, and aij ∈ R+ for all i, j = 1, . . . , d, then
the forward is in backwardation since the eigenvalues have negative real parts. The opposite
conclusion (i.e. forward prices in contango) holds when X is negative in all its components.
A more realistic situation with this model is the case where there are humps in the forward
curve and where the forward is changing between backwardation and contango over time.
This behavior has been observed for real market prices. For example, on page 216 of [11]
the forward curve of WTI oil is plotted together with the spot price. The shape of the curve
varies over time from contango to backwardation, including positive humps in the short end.
When the constants aji for fixed j are not all of the same sign and the entries of X all have a
positive sign, then an entry of eA(τ−t)X(t) is given by a linear combination of increasing and
decreasing exponentials which rise and decay at different speeds. Owing to this, the forward
may alternate between backwardation and contango and humps may appear (see Figure 1(a)).
Another possibility is the case of complex eigenvalues. This leads to an oscillating structure in
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Figure 1: Paths of eA(τ−t)X for (a) real and (b) complex eigenvalues of A. Moreover, X = (1, 2)� is
taken constant.

the forward curve. So a change upward in the ith component of X may cause a rise or fall of
the forward depending on the time to maturity (see Figure 1(b)).

A similar analysis can be made for the spike processes Yi . However, since Yi is a pure
jump process, it will contribute to sudden changes in the forward curve. These humps may be
upward or downward pointing depending on the time to maturity. The jumps caused by the
spike process Yi may be averaged out by jumps in the volatility process Zi . The processes Yi
andZi are driven by related subordinatorsLi and L̃i . Hence, Yi andZi may have simultaneous
jumps; however, depending on the value of the matricesA, Bi , and Cj , an upward jump caused
by the volatility process Zi may simultaneously have a downward jump caused by the spike
process Yi . Hence, the jumps may average out. Conversely, depending on the parameters A,
Bi , andCj , the jumps in Yi andZi may enlarge each other and lead to a big jump in the forward
curve. This is a result of the inverse leverage effect in the spot model, which we see have a
‘double’ impact on forward prices.

4. Transform-based pricing of options

Spread options are popular derivatives in the energy market to hedge price differences. For
instance, spread options are traded on the difference in electricity forward prices in neighboring
markets, or on the difference between electricity and one of its fuels, including spark (electricity
and gas) and dark (electricity and coal) spreads. On the NewYork Mercantile Exchange, options
on spreads between forwards on different refined oils are traded.

In this section we will consider pricing of options on a combination of forwards, with the
spread as a special case. The dynamics of the forward are given by our multivariate model,
which allows for the application of the Fourier method to pricing.

Consider an option written on a combination of the forwards expressed via the payoff function
f : Rd �→ R. At exercise time T ≤ τ , the option pays out f (F (T , τ )), with the forwards
maturing at time τ ≥ T . Supposing that f (F (T , τ )) is integrable with respect to the pricing
measure Q defined in the previous section, the option price at time t ≤ T becomes

C(t) = e−r(T−t)EQ[f (F (T , τ )) | Ft ],
where the constant r > 0 is the risk-free interest rate. As it turns out, the forward price, or
rather its logarithm, has a semianalytic cumulant function, which allows for the application
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of the Fourier method to option pricing (see [8] for a general treatment of Fourier methods in
pricing of options). We now discuss this in more detail.

First, define the function
g(x) := f (ex), (10)

and observe that
g(ln x) = f (x),

where we have used pointwise exponentials and logarithms. Suppose that g ∈ L1(Rd), the
space of integrable functions on Rd , and recall the d-dimensional Fourier transform

ĝ(y) =
∫

Rd
g(x)e−i〈x,y〉 dx.

If ĝ ∈ L1(Rd) then the inverse Fourier transform becomes

g(x) = 1

2π

∫
Rd
ĝ(y)ei〈y,x〉 dy.

See [10] for these definitions. To price options, let us introduce the conditional cumulant
function of the log-forward prices under Q: for s ≤ t ≤ τ and x ∈ Rd , define

φ̃
(s,t,τ )
lnF (x) := ln EQ[ei〈x,lnF(t,τ )〉 | Ft ]. (11)

The following pricing relation holds.

Proposition 4. Suppose that g, ĝ ∈ L1(Rd), where g is defined in (10). Then

C(t) = e−r(T−t) 1

2π

∫
Rd
ĝ(y) exp(φ̃(t,T ,τ )lnF (y)) dy,

where φ̃(t,T ,τ )lnF (y), t ≤ T ≤ τ , is the conditional characteristic function of lnF(T , τ) defined
in (11).

Proof. Since g ∈ L1(Rd), using dominated convergence to commute integration and
expectation (see [10, p. 54]), we conclude that

C(t) = e−r(T−t)EQ[f (F (T , τ )) | Ft ]
= e−r(T−t)EQ[g(lnF(T , τ)) | Ft ]
= e−r(T−t)EQ

[
1

2π

∫
Rd
ĝ(y)ei〈y,lnF(T ,τ)〉 dy

∣∣∣∣ Ft

]

= e−r(T−t) 1

2π

∫
Rd
ĝ(y)EQ[ei〈y,lnF(T ,τ)〉 | Ft ] dy

= e−r(T−t) 1

2π

∫
Rd
ĝ(y) exp(φ̃(t,T ,τ )lnF (y)) dy.

This completes the proof.

The two main ingredients in the pricing using Fourier methods are the transform of the
payoff function, ĝ, and the cumulant of the forward price under the pricing measure Q. We
state a semianalytical expression for the latter.
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Proposition 5. Assume that the conditions of Proposition 1 hold. Then the conditional
cumulant function of lnF(t, τ ) for s ≤ t ≤ τ defined in (11) is

φ̃
(s,t,τ )
lnF (x) = ix�H(s, t, τ )+ ix�eA(τ−s)X(s)+

m∑
i=1

ix�eBi(τ−s)Yi(s)

+ 1

2

n∑
j=1

ix�diag(Dj (t − s, τ − t)Zj (s))− 1

2

n∑
j=1

x�Cj (τ − s)Zj (s)x

+�(s, t, τ, x)

for x ∈ Rd , where

H(s, t, τ ) = ln�(τ)+ ln�(τ − t)+ A−1(I − eA(τ−t))θ0 +
m∑
i=1

B−1
i (I − eBi(τ−t))µi

+ A−1(eA(τ−t) − eA(τ−s))θ0 +
m∑
i=1

B−1
i (eBi(τ−t) − eBi(τ−s))µi

and

�(s, t, τ, x) =
m∑
j=1

∫ t−s

0

{
φL̃j

( 1
2 iC∗

j (τ − t + v)(xx�)+ 1
2D∗

j (v, τ − t)(Jd(x))

+ Jd(x
�eBj (τ−t+v)ηj )− i	j

) − φL̃j (−i	j)
}

dv

+
n∑

j=m+1

∫ t−s

0

{
φL̃j

( 1
2 iC∗

j (τ − t + v)(xx�)+ 1
2D∗

j (v, τ − t)(Jd(x))− i	j
)

− φL̃j (−i	j)
}

dv.

The family of linear operators Dj (u, v), (u, v) ∈ R2+, are defined as

Dj (u, v)X = Cj (v)e
CjuXeC

�
j u

for j = 1, . . . , n and a matrix X ∈ Md(R).

Proof. From Proposition 1, it holds that

lnF(t, τ ) = ln	(t, τ )+ eA(τ)X(t)+
m∑
i=1

eBi(τ−t)Yi(t)+ 1

2
diag

{ n∑
j=1

Cj (τ − t)Zj (t)

}
,

where we recall the shorthand notation for 	(t, τ ) defined in (9). Now, from the explicit
solutions of the factors in (3), (4), and (5), together with the Girsanov change of the Brownian
motion W , we find by adaptedness that

φ̃
(s,t,τ )
lnF (x) = ix�H(s, t, τ )+ ix�eA(τ−s)X(s)+ ix�

m∑
i=1

eBi(τ−s)Yi(s)

+ 1

2
ix�diag

{ n∑
j=1

Dj (t − s, τ − t)Zj (s)

}
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+ ln EQ

[
exp

(
ix�

∫ t

s

eA(τ−u)�1/2(u) dŴ (u)+ ix�
m∑
i=1

∫ t

s

eBi(τ−u)ηi dLi(u)

+ 1

2
ix�diag

{ n∑
j=1

Cj (τ − t)

∫ t

s

eCj (t−u) dL̃j (u)e
C�
j (t−u)

}) ∣∣∣∣ Fs

]
.

Defineψ(s, t, τ ) as the logarithm of the conditional expectation in the expression above. Letting
Gs,t be the σ -algebra generated by Fs and the paths of L̃j (u), s ≤ u ≤ t , we find after using
the tower property of the conditional expectation operator and the Gaussianity of Itô integrals
of deterministic functions that

ψ(s, t, τ ) = ln EQ

[
EQ

[
exp

(
ix�

∫ t

s

eA(τ−u)�1/2(u) dŴ (u)

) ∣∣∣∣ GL̃s,t

]

· exp

(
ix�

m∑
i=1

∫ t

s

eBi(τ−u)ηi dLi(u)

)

· exp

(
1

2
ix�diag

{ n∑
j=1

Cj (τ − t)

∫ t

s

eCj (t−u) dL̃j (u)e
C�
j (t−u)

}) ∣∣∣∣ Ft

]

= ln EQ

[
exp

(
−1

2
x�

∫ t

s

eA(τ−u)�(u)eA�(τ−u) dux

)

· exp

(
ix�

m∑
i=1

∫ t

s

eBi(τ−u)ηi dLi(u)

)

· exp

(
1

2
ix�diag

{ n∑
j=1

Cj (τ − t)

∫ t

s

eCj (t−u) dL̃j (u)e
C�
j (t−u)

}) ∣∣∣∣ Ft

]
.

Inspecting the proof of Lemma 3, we find that

∫ t

s

eA(τ−u)�(u)eA�(τ−u) du =
n∑
j=1

Cj (τ − s)Zj (s)+
∫ t

s

Cj (τ − u) dL̃j (u).

By Fs-adaptedness and the independent increment property of Lévy processes, it holds that

ψ(s, t, τ ) = −1

2

n∑
j=1

x�Cj (τ − s)Zj (s)x

+ ln EQ

[
exp

(
−1

2

n∑
j=1

x�
∫ t

s

Cj (τ − u) dL̃j (u)x

+ 1

2
ix�diag

{ n∑
j=1

Cj (τ − t)

∫ t

s

eCj (t−u) dL̃j (u)e
C�
j (t−u)

}

+
m∑
i=1

ix�
∫ t

s

eBi(τ−u)ηi dLi(u)

)]
.
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We focus next on the last term, the logarithm of the expectation, which we denote by ψ̃(s, t, τ ).
Observe first that

Cj (τ − t)

∫ t

s

eCj (t−u) dL̃j (u)e
C�
j (t−u) =

∫ t

s

Dj (t − u, τ − t) dL̃j (u).

But, since, for a matrix A ∈ Md(R), x�diag(A) = tr{Jd(x)A},

1

2
x�diag

{ n∑
j=1

∫ t

s

Dj (t − u, τ − t) dL̃j (u)

}
=

n∑
j=1

tr

{
1

2
Jd(x)

∫ t

s

Dj (t − u, τ − t) dL̃j (u)

}
.

Furthermore, it holds that

x�
∫ t

s

eBi(τ−u)ηi dLi(u) =
∫ t

s

x�eBi(τ−u)ηi dLi(u) = tr

{∫ t

s

Jd(x
�eBi(τ−u) dL̃i(u)

}

and

−1

2
x�

∫ t

s

Cj (τ − u) dL̃j (u)x = itr

{
1

2
ixx�

∫ t

s

Cj (τ − u) dL̃j (u)

}
.

Hence, collecting terms and using the fact that the L̃j are independent for j = 1, . . . , n, we
find that

ψ̃(s, t, τ ) =
m∑
j=1

ln EQ

[
exp

(
itr

{
1

2
ixx�

∫ t

s

Cj (τ − u) dL̃j (u)

+ 1

2
Jd(x)

∫ t

s

Dj (t − u, τ − t) dL̃j (u)

+
∫ t

s

Jd(x
�eBj (τ−u)ηj ) dL̃j (u)

})]

+
n∑

j=m+1

ln EQ

[
exp

(
itr

{
1

2
ixx�

∫ t

s

Cj (τ − u) dL̃j (u)

+ 1

2
Jd(x)

∫ t

s

Dj (t − u, τ − t) dL̃j (u)

})]

=
m∑
j=1

∫ t

s

{
φL̃j

(
1

2
iC∗
j (τ − u)(xx�)+ 1

2
D∗
j (t − u, τ − t)(Jd(x))

+ Jd(x
�eBj (τ−u)ηj )− i	j

)
− φL̃j (−i	j)

}
du

+
n∑

j=m+1

∫ t

s

{
φL̃j

(
1

2
iC∗
j (τ − u)(xx�)+ 1

2
D∗
j (t − u, τ − t)(Jd(x))− i	j

)

− φL̃j (−i	j)

}
du.

In the last equality, we used the same argument as used in the proof of Proposition 1. After
collecting terms, the proposition is proved.
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The fast Fourier transform (FFT) algorithm may be used to compute the option price
efficiently, as long as we know the Fourier transform of the payoff function g. Note that
implementing the FFT algorithm requires some numerical integration routines to evaluate the
characteristic function of lnF .

We consider the specific case of a call option on the spread between two forwards. The
payoff function of such a contract is f (x) = max(x1 − x2 −K, 0), whereK is the strike price.
Without loss of generality, we can suppose that K = 1. The function g becomes

g(x) = max(ex1 − ex2 − 1, 0).

We observe that this function is not integrable on R2. However, following the idea in [8], we can
dampen g by an exponential function. To this end, define, for ξ = (ξ1,−ξ2) with ξ1, ξ2 > 0,

gξ (x) = e−〈ξ,x〉 max(ex1 − ex2 − 1, 0). (12)

We show that this becomes an integrable function under natural conditions on the damping
factors ξ1 and ξ2.

Lemma 4. If ξ1 − ξ2 > 1 then gξ ∈ L1(R2), where gξ is defined in (12).

Proof. Note that the function gξ is nonzero whenever x1 > ln(ex2 + 1). Thus, since ξ1 > 1,∫
R2
gξ (x) dx =

∫ ∞

−∞
eξ2x2

∫ ∞

ln(ex2 +1)
e−ξ1x1(ex1 − (ex2 + 1)) dx1 dx2

= 1

ξ1(ξ1 − 1)

∫ ∞

−∞
eξ2x2(ex2 + 1)−(ξ1−1) dx2.

If x2 > 0, we find that

eξ2x2(ex2 + 1)−(ξ1−1) = eξ2x2 e−(ξ1−1)x2(1 + e−x2)−(ξ1−1) ≤ e(ξ2−ξ1+1)x2 .

By assumption on ξ1 and ξ2, we have ξ2 − ξ1 + 1 < 0. If x2 < 0 then

eξ2x2(ex2 + 1)−(ξ1−1) ≤ eξ2x2 .

This completes the proof.

In the next lemma we state the Fourier transform of gξ .

Lemma 5. Suppose that ξ2 > 0 and ξ1 − ξ2 > 1. Then the Fourier transform of gξ (x) defined
in (12) is

ĝξ (y) = �(i(y1 + y2)− (1 + ξ1 + ξ2))�(−iy2 + ξ2 + 2)

�(iy1 + 1 − ξ1)
,

where � denotes the gamma function.

Proof. For the proof, we follow the approach of [13, Theorem 1]. When one takes into
account the exponential damping of the pay-off function g by e〈ξ,x〉 then the above result
follows.

We have

g(x) = 1

2π

∫
R2
ĝξ (y)e

i〈(y−iξ),x〉 dy.
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Thus, the price of a spread option entails substituting y with y − iξ in the formula for C(t)
in Proposition 4, using ĝξ instead of ĝ. In addition, we require an exponential integrability
condition on lnF(T , τ) in order to take into account the additional contribution from
exp(〈ξ, x〉).

An alternative approach to the Fourier method is to apply Monte Carlo simulation of the
forward price dynamics F(T , τ) in the pricing of options. In practice, this means simulating
matrix-valued subordinators L̃j and a multidimensional Wiener processes Ŵ under Q. The
latter can be simulated using classical sampling techniques. Finding efficient simulation
methods for matrix-valued subordinators is in general an open problem; however, for a specific
class of such processes a method is proposed by Benth and Vos [6].

5. Conclusions

Based on the multivariate spot price model with Barndorff-Nielsen and Shephard stochastic
volatility introduced in Benth and Vos [6], we derived the multivariate forward price dynamics.
These analytical forward prices were calculated based on a combined Esscher-Girsanov change
of measure where the risk premium is parametrized into a spike and volatility premium.
Although the spot price has continuous sample paths in absence of a spike process, the implied
forward curve will still exhibit jumps inherited from the stochastic volatility process. In the long
end of the market the forward prices are basically equal to the seasonality function adjusted
by the long-term means of the spike processes and volatility process and the market prices
of risk. Since the mean-reverting structure of the involved matrix exponentials have a richer
structure than in the one-dimensional case, the implied forward curve can alternate between
backwardation and contango and humps may appear. Depending on the time to maturity a
change in the spot can lead to various changes in the forward curve. We also discussed how a
transform-based method can be used in order to price cross-commodity options on forwards.
The particular case of spread options were analyzed in more detail.
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[7] Benth, F. E., Šaltytė Benth, J. and Koekebakker, S. (2008). Stochastic Modelling of Electricity and Related
Markets. World Scientific, Hackensack, NJ.

[8] Carr, P. and Madan, D. B. (1999). Option valuation using the fast Fourier transform. J. Comput. Finance 2,
61–73.

[9] Duffie, D. (1992). Dynamic Asset Pricing Theory. Princeton University Press, Princeton.

https://doi.org/10.1239/aap/1370870130 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870130


594 F. E. BENTH AND L. VOS

[10] Folland, G. B. (1984). Real Analysis. John Wiley, New York.
[11] Geman, H. (2005). Commodities and Commodity Derivatives. John Wiley, Chichester.
[12] Horn, R. A. and Johnson, C. R. (1985). Matrix analysis. Cambridge University Press.
[13] Hurd, T. R. and Zhou, Z. (2009). A Fourier transform method for spread option pricing. SIAM J. Financial

Math. 1, 142–157.
[14] Ikeda, N. and Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes. North-Holland,

Amsterdam.
[15] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus. Springer, New York.
[16] Pigorsch, C. and Stelzer, R. (2009). A multivariate Ornstein-Uhlenbeck type stochastic volatility model.

Eprint. Available at http://www-m4.ma.tum.de.
[17] Protter, P. (1990). Stochastic Integration and Differential Equations. Springer, Berlin.
[18] Schwartz, E. S. (1997). The stochastic behavior of commodity prices: implications for valuation and hedging.

J. Finance 52, 923–973.
[19] Shiryaev, A. N. (1999). Essentials of Stochastic Finance. World Scientific, River Edge, NJ.
[20] Trolle, A. B. and Schwartz, E. S. (2009). Unspanned stochastic volatility and the pricing of commodity

derivatives. Rev. Financial Studies 22, 4423–4461.

https://doi.org/10.1239/aap/1370870130 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870130

	1 Introduction
	2 A cross-commodity energy spot price model with stochastic volatility
	3 Forward pricing
	3.1 A class of equivalent probabilities
	3.2 Analysis of forward prices
	3.3 Shapes of the forward curve

	4 Transform-based pricing of options
	5 Conclusions
	Acknowledgement
	References

