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Abstract

In this paper computational issues of Appell's Fi function

)m-\-n\P)m\P )n

(y)m+nm'.nl
xmyn, \x\ < 1, y

are addressed. A novel technique is used in the derivation of highly efficient multiple-term
approximations of this function (including asymptotic ones). Simple structured single- and
double-term approximations, as the first two candidates of this multiple-term representa-
tion, are developed in closed form. Error analysis shows that- the developed algorithms
are superior to existing approximations for the same number of terms. The formulation
presented is highly efficient and could be extended to a wide class of special functions.

1. Introduction

Hypergeometric functions in one and several variables have attracted the interest of
many researchers over the years. This is attributed to the fact that most of the well-
known special functions can be represented in terms of these functions. Furthermore
many problems in engineering and physical science are special cases of them, this is
in addition to their applicability in other areas of analysis, statistics and operational
research [6 - 8, 11-15].

Approximations of these functions are often required as a first step in the analysis
of a given system where such functions appear. In this spirit, the author [3] derived a
single-term approximation for the generalized elliptic-type integral

Jo (1 — k2cos6y+l/2

0 < k < 1, Re(y) > Re(a) > 0, Re(yii) > -0.5
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in the form

• 0, (2)

where £ = 2&2/(l + k2).
This single term complements the range of parameters of another formula derived

by Kalla, Leubner and Hubbell [10], viz.,

*ik'"'Y)

where K = 2)k2/(l - k2). Galue, Kalla and Leubner [5] have derived a simple
structured formula for the approximation of Hubbell rectangular source integral in the
form

era b r(l)r(b2 + l) a2b2

where

In the work done by Kalla and Galue [9], single-term approximations for some
hypergeometric functions in one and two variables have been developed in some
ranges of parameters and variables.

Accuracy requirements imposed by some applications require efficient simple struc-
tured approximations that may not be met with the single-term approximations. In this
regard, the author has developed efficient multiple-term approximation formulas for
/?,*(&, a, y) in the neighbourhood of k2 = 1 [4], which almost cover the entire range of
parameters. It is evident that closed-form solutions reduce computations considerably
and the improvement in accuracy by having m terms instead of the single term is
achieved by reduction of error from O(h2) to Oih2"1). The technique used may be
interpreted as a rational approximation to a function that matches m rational terms
with 2m terms in a Taylor series expansion, similar in nature to Pade's approximation.

In this paper, a novel technique is used in the development of efficient multiple-term
approximations for Appell's F] function. The technique used is basically an extension
and generalization of that used by the author in the development of the algorithms
derived in [4] to hypergeometric functions in two variables. Single- and double-term
approximations as the first two candidates of this representation are obtained in closed
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[3] Multiple-term approximations for Appell's Fi function 137

form. Computational analyses of the developed algorithms are compared with those
approximations available in the literature.

Error analysis shows the effectiveness of the multiple-term approximations and the
technique developed is superior to existing approximations for the same number of
terms. The formulation presented here could be applied to a wide class of special
functions.

The paper is organized as follows. Formulation of the multiple-term approxim-
ations for |;c| «. 1, |v| « 1, x - • 1~, v -+ 1~ and x ->• -oo , y -> -oo are
presented in Section 2. Single- and double-term special cases are obtained in closed
form and error measures are the subject of Section 3. Finally, a comparison analysis
with the existing literature, using error measures, is given in Section 4.

2. Multiple-term approximations for Fi(a, (3, 0; 7; x, y)

In this section multiple-term approximations for Appell's F, (a, fi, fi'; y; x, y) func-
tion are derived. The series representation given by [1] and [2] is

F,( g , fi, fi'; y; x, y) = E E ( ) 2 \ n \ *"y'' W < *'M < L (5)

The integral representation of this function is given by

F,(a, £, j8'; y; s, y) = v(g)r(g,^") _ a _ ^ ( 6 )

w^'~'(l — u — v)Y~P~P (1 — M — v)~adudv,
/ /

where Re(y3) > 0, Re(^') > 0, Re(y - fi - fi') > 0, and the domain in the uv plane
is the triangular area u > 0, t>>0 , M + U < 1. Picard in [1] has pointed out that
F,(a, fi, fi'; y; x, y) can be represented in a more useful way using a single integral
in the form

F^a, fi,fi';y;x,y) (7)

~ B(a, y-a) Jo

2.1. Multiple-term approximation for Fi (a, 0, /3'; 7; x, y) for |x| <C 1, |y| <3C 1.
(i) It is not difficult to see that there exist complex values A\, A2,... , Am and
Zi,Z2,... ,Zm [4] such that

m

'', (8)
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where m = 1 for a single term, m = 2 for double term,... etc. Upon using binomial
expansions of both sides of (8) and equating equal powers of u we arrive at

The set of equations (9) can be written in the canonical form

ijzj =<pn(x,y), n = 0, 1 , 2 , . . . ,2m - 1. (10)

This represents a system of 2m nonlinear equations in the unknowns Au A2,... , Am

and Z\,Z2, • • • , zm- Solving (10), substituting the values of Ax, A2,... , Am and
Z\,z2,... ,zm into (8) and performing the integration given in (7) leads to a multiple-
term approximation for Appell's F, function in the form

i m

F,(a, p, p'; y; x, y) « — £ AjB(a, y - a - z,), (11)
B{a, y —a) ~

where Re(y) > Re(a) > Re(z;), Re(a) > 0, |JC| « 1, \y\ « 1.

2.2. Multiple-term approximation for F i (a , (3, /3'; 7; x, y) for |x| <C 1, |y| ^C 1
and Re (x) < 0, Re (y) < 0.
Replacing u by 1 — u in (7) results in

Fi(a,fi,0';y;x,y) (12)

B(a, y -1

Let

1 — x 1 — y

(i i) T h e r e ex i s t c o m p l e x va lue s A \ , A 2 , . . • , Am and z \ , Z i , • • • ,zm such that

m

(l - uy)~p'. (14)

Using binomial expansions of both sides of (14) and equating equal powers of u results
in

m n / \

.kx"-kyk, (15)£ A , ( - z , ) n = ( -1) - J2 (I) W
j=\ k=0 \K/
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which can be written in the form

2jZj=4>n(x,y), n = 0 , l , 2 , . . . , 2 m - l . (16)

The multiple-term approximation for Appell's F! function is of the form

(I x ) ( l v) i ^ -
Fd«, fi, P\ V, x,y)**V ^ _ ^ £ g AjB(y -a,a- ij), (17)

where Re(y) > Re(a) > Re(z,), Re(a) > 0, |JC| < 1, \y\ < 1.

2.3. Multiple-term approximation for F i (a , /3, /3'; 7; x, y) for x —> 1~ and
y - > l " .
With some simple transformations (7) can be written in the form

Fda.fi, 0';y;x,y) (18)

B(a, y-a) JQ (1 + r)y-P-fi

8X = 1 - x, Sy = 1 - y, (Sx, Sy) -> (0+, 0+).
(i) There exist complex values CUC2, •• ,Cm and a»i, (02,... ,com(cf. [4]) such that

m

,(l + T ) ^ « (1 + «,T)-"(1 + «yT)-^. (19)

Performing binomial expansions on both sides of (19) and equating equal powers of
r results in

^Cjicoj),, = Q ( / J \ ( / } ) n - * S r % (20)

which can be written in the form

n ( S x , 8 y ) = <j>n(8x,Sy), n = 0 , l , . . . , 2 m - l . (21)

The multiple-term approximation for Appell's Fi function is given by

F,(a, ̂ , ̂ '; y; *, y) « X_ £ C-'B(a' Y-«-fi-fi' + toj), (22)

where Re()/) > Re(a) > 0, Re(y - a - fi - fi' + coj) > 0, and x ->• 1", y -*• 1".
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2.4. Multiple-term approximation for F I ( Q , /3, $; 7; x, y) x -» —00 and y ->
—00.

Using the substitution r = 1/w - 1 in (7) results in

F,(a, /*, fi'; y; x, y) = ( 1 ~ x ) ' ( 1 ~ ^ x (23)
B(y — a, a)

T \ V X Y
j (1 ) *•

Let ex = ^ ey = ^-y, (e, , ey) - • (0
(i) There exist complex values Eu E2,... , Em and kuk2, ••• »̂ m such that

; ( 1 + r ) - A ^ ( l + £ X T ) - " ( 1 + SyT)-' '. (24)

Performing binomial expansions on both sides of (24) and equating equal powers of
T results in

jj ^J ; j (25)

which can be written in the form

j x , e y ) , n = 0,l,2...,2m-l. (26)

The multiple-term approximation for Appell's Fi function is given by

Ft (a, p, fi'; y; x , y ) * y ^ _^ £ g £ ; g ( K - a, a - fi - p + A.y),(27)

Re(y) > Re(a) > 0, Re(a - /3 - ^' + A.,) > 0, x ->• - 0 0 and y ->• - 0 0 .

Asymptotic expansion formula for F i (a , ^8, y8'; y; A:, >>) x —*• —00 and v —»• —cxa.

By applying a binomial expansion to the relevant terms in (23), we arrive at

(28)
B(y -a ,a)

'Mfi)n-ke
n

x-
kek

y

for JC -»• — 00 and v —>• — 00 and where N can be as large as is compatible with
Re(ot - fi - fi' - n) > 0, n = 0 , 1 , . . . , N.
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[7] Multiple-term approximations for Appell's Fi function 141

3. Single- and double-term approximations for Fi(a, /3, j3'; 7; x, y)

3.1. Single-term approximations

Case la. Single-term approximation for F^a, fi, fi'; y; x, y) for |jr| <£ 1, \y\ <SC 1.
Setting m = 1 in (9) and n = 0, 1 results in A] = 1, z\ = fix + fi'y. Substituting

these values in (22), the single-term approximation is found as

B(a, y — a)

Re(y) > Re(a) > Re(z,), Re(a) > 0, |x| « 1, |y| « 1.

Caselb. Single-term approximation for Fi(a, fi, ^'; y; x, y) for |JC| «; 1, \y\ <5C 1
and Re(*) < 0, Re(y) < 0.

Setting m = 1 and n = 0, 1 in (15) results in A, = l,z, = — (/SJC + 0';?).
Substitution of these values in (17) gives the single-term approximation

F,(a, 0, 0'; K; *, y) « ° ~ ^ (1 ~ ^ g(y - «, « + ^ + ^ ) , (30)
B(y - a , a)

where Re(y) > Re(a) > 0, Re(a + fix + fi'y) > 0.

REMARKS. (1) Formulas (29) and (30) are identical to equations [9, (24), (15)]
developed Kalla and Galue.

(2) The error in the computation of F,(a, fi, ft; y; x, y) using (29) and (30) is of
the order of O(h2), where h = max(|x|, \y\) in (29) and h = max(|jc/(l -

Case 2. Single-term approximation for F](a, y3, fi'\ y; x, y), x ->• 1~ and y -*• l~.
Setting m — 1 andn = 0, 1 in (20) results in Cx = l,o>i = P8x+P'8y. Substituting

these values in (22), we obtain the single-term approximation

a.)B(a, y -a)

where Re(y) > Re (a) > 0, Re(j/ - a - fix - fi'y) > 0, x ->• 1", y -+ 1~.

Case 3. Single-term approximation for F,(a, fi, fi'; y; x, y), x -> —00 and y
-co .
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Setting m = 1 and n = 0,1 in (25) results in Ex = 1, A., = (0e, + P'ey).
Substituting these values in (27) we arrive at the single-term approximation

F, (a ,0 ,0 ' ;y ; jc , ;y )« (32)

where Re(y) > Re(a) > 0, Re (a + 0 (-^) + 0' (j^;)) > 0.

3.2. Double-term approximations

Case la. Two-term approximations forF^a, 0, 0'; y; x, y) for |JC| <C 1, \y\ <S 1.
Setting m = 2 and n = 0, 1, 2, 3 in (9) results in

2')*(0)«-**"~y, n = 0, 1, 2, 3. (33)

The four nonlinear equations can be written in the form

A\z" + Aiz\ = (j>n(x, y). n = 0,1,2, 3, (34)

where

<h(x, y) = </>?(*, y) - </>,(*, y) + ^x2 + py\ (35)

, y) - 3&(JC, y) + 0?(x, y) 3

Cjj Approximate two-term solution
Setting A} = A2 and solving the first three equations of (34) results in a solution

of the form

F,(a, 0, 0'; y; x, y) % -— -{B(a, y - a - zi) + B{a, y - a - z2)}
2B(a,y-a) ( 3 6 )

with Re(y) > Re(a) > 0, Re(y - a - z\) > 0, Re(y — a — zi) > 0, where

z, - 0* + 0'y + 1 ,

0'y(l - y).

Error estimate: let h = max(|x|, |y|). The error in the computation of F^a, 0, 0';
y;x,y)using(36)isO(A3).
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[9] Multiple-term approximations for Appell's Fi function 143

(ii) A highly efficient two-term approximation for F] (a, fi, fi'; y; x, y)
The four nonlinear equations of (34) are solved for (Au A2) and (z\, Zi) and the

first two equations of (34) are solved for A{ and A2, leading to

A 0 1 - 2 2 . Z\ ~<t>l ,~Q,
A{ = , A2 = . (38)

Z\ - Z2 Zi — Z2

Substitution of (38) in the last two equations of (34) leads to two equations in z\ and
z2 which can be linearized by making the change of variables

/*= r , V = ZiZ2. (39)

The solution for \x and v is given by

The solution of (34) results in

Z\= fX + y/fl2 ~ V, Zl = fJ- — y/n2 - V (41)

and a highly efficient two-term approximation for F! (or, fi, fi'; y; x, y) is given by

F^a, p,p';y;x,y) (42)
1

B(a, y - a)
{AiB(a, y -a -zi) + A2B(a, y - a. - z2)\

with Re(y) > Re(a) > 0, Re(y - a - zi) > 0, Re(y - a - z2) > 0, and |x| «:
1, \y\ <C 1. Itshould be noted that the error in the computation of Fi(a, fi, fi'; y;x, y)
using (42) is O(h4).

Case lb. Double-term approximations for F, (a, fi, fi'; y; x,y), \x\ <S 1, \y\ <$C land
Re(x) < 0, Re(v) < 0.

Setting m = 2 in (16) results in

Ad" + A2% = $n(x, y) = M-x, -y) = pn(i, y), n = 0, 1, ... , 2m - 1,(43)

where

Po(x,y)=l, p\(x,y) = -fix - fi'y,

Piix, y) = p](.x, y) + Pl(x, y) + fix2 + fi'y2,
. . (44)

P3(x, y) = 2pi(x, y) - 3pi(.x, y) + p\{x, y) - fiOfi + 2)x3

2)y3-3fifi'xy(x + y).
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(i) Approximate two-term solution
Setting Ai = A2 and solving the first three equations of (43) results in the approx-

imation

F^a, 0, P';y;x,y) (45)

-{B(y -a,a-zi) + B(y - or, a - £2)},
2B(y - a , a)

where

( 1 - v ) 2 '
(46)

-P'y
Z2 = - \ PT— + P'-r^- I - «\/TH-^T +1-yJ Ul-x)2 (1-y)2'

Error estimates: let ft = max(|x/(l — JC)|, |v/(l — y)|). The error in the computation
of F,(a, )8, P'\ y; x, y) using (45) is O(h3).
(ii) A highly efficient two-term approximation forF^ot, fi, f3';y, x, y)

This case is similar to that used in deriving (42). The two-term approximation is
given by

Fdot,P,P';y,x,y) (47)

- «, a - z2)},
— a, a)

where

P\—Zi 2 Zi ~ Pi / / iOx
T —, A2 = —, (48)
Zl - Z2 Z\~ Zi

- V, Z2 = H - y/(J,2 - V (49)

P3-P1P2 P1P3-P2 , c m

7!)' V = 7 T ^ T - (50)

and fx and v are given by

The error in the computation of F,(a, /3, fi'\ y; x, y) is O(/i4).

Case2. Two-term approximation for F)(a, ft, ft; y; x, y), x -*• l~, y -> 1~.
Setting m - 2 and n = 0, 1, 2, 3 in (20) leads to

*^-*^ . « = 0 , l , 2 , 3 . (51)
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The four nonlinear equations can be written in the form

tn(8x,8y) = <t>n<<8x,8y), n = 0 , 1 , 2 , 3 . (52)

This case is similar to case la above and the values of <pn(8x, 8y) (n = 0, 1, 2, 3) are
given in (35).

(i) Approximate two-term solution for ¥\{a, B, B';y;x, y ) .
The solution is obtained by a method similar to that of case la and is given by

! a ) x ( 5 3 )

[B(a, y-a-B-B' + a>l) + B(a, y - a - B - B'+ a*)},

where

= Bx + B'y + iy/px(\ -x) + B'y(l - y),
(54)0'y - ijpx{\ -x) + P'y{\ - y).

Error estimate: let h = max(l — x, 1 — y). The error in the computation of
F1(a,p,P';y;x,y)i&O(h3).
(ii) Highly efficient two-term approximation for F^a, 0, 0'; y\ x, y), x —> 1~ and
y^ 1".

This method is similar to case la and the solution is given by

, p , p ; y ; x , y ) x
B(a, y -a)

[CxB{fx, y - a - B - p + tOx) + C2B(a, y - a - p -

(55)

where

-, <P\(SX,Sy) -0)2 Cl>l—<l>l(8X,8y)
C\ = , C2 = , (56)

co\ — (x>2 a>\ — a>2

COi = fl + y/(A2 — V, (02 = IX — y/fl2 — V, (57)

and v are given by

8X, Sy)

8)
4>2(8x,8y)-<t>2(8x,8y)

and the set of values of </>„(<$,, 8y), (n = 0, 1, 2, 3) is given by (35).
Error estimate: the error in the computation of (55) is O(h4).
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Case 3. Two-term approximation for F] (a, ft, fi'\ y; x, y), x -*• —oo and y —> —oo.
Setting m = 2 and n = 0, 1,2, 3 in (26) results in

El\1 + E2X
n
2 = cj>n(ex,ey), n = 0 , 1 , 2 , 3 , (59)

where <pn(,ex, ey) {n = 0, 1, 2, 3) is given by (35).

(i) Approximate two-term solution
Setting £, = E2 and solving the first three equations of (59) results in the solution

n —X\-Pn _ v\-fi'

where

-P'x

: — (6i)

z i-x i-y y a - x ) 2 (i-x)2'
Error estimate: let h = max(l/(l — x), 1/(1 — y)). The error in the computation of
F,(a, p, P'\ y\ x, y) using (60) is O(h3).

O'/j A highly efficient two-term approximation for F] (a, /}, /3'; y; x, y) x —> —oo and
y —> —oo

The solution is given by

- a, a)
- a, a - p - 0' + A,) + E2B(y -a,a-p-p' + k2)},

where

(62)

0 i ( e , , e y ) A . 2 A . j ^ i ( e x , e y )
1 = i i ' 2 = i 3̂  '

A i — K2 A) — A2
A{ = fl + ^fl2 - V, A2 = /Lt - V / i 2 - V, (64)

and /x and v are given by

0fe,e,))
_ / i f e . y)h,x, Sy) - <p\{ex, sy)

Error estimates: for h = max(l/(l — x), 1/(1 — y)) the error in the computation of
F,(o, p, P'\ y; x, y) using (62) is O(h4).
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4. Error analysis and conclusion

In this section, errors measures, comparison analysis and conclusions are presented.
The approximation formulas for F, (a, fi, fi'; y; x, y) have been developed in terms of
the beta function. Since the arguments of this function should have a positive real part,
different formulas have been derived in the case of two-term approximations to meet
this requirement for different ranges of parameters. An account of error measures as
given in Section 3 can be summarized as follows.
Error estimates:

(i) The error in computing F, (a, 0, $'; y; x, v) using (29) - (32) is O(h2);
(ii) the error in computing F,(a, y8, f}'; y; x, y) using (36), (45), (53) and (60) is

O(h3);
(iii) the error in computing F^a, ft, f}'\ y; x, y) using (42), (47), (55) and (62) is

O(h4).

It is not difficult to see that m terms of the most efficient multiple-term approx-
imations for ¥\{a, f}, ft'; y; x, v) are equivalent to m(2m + 1) terms of the series
expansion (5) or the asymptotic expansion (28) to achieve the same order of error.
For example, two terms of the most efficient approximation (42) are equivalent to 10
terms of the series expansion of (5) to achieve an error O(h4). This analysis shows
how efficient the multiple-term approximations are when compared to existing liter-
ature. It should also be noted that the approximation formulas developed in [9] for the
approximations of the F](a, 0, /?'; y; x, y) function are simply special cases of our
general formulation for case 1 and for m = 1. However, the algorithms developed in
the present paper support not only different ranges of variables (including asymptotic
behaviour) but also give more flexibility by controlling the resolution through the
selection of m. Thus, in conclusion, the algorithms developed in this paper are ex-
tremely useful in a large number of applications in which approximations of Appell's
Fj (a, fi, $'\ y; x, y) function are required.
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